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Abstract. Using the climate model of intermediate com- without anthropogenic impact and to provide insights into
plexity LOVECLIM in an idealised framework, we assess the processes responsible for climate changes.
three data-assimilation methods for reconstructing the cli- A new but highly appealing approach to reconstruct the
mate state. The methods are a nudging, a particle filter wittpast climate states is data assimilation (eBhend et al.
sequential importance resampling, and a nudging propos&012 Widmann et al.201Q Annan and Hargreave2012).
particle filter and the test case corresponds to the climate oThe main purpose of data assimilation is to estimate the state
the high latitudes of the Southern Hemisphere during the pastf a system as accurately as possible incorporating all the
150yr. The data-assimilation methods constrain the modebvailable information; numerical modelling of the behaviour
by pseudo-observations of surface air temperature anomaliesf the system, observations and uncertainties of the model
obtained from the same model, but different initial condi- and of the observationgélagrand 1997). When choosing
tions. All three data-assimilation methods provide with gooda data-assimilation method, the application to which it is
estimations of surface air temperature and of sea ice conapplied should be kept in mind. For example, in meteoro-
centration, with the nudging proposal particle filter obtain- logical applications data-assimilation methods like 4D-Var
ing the highest correlations with the pseudo-observations(e.g.,Courtier et al.1994 or the ensemble Kalman filter
When reconstructing variables that are not directly linked (Evensen1994) are employed. These methods, however suc-
to the pseudo-observations such as atmospheric circulationessful, are limited in the sense that the analysis is linearised
and sea surface salinity, the particle filters have equiva-and, thus, the methods assume Gaussian distributions.
lent performance and their correlations are smaller than for There exists an ensemble-based data-assimilation method
surface air temperature reconstructions but still satisfactorythat does not make such an assumption. It is particle filtering.
for many applications. The nudging, on the contrary, ob-In particle filtering, the probability distribution function of
tains sea surface salinity patterns that are opposite to ththe state is approximated by an ensemble of particles, where
pseudo-observations, which is due to a spurious impact o& particle (or ensemble member) is a full model state ob-
the nudging on vertical exchanges in the ocean. tained by running a model. In order to have non-identical
particles a perturbation is applied to initial conditions, for
example. Then, each particle is propagated forward in time
using the model. When the observation becomes available,
1 Introduction the so-called importance weights are assigned to the parti-
cles based on how close to the observation they are. Small
Reliable reconstructions of the past climate states are essefyeights are given to particles far from the observation; large

tial for a comprehensive understanding of the climate syseights, to particles close to the observation. The ensemble
tem, more accurate climate predictions and projections. They

enable to estimate the magnitude of the natural variability
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mean, which is the best estimate of the state, is then a sum @ince the number of degrees of freedom is larger when esti-
the particles each multiplied by the corresponding weight. mating seasonal variability than when estimating annual vari-
Particle filtering has no assumption of gaussianity, uses ability and some improvements of particle filtering were in-
full nonlinear model to propagate the particles, but unfor-troduced invan Leeuwer{2010 to handle high-dimensional
tunately, suffers from the “curse of dimensionality8riy- systems with many degrees of freedom, we test this data-
der et al, 2008, meaning that for a high-dimensional sys- assimilation method, the nudging proposal particle filter, in
tem particles (ensemble members) tend to drift apart duringour experiments. Moreover, we compare this method to a par-
their forward evolution leading, consequently, to large vari- ticle filter with sequential importance resampling —a method
ance in the corresponding importance weights. If the ensemused inDubinkina et al(2011) — and to a nudging — a data-
ble size is small, after a few data-assimilation cycles all butassimilation method widely used by general circulation mod-
one of the particles have importance weights close to zeroels for initialising climate predictions (e.dgenlyside et aJ.
and an ensemble that has collapsed to a single particle ca2008 Pohlmann et al2009 Swingedouw et al2012).
no longer approximate the probability distribution function In our studies, we focus on the Southern Hemisphere as
of the state. Therefore, particle filtering has not yet been emit is an interesting test case for the model dynamics that in-
ployed for operational geophysical problems. To overcomecludes potentially complex interactions with sea ice. We em-
the limitation of degeneracy, a new patrticle filter has beenploy the climate model of intermediate complexity LOVE-
introduced byvan Leeuwen(2010, the equivalent weights CLIM —a coupled model with atmospheric, oceanic and sea-
particle filter. There, the particles are guided towards the obice components. As the period of interest we choose 150 yr
servations during the model simulations and smaller variancdérom the year 1850 until 2000. Variation of the anthropogenic
in the particles weights is induced. The equivalent weightsimpact in 1850—2000 allows us to assess the performance of
particle filter has shown good performance for the Lorenz-63a data-assimilation method under different magnitudes of the
and the Lorenz-95 modelsgn Leeuwen2010, and for the  forcing. Moreover, a study over a rather short time period for
barotropic vorticity equatiorv@an Leeuwen and Ade2012. a paleoclimatological application gives the basis for future
Paleoclimate applications are somewhat different than meapplications over longer periods.
teorological applications. The system is nonlinear and high- Experiments with pseudo-proxies, which are derived from
dimensional as well, but the observations are sparse and haw#mulations of climate models, are quite typical for paleocli-
large uncertainties. Moreover, the available observations almatological applications (e.gSmerdon2012), as they give
low reconstructions of only large-scaled features averageanore freedom in estimating skill of a method used to ob-
over several months or even years rather than a few tenth&in a climate state reconstruction. Therefore, we constrain
of kilometres and six hours scales. Therefore, for a paleothe model by pseudo-observations instead of instrumental
climate application the number of degrees of freedom of therecords. We use pseudo-observations of surface air temper-
system can be reduced by performing spatial and temporahture anomalies, since for the last centuries observations of
averages without substantial loss of needed information. Thisurface air temperature (either instrumental or proxy recon-
allows the use of a patrticle filter even without the “guidance” structions) appear to be the most disposable. We perform two
of van Leeuwen(2010. For instanceGoosse et al(2009 series of experiments: using the pseudo-observations given
used a particle filter with 96 members and the dataset HAD-at every grid cell over the assimilated domain and using
CRUT3 Brohan et al. 2006 to reconstruct the past half- the pseudo-observations given at the same locations as the
century climate state in the Southern Hemisphere. It wagdataset of instrumental surface temperature records HAD-
shown that variables like surface air temperature average@€RUT3 Brohan et al.2006. With the latter series we aim
over large domains, sea ice area in the Southern Ocean, and approach a more realistic setup for a paleoclimatological
the southern annual mode are in agreement with the observapplication, but without leaving the twin-experiment frame-
tions at an annual time scaldnnan and Hargreavg2012 work. The design of our experiments is close to a real ap-
assessed reconstructions of annual mean temperature anonmication of a data-assimilation method (e.@gosse et al.
lies over the Northern Hemisphere for the past two millen-2012 and, therefore, can be easily adapted for such an ap-
nia. The reconstructions were obtained using a particle fil-plication. For a more distant past, the number of proxies is
ter with 200 members and limited pseudo-proxies of surfacesubstantially smaller. Therefore, the performance of data as-
temperature. It was pointed out that annual temperature agimilation is expected to be weaker, but still satisfactory, if
the hemispheric scale is well reconstructed, even when onlyhe signal recored in sparse proxies is strong and the aim is to
50 pseudo-proxies are used, as to the regional scale the pareconstruct large-scale features, eAnnan and Hargreaves
formance is poor giving negative skill for the spatial field in (2012; Mathiot et al.(2013
some regions. The paper is organised as follows: in Settwe give a
While those applications were dealing with annual recon-description of three data-assimilation methods that are used
structions at a large spatial scale, our goal is to test datafor the past climate state reconstructions: the sequential im-
assimilation methods to reconstruct the climate state with gportance resampling filter, a nudging and the nudging pro-
more detailed spatial structure and on a seasonal time scalposal particle filter. In Sec8, we describe the climate model
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LOVECLIM and the experimental setup. Results of the ex-which is often necessary to avoid the filter degeneracy. The
periments using the dense net of the pseudo-observationgarticles with small weights are eliminated, whereas the par-
are given in Sectd. In Sect.5, the performance of a data- ticles with large weights are kept. To retain the total num-
assimilation method is addressed when the sparse net of theer of the particles the remaining particles are duplicated and
pseudo-observations is employed. Finally, conclusions argerturbed. The perturbation is computed from the empirical
given in Sectb. orthogonal function analysis of the model error, which is the
difference between a control model run and the instrumen-
tal records of surface temperature HADCRUTS3 over the last
150yr. The perturbation, which is a sum of the first ten modes
each multiplied by a random scalar, is added to initial condi-
tions for surface temperature. Then, the particles are propa-
gated forward in time by the model until the next observation

If the discrete equation for estimating the statef a model IS available. After that, the importance of weights are com-
at a timer,,, wheren is the time index, is a functiogf of the ~ Puted again, but using the new observation, and the whole
statey at a timer, 1 procedure is repeated unt_ll t_he end of the pen_od_of interest.
For a more detailed description of the sequential importance
Y= fh, (1)  resampling filter, we refer the readentan Leeuwer{2009.

2 Data assimilation methods

2.1 Particle filter with sequential importance
resampling

then itsM realisations, called particles, which are obtained2.2 Nudging
using different initial conditions, determine an ensemble
{y:"}¥ | that represents the model probability density as fol- Nudging consists of a term that is added to the prognos-

lowing tic model equation in order to pull the model state towards
u the observation (e.gHoke and Anthesl976. In a discrete
i=1
Y= fQ" T +aH @ — HEY ) €7, )

wheres is a kernel density an® (equal toM here) is a nor-
malisation factor (Hereinafter any normalisation factor will \\hereq is a nudging parametet” is a stochastic noise
be denoted byX". Sincek is the same for every particle, itis  anq47 js the observation. Presence of the additive stochastic
irrelevant for the weight comparison). le_en_the observatmnnoisegn is not generally required for the nudging formula-
d" of the model statey” Bayes theorem indicates that the on pyt is, however, essential for the nudging proposal parti-
posterior probability is cle filter as it will follow later. In complex nudging schemes,

- the parametew is a matrix that incorporates information of

A"y = K 1 A" " n 3 . : |

pTIdT) P WP, 3) error correlation between variables. We, however, consider

where p(d"|y") is the likelihood of the observations given t0 be a scalar matrix for simplicity and also because a scalar
the model state and it is related to the observation uncertain@ iS still used in many recent studies using climate models,

ties. After substituting the density from Eq. (2) into Eq. (3), (€-9.,Swingedouw et a].2012). Its choice, based on physi-
the posterior probability becomes cal constraints, defines the strength of the nudging: a strong

nudging can yield to a wrong dynamics due to a fast con-

M vergence of the solution to the observation, whereas a weak

pyild") = ;wi ST —¥i) nudging provides with the solution that is unconstrained by
) ) = 1 the observation. In our experiments, we nudge sea surface

with wi’ = K=" p(d"|4). temperature, since in general circulation models nudging is
The weights{w"}2, are computed assuming that the likeli- USually performed over the ocean (e §wingedouw et /.
hoodp(d"|y") is Gaussian 2012.
pd" |yl = K texp 2.3 The nudging proposal particle filter

1
[—E(d” —~HWYM)T R - H(tpf))] . (4) In the nudging proposal patrticle filter, like in the particle filter

of Sect.2.1, the model probability density is represented by
Here H is the measurement operator that projects a modean ensemble of particles according to Eq. (2), and the Bayes
stateys/" to the location of the observatiatff, andR is the  theorem, Eq. (3), is used to derive the posterior probability.
error covariance of the observations. The model equation, however, is distinct from E#)). (Let
The last step of the sequential importance resampling filtethe model equation have the stochastic model error denoted
consists of particles resampling according to their weights by £”, which is related to unknown parameters of the model,
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for example. Then, 3 Description of experimental setup

Y= fyth 4 En, (6)  The three-dimensional Earth system model of intermediate
complexity LOVECLIM1.2 Goosse et al2010 used here
and the transitional densify(y" " 1) is the density of” consists of the atmospheric component ECBILOp§teegh
with meanf (v"~1). Moreover, if the model equation has the et al, 1998, the oceanic component CLIOZ¢osse and
nudging term like in Eq.5), one can define the proposal tran- Fichefet 1999, and the terrestrial vegetation module VE-
sition densityg (¥"|y"*~1,d") as the probability density of CODE @Brovkin et al, 2009. The atmospheric model is
g" with meanf (y"Y +aHT (d" — H(y"~1)). Takinginto  a three level quasi-geostrophic model of horizontal resolu-
account both the transitional density and the proposal transition T21 that includes a radiative scheme and a parametri-
tion density when deriving the posterior probability gives the sation of the heat exchanges with the surface. The free-

following weights surface ocean model is an ocean general circulation model
coupled to a sea-ice model with horizontal resolution of
i A T p(l//{wl.’*l) three by three degrees and 20 unevenly spaced vertical lev-
Wi =K""pd’ly;) qlm' (7) els in the ocean. The vegetation module describes annual
r=m 2 12 ’

changes in vegetation cover taking into account trees, grass
and deserts; its horizontal resolution matches the resolution
of the atmospheric component.

Starting from an equilibrium run with LOVECLIM1.2 in
the year 850, we perform a transient simulation until 2000,
from which we derive the pseudo-observations for 1850—
2000. Four additional simulations over the period 850-1850
using perturbed initial conditions provide with the conditions
in the year 1850 used to initialise the data-assimilation exper-
iments. These experiments are constrained by the pseudo-
observations of surface air temperature described above, to
which we add a Gaussian noise with standard deviation
0.5°C in order to mimic the instrumental error. When com-
paring the reconstructions with the pseudo-observations no
noise, however, is applied to the pseudo-observations, mean-

Here, indexn is related to a time,, at which the observation
d™ —the observation previous #§ — is available. Therefore,
when computing the product in EG7)( all the model states
{y", wi’””, ..., ¥]'} between the two consecutive observa-
tionsd™ andd”" are taken into account. If the observations
are as frequent as the model states the# 1 =n, other-
wisem + 1 < n. Note, that the devision in Eq. (7) does not
lead to singularity since the support of the proposal transi-
tion densityq(wi’h//f*l,d”) is equal or wider than the one
of the transitional densitp(x//{wi’—l) due to the presence
of the stochastic noisg" in the model Eq.%). For comput-
ing the weights we takp(d"|y") to be equal to Eq4), the
transition density to be equal to

pl 1y Y = K exp ing that the comparison is done with the truth. _

1 ! In the data-assimilation experiments the particle filters (ei-
[__(wl_r — f(lﬁir_l))chl(Wf —_ f(wl_"—l))] ther with sequential importance resampling or the nudging

2 proposal one), we use the pseudo-observations averaged on a

seasonal scale. The seasonal scale is small enough to provide
with detailed climate state reconstructions, but large enough
el 1 1 o 1., not to impose the issue of degeneracy of the patrticle filters.
qily; d) =K eXp[_E(si )R } Moreover, we apply a spatial filter to the particles aDin
binkina et al.(2011) before computing the importance of
The model error covariancésandX for simplicity are taken  weights in order to reduce the number of degrees of freedom.
to be equal. In the nudging (either alone or as a part of the nudg-
Since the nudging does not guarantee small variance in thing proposal particle filter), we use the pseudo-observations
particles and, consequently, in the importance weights whemf monthly mean surface air temperature, since the nudg-
many degrees of freedom are present, the nudging proposatg does not degenerate and monthly averages are generally
particle filter can still become degenerative. Therefore, thethe smallest scales of observations in long-term applications.
model states has to be adjusted just before the calculation oFhe nudging is performed over the global ocean by introduc-
the weights such that the weights do not differ substantiallying a term into the computation of heat fluxes between the
afterwards, and the nudging proposal particle filter becomes&tmosphere and the ocean. The nudging parametecho-
the equivalent weight particle filtevé&n Leeuwen2010. sen such that a corresponding relaxing timescale for a mixed
We, however, leave out this part of “almost equal weights” layer of 50 m depth is 20 days. Moreover, a maximum of
since the number of degrees of freedom in our application50 W m~2 is imposed on the heat flux adjustment due to the
is still quite small, and use the nudging proposal particle fil- nudging. This nudging is 3 times stronger than the nudging
ter. For a comprehensive explanation of the nudging proposalised inSwingedouw et al(2012 and 5 times weaker than
particle filter the reader is referred an Leeuwen(2010; the nudging used iKeenlyside et al(2008. The stochastic
van Leeuwen and Adg2012. error £ is constructed as following: we perform empirical

and the proposal transition density to be equal to
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Fig. 1. Reconstructions of surface air temperature anom&lie} §veraged over the area southward of S3(Qtop panel) and over the area
southward of 68 S (bottom panel), when the dense pseudo-observations are assimilated. Gray line: pseudo-observations; yellow line: model
simulations without data assimilation; green line: the nudging; blue line: the sequential importance resampling applied over the polar cap
southward of 30S; red line: the nudging proposal particle filter applied over the polar cap southward 8f 8@rrelations and the RMS

errors are displayed in upper left corners.

orthogonal function (EOF) analysis of the model error, which4  Assimilation of dense pseudo-observations

is the difference between the output of a control model run

and instrumental surface temperature records HADCRUT3

(Brohan et al.2006 over the last 150 yr. Then, the noise is I the following experiments, the pseudo-observations of sur-
a sum of the first ten modes each multiplied by a randomface air temperature are given at every grid cell. Since as-

coefficient and this noise, together with the nudging term, isSimilation of the pseudo-observations over the whole globe
added to the equation of heat fluxes. leads to filter degeneracy and assimilation over a small do-

In all three data-assimilation methods, we use 96 particlesmain does not take many pseudo-observations into account,
which seems to be sufficient for representing the probabilitywe make a compromise by choosing an area covering the
density and is computationally affordable. The error covari-Polar cap southward of 3&. Nudging is, however, applied
ance of the observatiogis computed using the instrumen- OVer the global ocean, whether it is a part of the nudging pro-
tal error and the error of representativeness, dubinkina ~ Posal particle filter or the nudging method itself.
et al.(2011), and the model error covarianceis assumed to We examine the reconstructions of surface air temperature
be a scalar matrix with (05C)? on the diagonal. The latter averaged over two domains: the area southward 0634nd
assumption is relatively crude and it would be more adequatéhe area southward of 66 (the top and bottom panels of
to build the covariance matrig by taking into account spa- Fig. 1). To assess the performance of a method, we com-
tial correlation of the model error. We, however, consider aPute correlation and the root-mean-square (RMS) error be-
scalar matrix for representing the covariance matiand ~ tween reconstructed surface air temperature and the pseudo-
a scalar matrix for the nudging in order to assess the perobservations. For the area southward of S3pshown in the
formance of the nudging proposal particle filter when it was toP panel of Fig1, all three data-assimilation methods per-

obtained by a transition density of a simple form. form well giving the low RMS errors and high correlations.
Data assimilation contributes considerably to these high cor-

relations, since for simulations without data assimilation cor-
relation due to the response to common forcing is onA80
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Fig. 3. Assimilation of dense pseudo-observations. Correlations be-
tween first PCs of the pseudo-observations and projections of the
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Fig. 2. Reconstructions of ocean heat conteP€), when the sic is for sea ice concentration, geopg is for geopotential height, sss

dense pseudo-observations are assimilated. Gray line: pseudds for sea surface salinity. EOFs are computed for May—October of

observations; green lines: the nudging: blue lines: the sequentigiventy-four 21-yr periods over the area southward of 80The

importance resampling filter applied over the polar cap southwardCircle is the mean correlation for simulations without data assimila-
of 30° S: red lines: the nudging proposal particle filter applied over tion; the star is the mean correlation for the model simulations using
the polar cap southward of 3G. the nudging; the gray square is the mean correlation for the model

simulations using the sequential importance resampling filter over
the polar cap southward of 3®; the gray cross is the mean corre-
lation for the model simulations using the nudging proposal particle

. . . . .. filter over the polar cap southward of 38; the purple square is the
of Fig. 1, the performance of the particle filters is only a bit mean correlation for the model simulations using the sequential im-

weaker than for '_{he area Southwarq of Funlike in the portance resampling filter over the polar cap southward @he
case of the nudging, where correlation decreases fr@® 0 yrple cross is the mean correlation for the model simulations using
to 0.64, the RMS error increases from 0.09 to €3 and  the nudging proposal particle filter over the polar cap southward of
the variance of the reconstructed anomaly (green curve) i$0° S. Error bars correspond to one standard deviation.
smaller than the variance of the pseudo-observations (gray
curve). Weaker performance of the nudging for the area
southward of 66S is due to the fact that the ocean covers strong influence on ocean heat content (green curves). This
a small fraction of the surface southward of°@3 there- is due to the way the nudging is implemented: it adjusts
fore, since the nudging is done over the ocean only, it haseat fluxes from the atmosphere to the ocean. Consequently,
a weaker direct influence on this area and propagation of th@cean temperature changes, so does ocean heat content. The
signal from the ocean to the land is not strong enough to leachudging proposal particle filter obtains ocean heat contents
to high correlations. Nevertheless, the nudging still outper-(red curves) that appear to be the closest to the pseudo-
forms the simulations without data assimilation, for which observations (gray curve) and has the smallest mean RMS
the correlation is smaller (86). error over four experiments (0.008 against 0.014C for

For estimating the performance of a data-assimilationthe sequential importance resampling filter and 0@ &or
method for the ocean reconstruction we consider ocean hedhe nudging).
content, which is represented by mean ocean temperature Next, we investigate the skill of the assimilation meth-
in LOVECLIM. We perform four experiments using differ- ods in reconstructing spatial features. In order to do that, we
ent initial conditions for each data-assimilation method. Fig-compute first empirical orthogonal functions (EOFs) of the
ure 2 illustrates that ocean heat content is not significantly pseudo-observations and project the results of model simu-
altered by the sequential importance resampling filter (bluelations onto them. Then, the corresponding principal compo-
curves). Therefore, the sequential importance resampling filhents (PCs) and the projections are compared by means of
ter does not change the heat budget of the climate modekorrelation. We perform four experiments using different ini-
Since the same forcing is used for deriving the pseudo-ial conditions for every data-assimilation method. The EOFs
observations and when performing the data-assimilation exare computed for winter period (from May until October)
periments, ocean heat content from the sequential imporever the area southward of €8, as we are mainly interested
tance resampling filter is parallel to the pseudo-observationsn the regions that are ice covered or that are close to the
reflecting the influence of different initial conditions dur- ice edge, and over a 21-yr period, since it is long enough to
ing the whole period. The nudging, on the contrary, has acapture the main features of the state by the EOFs and short

For the area southward of 66, shown in the bottom panel
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ir Changes in atmospheric circulation is an important char-
0.8F HL H‘ J{ acteristics of past climate variability in the Southern Ocean
0.6F % %} % (e.g.,Lefebvre and Gooss@008 Yuan and Lj 2009. Pres-
0.4+ sure observations that can be used to constrain the model
S o0z2f % % in order to get reliable estimations of atmospheric circula-
R e e REEEEE T D - tion are, however, very limited for paleoclimate applications.
S -02r Therefore, we investigate the skill of the atmospheric circu-
04 & NoDA lation reconstructions when surface air temperature is assim-
-0.6F * Nudging ilated. We perform the EOF analysis for geopotential height,
-08[ E'Fffgso the variable in LOVECLIM that represents atmospheric cir-
-1 s o 50 220 509 = culat|on. The correlatlo_ns f(_)r geopotential helght (g(_eopg) are
Depth, m shown in gray colours in Fig3. The correlations of simula-

) o . ) tions with data assimilation are lower than for surface tem-
t'?/:/g' A;';fstm;”é‘t'orf' tok: dense gseubdo-rc\)/b?ierr\]/au%r:js. ?qrretliatrllonsftiﬁ- erature (st) or sea ice concentration (sic), as expected, but
een irst s 07 e PSeUdo-obSeIVations and projecions o till overall positive. Moreover, their mean correlations (gray

model simulations onto the corresponding first EOFs of the pseudo-t d hiaher than th lati f
observations for ocean temperature at different depths. EOFs arg-al, square an cross) are higher than the mean correlation o

computed for May—October of six 21-yr periods over the area south-Simulations without data assimilation (circle), meaning that
ward of 60 S. The circle is the mean correlation for simulations data assimilation of surface air temperature improves the re-

without data assimilation; the star is the mean correlation for theconstruction of atmospheric circulation — a variable that is

model simulations using the nudging; the square is the mean cornot directly linked to the pseudo-observations.

relation for the model simulations using the sequential importance Next, we perform the EOF analysis of sea surface salinity

resampling filter over the polar cap southward of $0the crossis  (sss), whose variations play a crucial role in the changes in

the mean correlation for the model simulations using the nudginggcean density and, consequently, in the oceanic circulation

proposal particle filter over the polar cap southward of SOError and the vertical stability of the water column (e Martin-

bars correspond to one standard deviation. son 199Q Gordon 1997). In Fig. 3, we see that the nudging
proposal particle filter (gray cross) and the sequential impor-

enough to split one model run in several such periods. Therel@® resampling filter (gray square) provide with positive

fore, we divide a 150-yr run in six 21-yr periods starting from and rather gqod corr-elationg, taken into .ac.count that sea sur-
the i/ear 1865 and ending in the year 1990, skipping the firS{ace salinity is not directly linked to asswm!ated sgrface air
15yr to avoid the bias induced by the initial conditions. Per- emperature. By contrast, sea surfacg salinity ob.tamed. by the
forming the EOF analysis over six 21-yr periods from four nudging (gray stqr) has aI_ways negative correlations with the
different experiments gives twenty-four correlations for ev- pseudo-o_bse_rvatlons. Th's C.OUId be due to the strong nudg-
ery data-assimilation method. ing used in this study, sincgwingedouw et al2012 argued

In Fig. 3, we plot mean correlations plus and minus Onethat a short relaxing timescale of 4 days use&@enlyside

standard deviation for different variables and different data—;at gl.(ZtF)O& reslult(:%(l)n dnon—phys;;! heeg quxest, W; (')I(la are-
assimilation methods. When reconstructing surface air tem-2XINg timescaie 0 ays use ingedouw € al2012
id not impose such a spurious behaviour of ocean heat con-

perature (st) or sea ice concentration (sic) all three method . )

perform rather well resulting in high correlations, as shown.em' ‘!’herefore,_we perform experiments with ayveaker nudg-
in gray colours in Fig.3. For these variables, the simula- ing with a relax_mg tmgscgle Of. 60 days, asSwingedouw
tions without data assimilation (circles) give low but positive ?t al.(2012. This nudging is 3 times weaker than the nudg-

correlations, which is due to the employment of the sameng used in our standard experiment. Correlations between

forcing when deriving the pseudo-observations. The skill of ¢ surface salin_ity obtaineql by the _weaker nudging and the
the nudging proposal particle filter (gray cross) when recon-gsflrfé)'ﬁgsd%r\fglogs :;? ts(;tlgeneegnadtl\é? (Cr.]:ﬁ Sgr?mng' :Iezcoef’
structing surface air temperature (st) is only slightly higheraurela l:] t'mescalspln order tg nderl;t;ndythe rea;/onu h

than the skill of the sequential importance resampling fil- Xing t ) u why

ter (gray square). When reconstructing sea ice concentratioH1e pattgtrn tOf t;ea surfgce Eahmt;@.obtalned byf the ?hUd?zlg?:
(sic), the nudging proposal particle filter (gray cross) shows'> OPPOsIte {0 the pseudo-observations, we pertorm the

evident improvement compared to the sequential importancggzg?l'qsgior 4OCtE2nnLe dmﬁqe“z[g.rjsg[ géijﬁ?;g}eztgiuésn';;
resampling filter (gray square). Here, the nudging and the 94 ging adj P

nudging proposal particle filter have the higher skills than the surface, but does not respect the dynamics of the ocean.

the sequential importance resampling filter, since the correc!n particular, the nudging term strongly modifies the mixing

tions of heat fluxes from the atmosphere to the ocean have gnot. shown) leading to awrong .vertlcal ocean temperature
strong impact on sea ice concentration profile and to wrong vertical salinity. Thus in climate models,

nudging has to be used with caution at least when applied to a
region like the Southern Ocean where a small modification of
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[
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Fig. 5. Number of seasons of the sparse pseudo-observations per grid cell southwat@ahvéd different time periods: 1850-1900 (left),
1900-1950 (middle), and 1950—2000 (right).

Average over the area southward of 30°S
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Fig. 6. Reconstructions of surface air temperature anom&lie} gveraged over the area southward of S3Qtop panel) and over the area
southward of 66S (bottom panel), when the sparse pseudo-observations are assimilated. Gray line: pseudo-observations; green line: the
nudging; blue line: the sequential importance resampling applied over the polar cap southwat®pfddline: the nudging proposal

particle filter applied over the polar cap southward of 80Correlations and the RMS errors are displayed in upper left corners.

the vertical stratification of the ocean variables has a strongling filter and the purple crosses compared to the gray ones
impact on the surface. for the nudging proposal particle filter. Keeping the total

Next, we investigate whether it is possible to increasenumber of particles the same (96), but reducing the assim-
correlations by assimilating the pseudo-observations over @ation area, thus, reducing the number of degrees of free-
smaller domain — the area southward of 60 As shown dom, resultsin more particles with relatively high importance
in Fig. 3, correlations for all variables are higher when the weights. Consequently, the mean obtained by these particles
assimilation domain is smaller — the purple squares com-+has higher correlation and the smaller RMS error with the
pared to the gray ones for the sequential importance resanmpseudo-observations.
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29r Fig. 8. Assimilation of sparse pseudo-observations. Correlations be-

tween first PCs of the pseudo-observations and projections of the

s s s s s s s model simulations onto the corresponding first EOFs of the pseudo-

1860 1880 1900 Ti:szoyeaég“o 1960 1980 observations for surface air temperature for different time periods.
' EOFs are computed over the area southward 6fS€or May—

Fig. 7. Reconstructions of ocean heat contef€), when the ~ October of 21-yr periods from four runs. The circle is the mean
sparse pseudo-observations are assimilated. Gray line: pseudg_orrelatlon for_S|muIat|0ns W|thou_t data.aSS|m|I_at|on;the staris the
observations; green lines: the nudging; blue lines: the sequentid"®@n correlation for the model simulations using the nudging; the
importance resampling filter applied over the polar cap southwardsduare Is the mean correlation for the model simulations using the

of 60° S; red lines: the nudging proposal particle filter applied over Sédquential importance resampling filter over the polar cap south-
the polar cap southward of 8. ward of 60 S; the cross is the mean correlation for the model sim-

ulations using the nudging proposal particle filter over the polar cap
southward of 60S. Error bars correspond to one standard devia-
tion.

5 Assimilation of sparse pseudo-observations

In the following experiments, we investigate the perfor-

mance of the data-assimilation methods when the pseudc % % %fx ’%Jf X
observations are as sparse as the dataset HADCRUT3 of tF oe ﬂ] %] % %
instrumental surface temperature records over the last 150y o4 + (% %‘

(Brohan et al.2006 by selecting the pseudo-observations at § nl % % %’

the same locations as the HADCRUT3 dataset. The spaties = [ 1[I %3 77777777777777777

. . . . -0.21
resolution of the sparse pseudo-observations changes in tinr® ™

as it can be seen in Fi§, where number of seasons of the O No'DA
. . -0.6- % Nudging
sparse pseudo-observations per grid cell southward 860 | o sireo
X

are shown over different time periods: 1850-1900 (the left NPPF60 ‘ ‘ ‘ ‘ ‘
panel), 1900_1950 (the mlddle panel), and 1950_2000 (th(‘ 1865-1885 1886-1906 1907-1927 1928-1948 1949-1969 1970-1990
right panel). We assimilate the sparse pseudo-observatioqgg_ 9. Same as Figg, but for sea ice concentration.
over the area southward of 68 in order to decrease the
number of degrees of freedom and avoid degeneracy. The
nudging is still applied over the global ocean, but at theing proposal particle filter, respectively, while for the model
HADCRUTS locations only. without any data assimilation correlation i8. In the area

In Fig. 6, we plot time series of surface air tempera- southward of 68S where only a few pseudo-observations
ture anomalies averaged over the area southward 9630 are located, we have a good estimation of the trend, but not of
(the top panel) and over the area southward 6f$gthe  the variance. Moreover, the trend reconstruction is achieved
bottom panel). Compared to the case of assimilating themainly due to the well-defined forcing, not due to data as-
dense pseudo-observations, the variance of the anomaliggmilation. Indeed, when no data assimilation is used correla-
is underestimated, which is due to the sparsity of thetionis 056 and correlations obtained by the data-assimilation
pseudo-observationsAnnan and Hargreave@2012 have  methods are 68, 059 and 062 for the nudging, the sequen-
also observed the decrease in the variance when the pseudgs| importance resampling filter, and the nudging proposal
observations become more sparse. Nevertheless, all thrgsarticle filter, respectively. It should be mentioned, however,
data-assimilation methods estimate still reasonably well surthat when the forcing is unknown and a random one is ap-
face air temperature averaged over the area southward gflied, the trend as well as the forcing can be still estimated
30° S: correlations are.86, 085 and 088 for the nudging,  due to data assimilation, s&aibinkina et al(2011).
the sequential importance resampling filter, and the nudg-
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Fig. 10.Same as Fig8, but for geopotential height. Fig. 11.Same as Figg, but for sea surface salinity.

1927 and 1928-1948 are significantly worse than the ones
given by the particle filters. For 1907-1927 the mean correla-
tion of the nudging is even smaller than the mean correlation

In Fig. 7, we plot ocean heat content obtained by the
data-assimilation methods. We use four different initial con-

ditions, which resulted in four reconstructions per method.of simulations without data assimilation, unlike in the case

Overall all three methods overestimate the truth (gray o :
) oo o of assimilating the dense pseudo-observations, when for ev-
line), unlike in the case of assimilating the dense pseudo-

observations, when the sequential importance resamplinery time period the nudging provides with the mean correla-

filter overestimates it, the nudging underestimates and thgOn higher than the mean correlation of simulations without

. . ' ! : data assimilation (not shown). Therefore, when the pseudo-
nudging proposal particle filter provides with the smallest . . X
observations have low density the nudging may not be able
mean RMS error. Here, the mean RMS errors are compar

ble: 0.008C for the nudging, 0.00%C for the nudging pro- o propagate the sparse signal.

L - From Fig. 10, we see that the data-assimilation methods
posal particle filter, and 0.0L for the sequential importance . .
L do not constrain the model well enough in order to have
resampling filter.

For examining the spatial skill of the data-assimilation high correlations for atmospheric circulation. Only in the

) : eriod 1970-1990 with many pseudo-observations, correla-
methods, we perform the EOF analysis as described. : .
. . . ions improve and become comparable to the correlations
in Sect. 4, but since resolution of the sparse pseudo-

observations depends on time, the six 21-yr periods are noftor geopotential height when assimilating the dense pseudo-

. observations over the area southward df8@shown in pur-
equivalent anymore. Therefore, we perform four runs for ev- le in Fig.3)
ery data-assimilation method using different initial condi- P 9-9)- . - S
: ; When reconstructing sea surface salinity, which is dis-
tions and compare every 21-yr period separately. The com-

parison is done by computing correlations between first F,Cé)layed in Fig.11, the particle filters perform quite well: their

of the dense pseudo-observations and projections of moddNean correlations are substantially higher than the mean cor-

simulations onto the corresponding first EOFs of the pseudo[elatlons of simulations without data assimilation, except for

: o g1e period 1970-1990, when the mean correlation of the se-
observations. Mean and standard deviation are compute L T : :
over four correlations. quential importance resampling filter is a bit lower. As in

Figure 8 illustrates that the nudging proposal particle the case of assimilating the dense pseudo-observations, the

. . ; . : nudging obtains the sea surface salinity patterns opposite to
filter provides overall with higher correlations than any . . o
. . the pseudo-observations, but only over some periods in this
other method when reconstructing surface air temperature,
oo case (1928-1948 and 1949-1969).
Compared to the case of assimilating the dense pseudo-
observations, assimilation of the sparse pseudo-observations
results in smaller mean correlations and larger standard des  Conclusions
viations, except for the period 1970-1990, at which many
pseudo-observations are available. We have shown that the nudging proposal particle filter pro-
In Fig. 9, we see that starting from the period 1886—1906vides with encouraging results: global variables like ocean
correlations given by the nudging proposal particle filter andheat content and surface air temperature averaged over large
by the sequential importance resampling filter are quite readomains are well estimated. When assimilating the dense
sonable for sea ice concentration. Moreover, the mean corrggseudo observations, the nudging proposal particle filter pro-
lations of the nudging proposal particle filter are higher thanvides with reasonable reconstructions of not only variables
the ones of the sequential importance resampling filter, justhat are directly linked to the pseudo-observations such as
as for surface air temperature correlations shown in &ig. surface air temperature and sea ice concentration, but also

The correlations given by the nudging for the periods 1907-variables such as geopotential height and sea surface salinity.
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Reliable reconstructions of the latter variables are essential” and R should be considered, as it was discussedan
for paleoclimate applications since the observations of presteeuwen(2010.
sure and salinity are limited there. Moreover, these recon-

structions give good perspectives for initialising climate pre- ) ) )
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