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Abstract. The Lake El’gygytgyn sediment record contains
an abundant diatom flora through most intervals of the lake’s
history, providing a means to create and test hypotheses con-
cerning the lake’s response to changing climates. The 0–
1.2 Ma core interval is characterized by shifts in the domi-
nant planktonic genera and events of exceptional concentra-
tion and diversity. Warm interglacial intervals have enhanced
concentration and diversity of the plankton. This response
is most extreme during exceptional events corresponding to
marine isotope stages (MIS) 11 and 31. Diatom concentra-
tion and diversity also increase during some cold intervals
(e.g., MIS 2), suggesting conditions of lake circulation and
nutrient cycling promoting diatom production during these
events. Short intervals of low plankton concentration accom-
panied by shifts in the dominant genus of the lake suggest
conditions during certain cold events generate a severe im-
pact on plankton production. The absence of these events
during extended intervals of low summer insolation variabil-
ity suggests a muted cold-event response of the lake system
linked to regional climate.

1 Introduction

The sediment record from Lake El’gygytgyn, Far East Rus-
sian Arctic, contains a unique archive of terrestrial paleocli-
mate spanning the last 3.6 million years (Melles et al., 2012).
The majority of recovered sediment contains significant but
variable biogenic silica (Meyer-Jacob et al., 2013) mostly in
the form of diatom valves. Understanding the factors influ-
encing the production and preservation of diatoms in the lake
is one key to understanding many of the other proxy records

used to unravel the response of the ancient lake system to
changing climates. Diatom species assemblages also offer a
powerful recorder of changes in the lake potentially linked to
paleoclimate through ice conditions, circulation, nutrient de-
livery, and water chemistry (e.g., Smol, 1988; Douglas and
Smol, 1999).

Early research on the modern diatom flora in El’gygytgyn
has focused on descriptions of extant taxa found in lake-
bottom samples. These first studies describe many unique
species, consistent with a long-lived lake system (Sechkina,
1956; J́ouse and Sechkina, 1960; Kharitonov, 1980, 1993;
Genkal and Kharitonov, 1996, 2005, 2006). Prospects of the
recovery of the complete sediment record have inspired a
renewed interest in the modern diatom flora (Cremer and
Wagner, 2003; Cremer et al., 2005; Cremer and van de
Vijver, 2006; Stachura-Suchoples et al., 2008). However,
because of its remote location, on-site studies have been
only short duration, and the diatom response to interannual
changes in the lake system is poorly constrained.

Previous diatom studies of sediment cores from Lake
El’gygytgyn show a generally abundant, diverse, and vari-
able flora. The core PG1351 record included 150 samples
spanning the last 250 ka (Cherepanova et al., 2007, 2010).
Although these initial investigations demonstrated the poten-
tial of these diatom records, the interpretations from these
early core studies were complicated by the presence of
turbidites and by taxonomic uncertainty, especially in the
morphologically variable dominant planktonic diatom in-
cluded in theCyclotella ocellatacomplex (sensu Cremer and
Wagner, 2003).

This study utilizes samples from a more recent core
(Lz1024; recovered in 2003 extending to 340 ka) and initial
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samples from the nearby deep drilling site (5011-1) to con-
struct a continuous low-resolution composite record span-
ning the last 1.2 Ma. Four intervals are analyzed in finer
temporal resolution, corresponding to marine isotope stages
(MIS) 1, 5e, 11, and 31, to contribute to the research fo-
cus on exceptional interglacial events (Melles at al., 2012;
Lozhkin and Anderson, 2013; D’Anjou et al., 2013; Vogel et
al., 2012) and to help understand conditions during the lo-
cal Last Glacial Maximum (Holland et al., 2013). This study
provides initial interpretations of these diatom records along
with guidance and prospects for future investigation.

1.1 Setting

Lake El’gygytgyn (67◦30′ N, 172◦5′ E; Fig. 1) is situated in
an impact crater dated 3.58± 0.04 Ma (Layer, 2000). The
modern lake (12 km diameter and 175 m deep) is oligotrophic
(Nolan and Brigham-Grette, 2007). In recent observed years,
the lake is ice free during the period of approximately July–
October and completely mixes in summer. Weak sub-ice con-
vection is also suggested by gas bubble patterns in the lake
ice (Nolan and Brigham-Grette, 2007). At the present lake
level, a shallow shelf (less than 10 m deep) occupies approx-
imately 11 % of the lake basin area (Nolan and Brigham-
Grette, 2007). However, morphological evidence suggests
higher and lower lake levels in the past, substantially impact-
ing the area of shallow-water lake bottom (Fedorov et al.,
2008; Juschus et al., 2011). Additional details of the modern
setting and limnology are described elsewhere (Nolan and
Brigham-Grette, 2007; Fedorov et al., 2012; Nolan, 2012;
Nolan et al., 2012; Wennrich et al., 2013).

2 Methods

Diatom samples were prepared from a measured mass of
freeze-dried sediment, treated with boiling 30 % H2O2. Sys-
tematic diatom counts were conducted at 1000× magnifica-
tion with a Leica DMLB light microscope with differential
interference contrast. At least 500 valves were counted in all
but a few sparse samples. Quantitative diatom concentrations
were calculated using measured transect areas on slides pre-
pared from a measured sediment mass and added calibrated
microspheres settled through a water column onto a micro-
scope cover slip (modified from Battarbee et al., 2001).

Counted diatoms were identified to species level, wher-
ever possible, using a wide variety of taxonomic references.
Taxonomy of the dominant diatoms was confirmed by scan-
ning electron microscopy of selected samples. Names as-
signed to the taxa are generally those used by previous
El’gygytgyn investigators (e.g., Sechkina, 1956; Cremer and
Wagner, 2003; Cherepanova et al., 2007; Stachura-Suchoples
et al., 2008). Presentation and discussion of planktonic di-
atoms in this study focus on genus-level variations. In most
cases, each genus is dominated by a single species as noted

Fig. 1. Location map of Lake El’gygytgyn and its catchment.
Bathymetry (20 m contour interval) and stream network are mod-
ified from Nolan and Brigham-Grette (2007).

in the text.Cyclotellacontains multiple morphotypes which,
with further taxonomic work, will warrant further subdivi-
sion. Here they are combined in theCyclotella ocellatacom-
plex (Cremer and Wagner, 2003) because of the difficulty
to distinguish these taxa in routine counts.Aulacoseira sub-
arctica (O. Müller) Haworth is the dominant member of its
genus. Minor occurrences of otherAulacoseiraspecies also
occur and are excluded from theAulacoseiraplots. Genus-
level diversity in the plankton was estimated utilizing the
Shannon index (e.g., van Dam, 1982). Further observations
of periphyton assemblage, valve size and preservation were
noted and quantified in certain cases.

The age model for the Lz1024 core is provided by meth-
ods described elsewhere (e.g., Juschus et al., 2007). Below
340 ka, the chronology is based on the detailed age model de-
rived primarily from paleomagnetic reversal and orbital tun-
ing (Melles et al., 2012) and correlation to the base of the
Lz1024 record. The initial analysis interval presented here
provides an approximately 4–5 kyr average resolution for the
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0–1.2 Ma record and 1 kyr resolution for the intervals ana-
lyzed in more detail.

Diatom accumulation rates (valves cm−2 kyr−1) are calcu-
lated from concentrations in individual samples (valves g−1)
using age model sediment accumulation rates and dry bulk
density calculated from gamma ray attenuation porosity eval-
uator (GRAPE) scans (Gebhardt et al., 2013) and are pre-
sented for some core intervals. The main results are presented
as simple concentrations to describe independently the oc-
currence of diatoms in the sediment and to avoid introducing
uncertainties related to the age model.

3 Results

3.1 The composite record 0–1.2 Ma

The 0–1.2 Ma record presented here preserves a complex
cyclicity in the lake’s diatoms, reflected in the concentration,
preservation, valve size, and species assemblage (Fig. 2). Be-
cause of the great differences in size, silica content, and valve
concentration in dominant planktonic diatoms and the spo-
radic occurrence of some other planktonic taxa, absolute con-
centrations, rather than percentage within an assemblage, are
presented for comparison. Numerical valve counts of total
diatoms show a broadly similar trend to the biogenic silica
record (Frank et al., 2012; Meyer-Jacob et al., 2013). Subtle
differences in these trends may be attributed to minor varia-
tion in valve size and preservation observed in these intervals
and by contributions from larger, less numerically abundant
taxa.

The most notable down-core changes are shifts in the dom-
inant genera.Pliocaenicus seczkinaeStachura-Suchoples,
Genkal et Khursevich, previously observed to emerge since
15 ka, has a long complex history in El’gygytgyn, exhibit-
ing substantial morphological variability.Cyclotellalikewise
becomes a minor component of the plankton during certain
intervals. During other times, both diatoms co-exist, as in the
Holocene.

One clear aspect of the 0–1.2 Ma diatom record is the
occurrence of intervals of exceptional diatom concentration
that correspond to inferred warm intervals (yellow in Fig. 2).
Both plankton and periphyton concentrations increase, and
the valves exhibit better preservation. Other planktonic taxa
includingStephanodiscuscf. minutulus(Kützing) Cleve and
Möller also occur during some of these events.A. subarc-
tica occurs in abundance during some of these events prior
to 550 ka, and is the numerically most abundant taxa during
particular intervals from 800 to 1200 ka. The most extreme
of these exceptional events correspond to MIS 11 and MIS
31. Here both total plankton and periphyton reach concen-
tration peaks unmatched in the studied interval, and a high
diversity of planktonic diatoms occurs. Many of the high
diatom concentration events are characterized by tempo-
rary size increases in the morphologically plastic planktonic

genera (especiallyCyclotellaandPliocaenicus). For exam-
ple, during MIS 11 the initial cell diameter ofCyclotella is
25–30 µm, compared to 15–20 µm during inferred colder in-
tervals immediately preceding and following this event. Dur-
ing MIS 31 the initial cell diameter ofPliocaenicusincreases
to 35–50 µm from less than 30 µm before this event.

A few intervals of increased plankton and periphyton
abundance correspond to apparently cold intervals (purple in
Fig. 2). These are distinguished by their distinctive periphy-
ton assemblage, particularly the absence of species found in
inferred warm intervals, especiallyAchnanthidium kriegeri
(Krasske) Hamilton, Antoniades et Siver andCocconeis pla-
centulaEhrenberg (see Sect. 3.2). None of these intervals is
characterized by significant concentration ofPliocaenicus.

Short (< 20 cm) intervals of low plankton abundance also
occur in the diatom record. Seven of the 234 samples system-
atically analyzed for this study contain less than 107 valves
g−1 of total planktonic diatoms (green in Fig. 2). Some of
these samples have zero observed planktonic diatoms or an
order-of-magnitude-lower concentration than any other sam-
ples. Corrections for age model sedimentation rate and den-
sity confirm exceptionally low diatom accumulation rates.
Many of these zones have persisting moderate concentrations
of well-preserved periphyton. These intervals, in many cases,
correspond to shifts in the dominant plankton in the lake.
For example, at 924 kaPliocaenicusreplacesCyclotella. One
such zone occurs at 225 ka. AlthoughCyclotellapersists, this
interval corresponds to an abrupt decline in a morphotype of
theCyclotella ocellatacomplex (Cherepanova et al., 2010),
which dominates the plankton 225–550 ka. This long-term
dominance and abrupt decline may justify the establishment
of this morphotype as a separate distinct species.

3.2 MIS 1 and 2 (0–34 ka)

The genusCyclotelladominates the sediment record of the
last 34 ka (Fig. 3). Minor and sporadic planktonic diatoms
vary dramatically across this portion of the record. The 20–
25 ka interval exhibits the greatest diversity in plankton with
peaks inFragilaria cf. nananaLange-Bertalot,S. cf. min-
utulus, and Asterionella formosaHassal often associated
with higher nutrient concentrations (e.g., Lotter et al., 1998;
Bennion et al., 2004). This interval corresponds to the high-
est Si / Ti ratios and biogenic silica concentrations in the last
34 ka, some intervals exceeding 30 %. Average diatom accu-
mulation rates of 20–25 ka approximately equal the average
from 0–5 ka (1.8× 1010 valves cm−2 kyr−1). The compara-
tively large, heavily silicifiedPliocaenicusoccurs in abun-
dance only since 15 ka, although a few individual valves are
observed on slides from earlier samples.

The periphyton species assemblage also changes with
comparable timing. Small Achnanthaceae are numerically
the most abundant valves in most samples.A. kriegeri and
Achnanthidium minutissimum(Kützing) Czarnecki occur in
greatest abundance since 15 ka. In contrast,Planothidium
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1312 J. A. Snyder et al.: Dynamic diatom response to changing climate 0–1.2 Ma

Fig. 2. Concentration (valves g−1) of planktonic species, total periphyton, total diatoms, and plankton diversity (Shannon index) from 0 to
1.2 Ma. Exceptional events are indicated by colored intervals. Diatom concentrations, except total diatoms, are plotted on a log scale. For
comparison, the marine isotope stack (Lisiecki and Raymo, 2005) and 65◦ N June insolation (Laskar et al., 2004) are also plotted.

Clim. Past, 9, 1309–1319, 2013 www.clim-past.net/9/1309/2013/
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Fig. 3. Concentration (valves g−1) of planktonic species, total periphyton, total diatoms, and plankton diversity (Shannon index) from 0–
34 ka. For comparison, other El’gygytgyn climate proxies including Si / Ti measured by XRF core scanning and MTWM (mean temperature
warmest month) derived from pollen data (best modern analog approach) (Melles et al., 2012). Other pollen data (Lozhkin et al., 2007)
suggest continuation of a cold assemblage through the 20–34 ka interval (not shown).

oestrupii (Cleve-Euler) Round et Bukhtiyarova peaks from
19 to 24 ka. Diatoms with valves greater than 75 µm length
vary more irregularly. However, Frustulia rhomboidesvar.
amphipleuroides(Grunow) DeToni is almost exclusively ob-
served 15–25 ka, andEunotia pseudopectinalisHustedt is
more characteristic of the interval since 15 ka.

3.3 MIS 5e (111–135 ka)

The genusCyclotella also dominates the 111–135 ka core
interval (Fig. 4). SparsePliocaenicusand planktonicFrag-
ilaria occur in a few samples. The inferred peak warmth of
MIS 5e corresponds to an approximate doubling of the di-
atom concentration driven mostly byCyclotella. Calculated
genus-level plankton diversity does not significantly increase
in this interval. This index may underestimate the true plank-
ton diversity in this interval because the dominantCyclotella
contains at least two morphotypes with significantly different
diameter. The peak in diatoms seen at 135 ka corresponds to
the preceding cold productive mode (Fig. 2).

3.4 MIS 11 (360–430 ka)

The interval corresponding to MIS 11 exhibits the greatest
peak in diatom concentration driven mostly byCyclotella
(Fig. 5). During the first part of this interval (411–416 ka)

peak abundance corresponds to numerically abundant but
small-diameterCyclotellaandStephanodiscus. From 411 to
400 ka,Cyclotellaoccurs in lower abundance but increased
size. Diversity also increases significantly in this interval,
especially 401–403 ka, whereFragilaria and Asterionella
peak.

3.5 MIS 31 (1057–1113 ka)

The interval corresponding to MIS 31 peak warmth contains
a diatom abundance second only to MIS 11 in the 0–1.2 Ma
record (Fig. 6).Aulacoseirais the most consistent and nu-
merically abundant member of the plankton assemblage. The
robustPliocaenicus, although numerically less abundant, is
also a significant and consistent part of the assemblage. Sim-
ilar to MIS 11, additional genera occur in the more recent
portion; in this caseStephanodiscusandAsterionellaoccur
1065–1076 ka. Above this interval there is a low plankton
abundance zone (< 107 valves g−1) corresponding to the ex-
tirpation of Pliocaenicusand return ofCyclotella to dom-
inance in the lake. This low-abundance zone is missed in
the 0–1.2 Ma record because of the lower sample resolution,
although it is suggested by the observed shift in dominant
genus.

www.clim-past.net/9/1309/2013/ Clim. Past, 9, 1309–1319, 2013



1314 J. A. Snyder et al.: Dynamic diatom response to changing climate 0–1.2 Ma

Fig. 4. Concentration (valves g−1) of planktonic species, total periphyton, total diatoms, and plankton diversity (Shannon index) from 111
to 135 ka. Other El’gygytgyn climate proxies from Melles et al. (2012) are included for comparison (see Fig. 3).

4 Discusssion

4.1 Peak warmth intervals

Observing the Holocene and other identified interglacial in-
tervals from the composite core record, a clear pattern in di-
atom response is apparent. Concentration increases in both
periphyton and plankton. Genus-level diversity increases in
the plankton. Valves are generally well preserved with only
minor dissolution noted. The occurrence of certain periphytic
taxa also characterizes each of these intervals, especially
A. kriegeri andC. placentula. These taxa also occur in the
deeper record, even as the dominant plankton varies. In gen-
eral, the diatom response is consistent with a relatively fa-
vorable environment for diatom growth that might be an-
ticipated from enhanced nutrient delivery, prolonged open-
water growing season, and expanded diversity in habitats in
the lake and its catchment.

The emergence ofPliocaenicussince 15 ka may be a re-
sponse to warming and enhance open-water conditions. Lit-
tle is known about the ecological tolerance of this taxon.
Flower et al. (1998) speculate the similarPliocaenicus costa-
tusvar.sibiricus(Skabitch.) Round et H̊akansson responded
favorably to 20th-century warming in Lake Bolshoe, Siberia.
The appearance ofPliocaenicusin El’gygytgyn at 15 ka may
also partially reflect the elimination of a competitive exclu-
sion from larger members of theCyclotella ocellatacom-
plex. These forms disappear from the record during an in-
ferred cold, diatom-poor interval at ca. 70 ka. Thus, favor-
able conditions for this large, heavily silicifiedPliocaenicus
may first recur after 15 ka, allowing expansion into this va-
cated niche in the phytoplankton. The linkage betweenPlio-
caenicusabundance and climate is further strengthened by
the correspondence with its emergence 13–15 ka, peak at

9–10 ka, and subsequent decline through the Holocene with
the pollen-derived summer temperature (Fig. 3) (Melles et
al., 2012).

Although not yet quantified in detail, the observed size in-
crease inPliocaenicusor Cyclotella, particularly in MIS 11
and 31, may also be a response to conditions during these
times. Diatom size control may vary with conditions of a spe-
cific lake (e.g., Finkel et al., 2009). In a nutrient-limited lake
system, higher nutrients (including silica) may favor larger
plankton. Further, larger plankton could be an adaptation to
greater mixing/turbulence due to more open water, allowing
larger diatoms to remain in the photic zone without sink-
ing. On longer timescales, individual species may adapt to
competition introduced during intervals favorable for phyto-
plankton production. The El’gygytgyn sediment record may
provide an exceptional opportunity to explore these phenom-
ena on glacial–interglacial timescales.

Observed interglacials within the 0–1.2 Ma record are
highly variable in the magnitude of their diatom response.
MIS 11 and 31 are exceptional events both in diatoms and
other proxies (Melles et al., 2012). Both intervals have peaks
in species usually associated with enhanced nutrient status.
The occurrence of these assemblages corresponds to sedi-
ments Facies C, sensu Melles et al. (2012), characterized by
reddish-brown, finely laminated silt, explained by high pro-
ductivity in the growing season and anoxic bottom waters
during winter. The unique diatom response may result from
enhanced nutrient delivery from the catchment or a threshold
in lake-water oxygenation and circulation, altering the nature
and timing of nutrient cycling in the lake (e.g., Rippey et al.,
1997; Br̈uchman and Negendank, 2004). This exceptional di-
atom production and accumulation plays an important role in
the formation of this sediment facies, ranging between 20 and
50 % biogenic silica during these peaks.

Clim. Past, 9, 1309–1319, 2013 www.clim-past.net/9/1309/2013/



J. A. Snyder et al.: Dynamic diatom response to changing climate 0–1.2 Ma 1315

Fig. 5. Concentration (valves g−1) of planktonic species, total periphyton, total diatoms, and plankton diversity (Shannon index) from 360
to 430 ka. Other El’gygytgyn climate proxies from Melles et al. (2012) are included for comparison (see Fig. 3).

Correlation between the plankton assemblages and other
proxy records during MIS 11 and 31 (Figs. 5 and 6) af-
firms their climate sensitivity. Initial warming at 427 ka (MIS
11) is mainly expressed as an increase inCyclotella. Fol-
lowing modest declines in Si/Ti and pollen-derived summer
temperature,Stephanodiscusoccurs at levels comparable to
Cyclotella400–417 ka.Asterionellaalso occurs sporadically
in this interval. This event corresponds to the peak of MIS
11, inferred from pollen and biomarker temperature recon-
structions (Melles et al., 2012; D’Anjou et al., 2013). These
species abruptly decline as reconstructed summer tempera-
tures first approach near-modern values at ca. 400 ka. During

MIS 31, initial warming ca. 1085–1090 ka corresponds to
the emergence ofAulacoseiraas the dominant planktonic di-
atom.StephanodiscusandAsterionellasimilarly rise during
the peak in pollen-indicated summer temperature (1076 ka)
and abruptly decline at near-modern conditions (1065 ka).
This lag further supports the hypothesis of a threshold in
climate-driven nutrient conditions in the lake during extreme
interglacials.

The distribution ofA. subarctica, a widespread diatom pre-
ferring intermediate nutrient conditions (Gibson et al., 2003),
illustrates some of the complexity of comparing particular
interglacials. This diatom, occurring almost exclusively in

www.clim-past.net/9/1309/2013/ Clim. Past, 9, 1309–1319, 2013



1316 J. A. Snyder et al.: Dynamic diatom response to changing climate 0–1.2 Ma

Fig. 6. Concentration (valves g−1) of planktonic species, total periphyton, total diatoms, and plankton diversity (Shannon index) from 1057
to 1103 ka. Other El’gygytgyn climate proxies from Melles et al. (2012) are included for comparison (see Fig. 3). The green bar indicates a
sparse plankton event (compare Fig. 2) not observed in lower-resolution sampling.

identified interglacial intervals, is a minor component since
550 ka but dominates in some intervals between 830 and
1150 ka. This species is also abundant in Lake Baikal dur-
ing approximately this same time, peaking ca. 850, 1150, and
1190 ka (Grachev et al., 1998), suggesting a broader biogeo-
graphic influence on its occurrence and distribution.

4.2 Cold productive intervals

The occurrence of high biogenic silica (20–35 %) and diatom
production during MIS 2 may help to decipher the environ-
ment of the lake during this interval and to understand the
dynamics of the lake system and its response to changing cli-
mate. The substantially different overall assemblage, includ-
ing blooms of delicate planktonic taxa, generally favoring
higher nutrient status and not observed in substantial quanti-
ties in the Holocene, suggests that this trend is more than a
preservation effect or lack of dilution from other inputs. More
likely, the environment in the lake was similarly favorable
for diatom production compared to the recent lake. Yet other
proxies, such as pollen, sediment facies, and diatom isotopes
suggest at least 4◦C colder summer air temperatures com-
pared to modern conditions (Melles et al., 2012; Chapligin

et al., 2012), and in other cold stages this diatom response is
absent.

Periodic circulation of a mostly ice-covered lake is one hy-
pothesis to generate such production and diversity. Periodic
expansion in plankton diversity may reflect adaptation of the
dominant species to a more limited range of conditions or pe-
riodic changes in nutrient resource distribution (e.g., Kilham
et al., 1996). The general dominance ofCyclotellaor Plio-
caenicusmay represent a competitive exclusion of other taxa
during the typical range of conditions (e.g., Stoermer and
Edlund, 1999). The particular occurrence of these nutrient-
favoring phytoplankton species during MIS 2 may indicate
conditions providing seasonal to extra-seasonal pulses of nu-
trients to the plankton, allowing for a temporary increase in
the population of these widespread taxa. Circulation-induced
seasonal nutrient input timed to persistent transparent ice
cover may also promote the expansion of these otherwise
sporadically occurring taxa. Such a scenario may also be con-
sistent with the lack of significantPliocaenicus, perhaps re-
quiring more extensive open-water conditions.

Other observations from the MIS 2 sediment record pro-
vide additional perspective on the lake’s response to this
event. Melles et al. (2012) suggest that the sediment facies in-
dicates more extensive ice cover leading to oxygen-depleted

Clim. Past, 9, 1309–1319, 2013 www.clim-past.net/9/1309/2013/
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bottom waters, but sufficient melting of the lake’s margins to
allow some fluvial input. However, this sediment Facies A
does not always correspond to the diatom response observed
in MIS 2. Melles et al. (2007) attribute high total organic car-
bon in MIS 2 to some combination of increased productivity
and preservation due to anoxia. Investigations of biomarkers
and organic matterδ13C indicate limited connection to atmo-
spheric CO2 and limited oxygen depletion in the water col-
umn (Holland et al., 2013) and, although not indicating en-
hanced aquatic production or nutrients, imply that enhanced
production would need to be sustained by internal biogeo-
chemical cycles.

The periphyton assemblage also changes during this same
interval, suggesting environmental changes across all diatom
habitats. Their abundance suggests at least periodic melting
sufficient in the lake margins to promote the diversity and
abundance of the lake’s periphyton community. The periphy-
ton may respond directly to climate-induced shallow-water
habitat changes, or indirectly to suggested nutrient condi-
tions and lowered lake level during MIS 2 (Juschus et al.,
2011). However, the uncertain tolerance ranges of the dom-
inant El’gygytgyn periphyton make a specific interpretation
of these changes difficult.

Additional short productive intervals (sensu MIS 2) lack-
ing the characteristic interglacial periphyton suggest the po-
tential recurrence of conditions favorable to diatoms during
some cold events. Similar to MIS 2, several of these intervals
correspond to low insolation and heavy marine oxygen iso-
topes in the tuned chronology. Thus, interpretations of bio-
genic silica and diatom concentration in the deeper record
may be complicated by additional such events, requiring con-
firmation with other proxy records.

4.3 Sparse plankton events

Events in which plankton dramatically decreases in abun-
dance and subsequently re-emerges with a different charac-
ter may help to constrain the nature of these intervals of the
lake’s history. These observations imply that phytoplankton
in the lake is stressed such that competitive exclusion is elim-
inated for some time. However, the recurrence of species ei-
ther unique to El’gygytgyn or only narrowly distributed over
the long history of the lake suggests that minimal popula-
tions are sustained in the lake, and that they survive these
events. Given the correlation of these events to relatively
cold intervals, these extreme declines in the lake’s plank-
ton are most easily explained by a prolonged light limita-
tion from extended summer ice and snow cover on the lake.
However, the sparse plankton event at 1060 ka corresponds
to a zone of near-modern pollen-derived summer temperature
and mean annual precipitation (Melles et al., 2012). Thus,
any climate-related mechanism to drive these events is either
consistent with such conditions or is short lived and unre-
solvable in the available pollen record. The role of changing
lake level in these events cannot be excluded based on the

diatom observations. The persistence of well-preserved near-
typical periphyton concentration across some of these in-
tervals suggests some shallow-water habitats are maintained
during these times.

The low-plankton events are not evenly distributed
through the lake record. None has yet been observed from
225 to 550 ka in the low-resolution sampling completed, and
none is anticipated based on the apparent stability of the
dominantCyclotella. The interval 680–920 ka also lacks low-
plankton zones with a consistent dominance ofPliocaeni-
cus. These intervals both correspond to a time of lower-
amplitude summer insolation variability (e.g., Laskar et al.,
2004), suggesting that these events may be triggered by con-
ditions unique to summer insolation lows. This observation
is similar to the interval of sustained high diatom concen-
tration in the Lake Baikal record 370–580 ka (Prokopenko et
al., 2002). The lake system and the regional climate are sensi-
tive to intervals of extreme insolation lows, perhaps inducing
extended periods of light limitation in planktonic habitats.
Careful observations of diatom assemblages provide clues to
the nature of exceptional cold events only subtlety expressed
in other proxies.

5 Conclusions and future work

From 0 to 1.2 Ma, sediments recovered from Lake
El’gygytgyn record dramatic variations in diatom species
assemblage and abundance. During warm interglacial inter-
vals, both plankton and periphyton abundance increases and
plankton diversity expands. Extreme warm events (MIS 11
and MIS 31) have the highest diatom concentrations ob-
served, and abrupt plankton assemblage changes within these
intervals suggest a threshold in climate-driven nutrient con-
ditions in the lake. Exceptional cold events where plankton
abundance and diversity exceed some interglacials suggest
the possibility of enhanced sub-ice production promoted by
periodic lake circulation and transparent ice. During some
cold events, short intervals occur with extremely low plank-
ton abundance and accumulation rates, sometimes corre-
sponding to a shift in the dominant planktonic genus. These
events are absent from intervals of lower magnitude sum-
mer insolation variation, especially 225–550 ka, suggesting
a similar response seen in the Lake Baikal record.

Additional diatom studies from this interval and the com-
plete sediment record extending to 3.6 Ma provide numerous
opportunities to further test the interpretation of preliminary
results presented here. Systematic observations of plankton
size and preservation, and periphyton assemblages across
these events, may help to distinguish open water from sub-
ice production. The patterns of diatom response may also
change during earlier intervals of anticipated extreme and
continuous warmth. The El’gygytgyn diatom record further
provides a unique setting to observe diatom evolution linked
to changing climate in this relatively isolated environment.
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