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Abstract. Data assimilation is a promising approach to ob- concentrations in ice cores — to changes in climate vari-
tain climate reconstructions that are both consistent with ob-ables during past decades (Jemsen et 12007, andJones
servations of the past and with our understanding of theet al, 2009 for an overview of recent advances). This re-
physics of the climate system as represented in the climaté&tionship is then extended backwards, allowing for the re-
model used. Here, we investigate the use of ensemble squammnstruction of said climate variables for times when no di-
root filtering (EnSRF) — a technique used in weather forecastrect observations of the climate system are available. Em-
ing — for climate reconstructions. We constrain an ensembleirical methods rely on the stationarity of the relationship
of 29 simulations from an atmosphere-only general circula-between climate and proxy record. In addition, the specifics
tion model (GCM) with 37 pseudo-proxy temperature time of high-resolution proxy archives make it hard to quantify
series. Assimilating spatially sparse information with low low-frequency variability ¥oberg et al. 2005. Dynamical
temporal resolution (semi-annual) improves the representamethods, on the other hand, use reconstructed external forc-
tion of not only temperature, but also other surface properdngs (e.g. changes in solar irradiance, land cover, atmospheric
ties, such as precipitation and even upper air features sucherosol and greenhouse gas concentrations) to constrain sim-
as the intensity of the northern stratospheric polar vortex omlations of past climate states (edungclaus et g1.201Q
the strength of the northern subtropical jet. Given the sparWanner et al.2008 Ammann et al. 2007). In contrast to
sity of the assimilated information and the limited size of the empirical approaches, dynamical methods allow us to also
ensemble used, a localisation procedure is crucial to reducesconstruct climate variables, which are only loosely corre-
“overcorrection” of climate variables far away from the as- lated to climate proxies. Ensembles of climate model simula-
similated information. tions, however, are often not well constrained, as a large part
of the variability is generated in the climate system itself and
is thus independent of external forcings.

To overcome the relative weaknesses of these two ap-
proaches, it has been proposed to directly assimilate proxy

data into climate model simulation&¢osse et al.2009

Compared to conventional reconstruction methods, data aﬁzlughes and Ammanr2009 Widmann et al. 2010. In the
Z'm"f‘“od’? rep:cesenttsl_a n(t)vell atp;]proach to mcreasle our unLfoIIowing, we provide a short introduction to the concept of
derstancing of past climate. In this paper, we expiore N ahy i, 4gsimilation. The goal of data assimilation is to provide
idealised setup if assimilation of sparse and indirect obser-a best estimate of the true state of the system. This estimate

vations of past climate states, as recorded in climate ProX:cs called theanalysis A simple way to produce an analysis

ies, provides sufficient constraints to skilfully update existing is to interpolate observations of the true state of the system.

model simulations. In a paleoclimatological context in particular, however, the

TW(.) distinct approaf:hes hz_;\ve often been used when recons, o ations are indirect and sparse in space and time and
structing past climate: empirical methods relate the change§.ne problem of producing an analysis is underdetermined.
in climate proxies — such as tree-ring widths &0

1 Introduction
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964 J. Bhend et al.: An ensemble-based approach to climate reconstructions

Additional constraints are therefore needed to solve the prob- Our main goal is to learn to what extent and under what
lem. These additional constraints originate from the physicsconditions proxy data provide sufficient constraints for a data
and dynamics of the system as formulated in a climate modelassimilation approach to climate reconstructions using the
The model provides a first guess of the true state of the sysEnSRF algorithm. For this introductory analysis, we use a
tem that is consistent with the boundary conditions. Thisperfect model framework to explore the potential benefits of
prior estimate of the true state is updated with observationsan ensemble-based approach to climate reconstructions. One
to produce the analysis. The model is then used to propasimulation of the ensemble describes the true climate from
gate the analysis to provide a first guess for the next analysigrhich we generate pseudo-proxies, and the remaining simu-
cycle. This recursive procedure to accumulate observed inkations are used to estimate the true climate.
formation in the model is referred to as data assimilation. To be able to experiment with the details of the setup
First attempts to assimilate climate proxy information into and properly explore the potential of an ensemble-based ap-
models include the pioneering work @bn Storch et al.  proach to reconstructions at a reasonable computational cost,
(2000, Hargreaves and Annaf2002, van der Schrier and we want to be able to run the assimilation off-line. Thus, we
Barkmeijer(2009, Goosse et al(2006 2010, andFranke  use an atmosphere-only GCM to describe past climates. In
et al.(2010. The proposed approaches can be roughly sepathis setup, the proxy information has a temporal resolution
rated into three groups: the methodsvoh Storch et aland (semi-annual in our case) that is far greater than the determin-
van der Schrier and Barkmeijseek to push a model simula- istic predictability of most atmospheric processkerénz
tion towards a large-scale target state through nudgiog (1969 Kalnay, 2003. This discrepancy in time scales be-
Storch et al. 2000 or usingsingular forcing vectordvan  tween the memory of the system (a few days) and the obser-
der Schrier and Barkmeije2005. The methods bysoosse  vation interval (semi-annual) has profound implications for
et al. (2009 andFranke et al(2010 select optimal matches the proposed assimilation approach.
with the available proxy information among a set of model In a conventional assimilation, the effect of constraining
states and combine these to “pseudo-simulations”. Recentlyhe model with past observations gets propagated by the
Goosse et al(2010 modified their assimilation method to model and determines to a large extent the current first guess
produce dynamically consistent past climate states, based ofunconstrained simulation). This is not the case in our ide-
simulations with an Earth system model of intermediate com-alised setup. Due to the chaotic nature of the atmosphere, the
plexity. All of the approaches discussed so far do not genereffect of the previous update (leading to the new analysis)
ically provide confidence intervals together with their bestis lost long before the end of the simulation cycle. That is,
estimate, a shortcoming that is overcome by the approacl forward integration of a constrained simulation and an un-
proposed byHargreaves and Annain contrast, their fully  constrained simulation are indistinguishable after six months
probabilistic approach is not tractable with a complex andon average. Thus, observed information does not accumu-
computationally expensive model. Therefore, we propose date over time, but only current observed information con-
new approach that both allows us to assimilate proxy datsstrains the model. Therefore, we can assimilate the data non-
into a high-resolution general circulation model (GCM) and recursively; that is, we do not need to feed back the corrected
that provides a generic quantification of the uncertainties. states (the analysis) as new initial conditions for the next sim-
Data assimilation has long been used in numerical weatheulation cycle. Consequently, we should not refer to the ap-
forecasting to estimate optimal initial conditions for weather proach as a filter. Instead, we suggest to refer to the method
predictions Kalnay, 2003. The variational data assimilation as ensemble square root fitting.
techniques developed for weather forecasting, however, are Ultimately, we aim at assimilating climate proxy data into
not suitable for reconstruction of past climate with a mucha coupled atmosphere-ocean GCM. In such a coupled sys-
smaller number of observations or climate proxies. A muchtem, there is far more long-term memory, and thus we will
simpler to implement and computationally less expensiveneed to revert to the conventional recursive assimilation pro-
method to assimilate data into climate model simulations iscedure. In the light of the final goal and to highlight the ori-
represented by the class of square root filters. gins of the approach, we do not resolve the ambiguity in
We use the ensemble square root filter (EnSRF) — a varithe abbreviation and we keep referring to our simplified ap-
ant of the ensemble Kalman filter (EnKF; d8eensen2003 proach as EnSRF.
and references therein) — as introduced Whitaker and In the following section, the model data and analysis
Hamill (2002 to update the ensemble of model simulations scheme are introduced. In Se8t.we introduce the original
with information from climate proxies. The EnSRF has suc- EnSRF algorithm along with our modifications. In Se&t.
cessfully been used to produce a reanalysis for the periodve present the results from the validation assessment of the
from 1870 to present using sea level pressure measuremengmalysis versus the unconstrained ensemble of model simula-
(Compo et al.2006 2011). Here, we investigate whether En- tions. We discuss the strengths and limitations of data assimi-
SRF can also be used with spatially sparse observations wittation using EnSRF for climate reconstructions in S&end
low temporal resolution. finish with conclusions in the final section of the manuscript.
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2 Materials and analysis metrics

2.1 Model simulations
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For the assessment of EnSRF for climate reconstructions, we
used an initial condition ensemble of 30 simulations with
the general circulation model (GCM), ECHAMS5.Rdeck-
ner et al, 2003 2004). The model was run in T63L31 resolu- 1 : :
tion, corresponding to an approximate horizontal resolution ~ § L, ‘ ‘ i :
of 1.875 with 31 vertical levels from the surface to 10 hPa. 1600 1700 1800 1900 2000
ECHAMS.4 was forced with reconstructed sea surfaceFig. 1. Annual (November to October) average temperature north

temperatures _(SST’ reconstruction Isﬂann et al, 200,9’ ... of 20° N in the ensemble of ECHAMS5.4 simulations as anomalies
augmented with ENSO-dependent intra-annual variability ;¢ ie 19611990 mean. The grey area denotes the range of the first
according to the reconstructed NINO3.4 indexGafok etal. 59 jndividual simulations; the thick black line is the corresponding
(2008 and climatological sea-ice according to the HadISST ensemble average and the thin blue line denotes the 30th simulation
climatology Rayner et al.2003. We further used recon- (the reference).
structed solar irradiancd.¢an 2000 and land surface pa-
rameters derived from the land-use reconstructionBanf-
gratz et al(2008. Additionally, the model was forced with  (2009. The data are aggregated for boreal winter (Novem-
reconstructions of volcanic activity igrowley et al.(2008 ber to April) and summer (May to October), reflecting the
and concentrations of long-lived greenhouse gases as used #pproximate temporal resolution of climate proxies. In order
Yoshimori et al(201Q and references therein). Finally, tran- to keep computations tractable, we thinn out the initial model
sient sulphate concentrations were prescribed according tgrid by selecting grid boxes only at every third longitude and
the reconstructed aerosol loadsiafch et al.(1999; before  |atitude. The state vector used in the EnSRF approach thus
1850, tropospheric sulphate aerosol concentrations were sebnsists of semi-annual temperature and precipitation at 694
to their 1850 values. locations over land plus four derived indices. These indices
The solar irradiance reconstruction hgan (2000 ex- include the strength of the northern subtropical jet (SJ), de-
hibits an increase in irradiance of approximately 2.5Wm fined as the maximum zonal-mean zonal wind at 200 hPa be-
since the Maunder Minimum (MM). Recent reconstructions, tween the Equator and 50, the strength of the Hadley cell
however, show less of a change in solar irradiance betwee(HC), defined as the maximum of the zonal mean meridional
the MM and present condition¥\lang et al. 2005 Krivova  stream function at 500 hPa between the Equator afdN30
et al, 2007). Nevertheless, we chose a strong solar forcing,the strength of the northern stratospheric polar vortex (z100),
as the recent study bjungclaus et a(2010 has shown that  defined as the difference in geopotential height at 100 hPa
this leads to a slightly more realistic climate response ovemetween 75-90N and 40-55N, and the dynamic Indian
the past 1000 yr in ECHAM5.4. monsoon index (DIMI), defined as the difference in average
The individual simulations were branched off from a con- zonal winds at 850 hPa in the boxes 521 40-80 E and
trol run reflecting conditions around 1600 AD. The boundary 20-3@ N, 70-90 E. For further discussion of these indices,
conditions for the atmospheric model were prescribed andlease refer t8ronnimann et al(2009.
identical across the thirty different ensemble members. The From the 405-yr period of simulations from 1601 to 2005,
spread of the initial condition ensemble thus reflects inter-we select the segment of 135yr from 1871 to 2005 for the
nal variability of the atmosphere alone. The time series ofanalysis. For this period, the simulations were constrained
Northern Hemispheric annual average temperatures north ofjith observed rather than reconstructed SSTs and sea-ice
20° N (in Fig. 1) illustrate the relative importance of exter- variability as boundary conditions. The spatio-temporal vari-
nal forcings and internal variability. The forced response of ability of reconstructed SSTs is considerably different from
2°C warming from 1600 to 2000 in the extratropical North- variability in observed SSTs. The results, however, are qual-
ern Hemisphere is slightly stronger than previous coupledtatively robust to results obtained when assimilating proxy
AOGCM simulations Gonzlez-Rouco et al.2003 Am-  data in the early part of the simulation (not shown).
mann et al.2007%, Tett et al, 2007 Jungclaus et gl2010.
Relative to the forced response, the annual internal variabil2.2 Pseudo-proxy generation
ity is pronounced even in this atmosphere-only simulation,
indicating the potential for constraining the ensemble with Of the 30-member initial condition ensemble, we select the
additional information. 30th simulation as the target or reference time series used for
We analyse simulated near-surface temperature and prealidation, and the remaining 29 simulations represent the
cipitation over land and several derived indices characterisunconstrained ensemble. From the temperature time series of
ing atmospheric circulation according Bronnimann et al.  the reference simulation, we generate pseudo-proxies at 37

Temperatur
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|
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966 J. Bhend et al.: An ensemble-based approach to climate reconstructions

different locations (see Fi®). The pseudo-proxy locations
are chosen to reflect the distribution of temperature-sensitive
proxies over land, such as tree-ring series and ice cores (e.qg.
Mann et al, 2009. Proxy networks such as collections of
tree-ring series in North America and Europe are represente
by a single pseudo-proxy.

We use a simple approach to fabricate pseudo-proxy time
series following earlier workNlann and Rutherford2002
von Storch et a).2009: at each proxy location, we add nor-
mally distributed white noise to the temperature time series
of the reference simulation. The noise variance is scaled to
produce signal-to-noise ratios of 0.33 or correlations of 0.5
on average. Due to the limited sample size, the actual corre-
lations range from 0.36 to 0.66 and the signal-to-noise ratio
from 0.26 to 0.46, as shown in Fig. The pseudo-proxies
are also slightly biased compared to the original series, with
normally distributed biases centred at zero and ranging from =
—0.410 0.5K (not shown). The bias in the pseudo-proxy time
series reflects a potential estimation error when calibrating
real-world proxy time series. Unlike a real-world situation,
however, the noise added to the reference time series does
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not exhibit spatio-temporal coherence. Fig. 2. Correlation and signal-to-noise ratio of pseudo-proxies with
reference time series in boreal winter (November to April, upper
2.3 Metrics of skill and reliability panel) and summer (May to October, lower panel). The colour in

both panels reflects the correlation according to the legend in the

We analyse the skill in reconstructing different global and upper pane!; the size. of the circles in bpth panels reflects the signal-
continental-scale indicators. Skill is measured using a meaf?"0is€ ratio according to the legend in the lower panel.
squared error skill scoréurphy and Epsteinl989, which

Is also known as the reduction of error (REook et al, employed. A probabilistic prediction system is deemed re-

1994: liable if the frequency of occurrence matches the predicted
T (A xTeh)2 probability over a large set of predictions. For ensemble-
RE=1—-%2="%& “i ~ (1) based systems, the analysis rank histogram allows us to as-

> (x,-b - xiref)z sess the reliability of the prediction systeAnerson1996.

The rank histogram is produced by computing the rank
x andxP denote the analysis and the unconstrained initialof the observations of the true climate state (here the ref-
condition simulation, respectively/®" is the reference sim- erence simulation) compared with the sorted ensemble of
ulation (the target). The summation is overandi counts  predictions (the analysis) for each individual grid box and
the different time steps. This skill score ranges from 1 totime step. In a perfectly reliable ensemble, we would expect
—oo; positive values indicate that the analysis is closer tothe observations to fall in each of thens+ 1 classes with
the reference simulation in mean square error terms than thgqual probability, thus resulting in a flat rank histogram. A
unconstrained simulation. As we constrain the full set of sim-y-shaped histogram, in contrast, indicates a negative bias in
ulations, we investigate both the skill score for the ensemblehe analysis variance, i.e. the ensemble is overconfident and
mean and the individual simulations. In doing so, we com-the true climate state often lies outside the range of values
pare the ensemble mean analygiswith the unconstrained predicted by the analysis. Correspondingly, a dome-shaped
ensemble meai®, and each individual analysis simulation rank histogram denotes an analysis ensemble that overem-
with its unconstrained counterpart. phasises uncertainty.

Furthermore, we also analyse the change in correlation To assess the significance of deviations from a flat rank
from the correlation of the unconstrained simulations with histogram, we provide guidance based on the unconstrained
the reference simulation to the correlation of the analysisensemble. Using each of the simulations in turn as reference
with the reference simulation. and the remaining 29 ensemble members to compute the rank

Our method for reconstructing past climate states producegjstogram, we quantify the effect of sampling uncertainty in
not only a best estimate of the past climate state, but also ag perfectly reliable ensemble.

associated uncertainty estimate. To assess whether the un-
certainty is correctly reflected in the ensemble-based, proba-
bilistic prediction (the analysis), the concept of reliability is

Clim. Past, 8, 963976, 2012 www.clim-past.net/8/963/2012/
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3 Ensemble Square Root Fitting The analysis in Kalman filtering is again a multivariate
_ o Gaussian, with meat? and covarianc®2. Following the no-
We use a variant of ensemble Kalman filtering (EnKF, seetation inwhitaker and Hamil{2002), the traditional Kalman

Evensen2003 and references therein) to update model sim-filter update equations for the mean and covariance are
ulations with measurements of the climate system — here

pseudo-proxy time series derived from one model simu-x2=xP + K (y — HxP) ()
lation. For readers not familiar with EnKF, we provide a

short introduction before discussing the modifications andP? = (I — K H)PP 4)
specifics of the approach used in this study. For a more com-

prehensive introduction, please refer to the above referenceK = PPH” (HPPH” +R)~! (5)

Data assimilation seeks to provide a best estimate of the
true climate state — the analysis. As the problem is not wellK denotes the Kalman gain, a matrix of dimensior m,
constrained by the often sparse observations, additional cor@nd! is then x n identity matrix.
straints from mathematical models are used to estimate the Inthe ensemble Kalman filter (EnKF), the mean states and
analysis. Specifically, the models are used to provide a firs€ovariances are approximated by the sample mean and co-
guess of the true climate state consistent with the boundaryariance based on a finite number of simulations. Thus, the
conditions. Thigorior estimate of the background climate is background mean in EnKF ° = 1/nensy ; xf, wherek
then updated with the observations to form glosteriordis- ~ counts thenens ensemble members used. Correspondingly,
tribution of the analysis. The data assimilation can thus bethe background covariance B°=1/(nens— 1) ; (x —

expressed as a Bayesian update problem with xP)2. Given that the true mean states and covariances are
a b b never known, but estimated, the ensemble approximation is

P(x7y) ~ P(ylx7) P(x7). ) an intuitive and more practically relevant representation of

WhereP (x|%) denotes a conditional probability,is the cli- ~ the problem than the general case. Hereafter, mean states

mate state in the model andcontains the observations of Ccovariance®, and the corresponding Kalman géirdenote
the climate state. For clarification, the background or priorthe sample-based EnKF representation of these quantities.
distribution of the climate state is indicated with the super- N addition to being of more practical relevance than the
script “b” as inx®, and the analysis or posterior is denoted Ka]man filter, the EnKF alsol allows us to express the fil-
with superscript “a”. In addition to providing a first guess of t€ring problem in a computationally more efficient way. In-
the true climate state, the mathematical model is also use§t€@d of operating on the fuil x n covariance matrix, the
to propagate the analysis for providing a first guess for thegnsemblg members are updated individually W|thou_t explic-
next analysis cycle if the data assimilation procedure is cy-tly updating the covariances. To reflect the observation error
cled. Thereby, the analysis is consistent with all previous andistribution, the observations used to update each individual
current observations. As discussed earlier, we do not use 8imulation have to be randomly perturbed according to the
cycling of the procedure and therefore, the analysis is con®Pservation error covariance. Consequently, EnKF is biased
strained by current observations only. In the linear Gaussiartiu€ 10 sampling uncertainty in both the background covari-
case, the above Bayesian update is identical with the KalmagnceP” estimated from the ensemble of model simulations
filter update. and the observation perturbations. Due to the nonlinear de-
In the Gaussian case, we can characterise the backgrourRndence of the analysis covariariReon the background

. . . . _ . . ; b i i
climate at a given time through its medPand its covariance ~ covarianceP?, P? will be biased low and therefore under-
matrix P°. wherex? is a vector of length, the dimension of estimate ensemble mean errors on average. This underesti-

the model state, anéP is a matrix of dimensiom x n. The ~ Mate of P? can lead to filter divergence and will result in
observationsy of the true state are collected at distinct ~ @n overly confident analysis in general. The perturbation of
points, withm < n in general. We account for the fact that observ_atlons also increases ;ampllng error and leads to the
y consists of indirect observations of the true state and as@nalysis-error covariance estim&@®being less accurate on
sume the observation error to follow a zero-mean Gaussia@Verage. To overcome the above limitatiovghitaker and
process with covariand@, the observation error covariance. Hamill (2002 propose a novel approach that does not rely
To link model and observation space, we define the operatof" the perturbation of observano.ns; this approach is referred
H of dimensionm x n that extracts the observations from the 0 @s the ensemble square root filter (EnSRF).

model spacel can be non-trivial in a paleoclimatology con- ~ USing EnSRF, the update is separated into an ensemble
text, as this operator reflects the complex dependence of clif"éan update (Ed), which is identical to the EnKF update
mate proxies, such as tree rings on climate. In our idealise@nd an update of the anomalies about the ensemble mean
study, howeverH only extracts temperature at proxy loca- (EQ-7; seeéWhitaker and Hamil003). Thus, we decompose
tions from the model state”. The development of proxy for- the background state? into the ensemble mean background

ward models and corresponding observation operators wilbtate® and the deviation from the ensemble medhand
be dealt with elsewhere. express the update equations as follows:

www.clim-past.net/8/963/2012/ Clim. Past, 8, 96346, 2012
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To ensure that the localised background error covariance is
o b B b positive-definite, we use an element-wise product of the sam-
x“=x"+K(y—Hx") (6) ple covariance and a correlation function with local support
x?=xP Ry —Hx® =1 —KH)xPwith:y' =0 (7)  (seeGaspari and Cohri999 for correlation functions). We
redefineP? used in the EnSRF algorithm above to account
The Kalman gain matriX is identical to the gain matrix  for spurious correlations according to Ex.
in the classical EnKF approach as shown in EdThe gain

. nens 7.2
matrix for the ensemble anomalids, is expressed as fol- p‘?_ = L Zx/?k x’t?k exp _M (9)
lows: “onens— 1 M 2L2
8 on [ (/HPPHT R 177 p?; denotes row number and column numbey of PP; k
K=PH ( HPPHT + R) x inc{exes therensdifferent ensemble membetd; —d;| is the

1 distance in km between grid bexand grid boxj, andL is the
(\/ HPPHT + R + \/ﬁ) (8) cutoff distance at which the sample covariance decreases by
39 %. For the aggregated indices in the state veptor d; |

In our implementation, the background stateis a vec-  is set to the minimum distance between the respective grid
tor of lengthn =1392, consisting of semi-annual tempera- boxi and the points in the box used to compute the index cor-
ture and precipitation over land at 694 grid boxes and 4 detesponding toj (or vice versa). The influence of the choice
rived indices. We assimilate pseudo-proxiesnat 37 loca-  of L on the analysis is discussed in the following.
tions. As the pseudo-proxies are generated from the true cli-
mate state (the reference simulation) by adding white noise,
the observation error variances are known and the covarianc®
matrix R is diagonal. Therefore, we can update the ensembl
serially by including one observation at a time. This great!
enhances the computational tractability of the problem.

Results

q:irst, we analyse the effect of the covariance localisation
Yto deal with spurious covariances. Figudllustrates the
benefits of localisation oPP. Without localisation, skill —
31 Ensemble covariance localisation measured in terms of mean squared error of the ensemble
mean compared with the reference time series (sed)&q.
Simulating large ensembles of high-resolution GCMs is ex-is confined to the regions where proxy data are assimilated;
pensive. Consequently, we have to estimate the backgrounglsewhere, we find negative skill. That is, without localisa-
error covariance from a rather limited set of simulations. tion, assimilation of pseudo-proxies leads to an “overcorrec-
Here, we estimate the 13921392 dimensional background tion” of the ensemble in regions far away from where in-
error covariance matriR® from an ensemble of only 29 sim- formation is assimilated (Fig3a and b). With localisation,
ulations. The use of a finite ensemble to approximate theskill is less confined to the regions where we assimilate data
background error covariance leads to spurious correlationéFig- 3¢ and d), as the closest proxies are given more weight
off the diagonal inP°. These spurious correlations result in in the data assimilation procedure. For example, we find pos-
small unphysical updates and reduce the analysis variance. liive skill almost throughout North America with localisa-
the recursive implementation, this effect will lead to filter di- tion, whereas without localisation, positive skill is confined
vergence. In our non-recursive implementation, the samplingo western North America, where proxy information is as-
uncertainty leads to an overly confident reconstruction. similated. In regions far away from proxy locations, such as
Various approaches exist to correct for Spurious Corre|aAfI’iC3. or the Amazon Basin, the above mentioned overcor-
tions in the background error covariance and to thereby avoidection disappears, resulting in zero skill.
filter divergence. Covariance inflatiof\iderson and An- Covariance localisation does not only help to avoid over-
derson 1999 and covariance localisatiotiputekamer and ~ correction in regions far from the assimilated information.
Mitchell, 2007) are two commonly used strategies. The for- In addition, localisation also helps to avoid filter divergence
mer compensates for filter divergence by inflating the back-0r, in the case of a non-recursive procedure, overly confident
ground error covariance previous to the update step. The la@2nalyses. To assess the dependence of the reliability of the
ter is based on the assumption that the correlation betwee@nalysis on the cutoff for covariance localisation, we make
variables decreases with distance between the variables. lase of the rank histogram, as introduced in S&c. The
this study, we apply a simple covariance localisation to dealank histogram for the analysis without covariance locali-
with spurious correlations. The localisation reflects our be-sation is strongly U-shaped, indicating that this analysis is
lief that the analysis at each grid box depends more stronglpVerly confident in many regions (Fida). This is consistent

on observed information that is close by than on very distantvith the occurrence of negative skill in areas far from the as-
observations. similated information, as shown in Fig. With decreasing

cutoff length, the negative bias in the variance of the anal-
ysis vanishes and the rank histogram gets flat. Compared to
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November to April May to October

NO localisation

WITH localisation

T T T
-10 -3 -1 -03 -0.01 01 02 03 05 07 RE(seeEq.1)

Fig. 3. Mean square error skill score (RE) for near-surface temperature of the analysis ensemble mean compared to the unconstrainec
ensemble mean withou& @ndb) and with localisation€ andd). Results for boreal winter (November to Aprd,andc) and for boreal
summer (May to Octobeh andd). Black dots indicate locations at which pseudo-proxies are assimilated.

the cross-validation with the unconstrained ensemble (blacknedian simulation, and the whiskers denote the range of the
lines in Fig.4), deviations from a flat rank histogram are in- simulations.
distinguishable from the rank histogram of a perfectly reli- In Fig. 6, Northern Hemispheric and northern European
able ensemble for cutoff lengths of 2000 km and less. Theretand temperature, northern European precipitation, and var-
fore, we set the cutoff length at 2000 km for all further anal- ious circulation indices are analysed in detail. These aggre-
yses. gated indices have been chosen to illustrate the advantages

While covariance localisation reduces the negative impactnd limitations of the method. We analyse both the mean
of spurious correlations on the analysis variance, it also afsquare error skill score (Eq, Fig. 6a and b) and changes
fects the sharpness of the analysis. The spread of the ensenm-correlation (Fig.6c and d) between the unconstrained en-
ble — here expressed as the intra-ensemble standard deviatieemble and the analysis. The skill score is generally slightly
— indicates the sharpness of the hindcast. In the case of themore positive for the individual simulations (boxes in Fag.
unconstrained hindcast, the spread represents the uncertairdyand b) than for the ensemble average (arrowheads iB)-ig.
due to internal variability. In the case of the analysis, we hopeThis is due to the fact that the unconstrained ensemble aver-
to make use of the information about the state of internalage is — due to its low variance and small bias — an a priori
variability of the reference, and thus we expect to reduce thegyood guess for an additional simulation in mean square error
hindcast uncertainty, and thereby reduce ensemble spreaterms. Correlation of the ensemble mean with the reference
The influence of the data assimilation on the ensemble spreasimulation, however, is generally greatly increased when in-
for temperature is shown in Fi§. The ensemble spread, and formation is assimilated (see Figc and d).
thus the uncertainty in the hindcast, is significantly reduced We find positive skill scores for most indicators in boreal
in regions close to the assimilated information (Europe, Cenwinter (Fig.6a). Not surprisingly, skill is strongest in regions
tral Asia and western North America). As a consequence othat are close to the assimilated information (e.g. northern
the localisation, the spread is not reduced in regions far fromEuropean temperature and precipitation). However, we find
the assimilated information (e.g. Sub-Saharan Africa). In ad-positive skill also for the strength of the northern subtropical
dition, data assimilation leads to more wide-spread and largejet (SJ) and the stratospheric polar vortex (z100). In boreal
reductions in ensemble spread in boreal winter than in boreasummer, skill is slightly reduced but still positive for most of
summer. the indicators (shown in Figb). For indicators far from the

In the following figures, the skill scores (Ef) for the re-  assimilated information, such as the strength of the north-
spective ensemble means are displayed as arrowheads aedh Hadley cell (HC) or the dynamic Indian monsoon index
the individual simulations as box plots (see F&). The (DIMI), skill is close to zero as a consequence of the locali-
boxes indicate the interquartile range of the 29 simula-sation procedure.
tions in the analysis; the thick horizontal line indicates the
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Fig. 4. Rank histogram of the reference simulation compared to the analysis using different lengths for the covariance localisation. Without
covariance localisation, the spread of the ensemble is negatively biased, leading to a strongly U-shaped rank histogram. The black lines are
empirical confidence intervals from a cross-validation with the unconstrained ensemble, using each of the 30 simulations as observations
in turn (see text for further discussion). The red line indicates the rank histogram of the reference simulation against the unconstrained
ensemble. The scale on the y-axis is the same for all plots, and the frequency of occurrence of ranks 0 and 29 are(ajipped in

November to April May to October

Ensemble spread

Fraction of spread after assimilation

97 in percent

Fig. 5. Average intra-ensemble standard deviation (spread) for temperature of the ECHAM ensemble inavideember to April) and
summer b, May to October). Percentage of the intra-ensemble standard deviation in the analysis ensemble with respect to the unconstrainec
ensemble for the EnSRF analysis with pseudo-proxies and localisationand d).

Correlation increases considerably with data assimilation To test the robustness of the results to the choice of ref-
for all indicators except HC and DIMI (Figc). For north-  erence simulation, we performed a cross-validation using
ern European temperature over land (NEUt2m), correlatioreach individual simulation as reference in turn. Although the
of most individual simulations (boxes) increases from closechoice of reference simulation leads to slight differences in
to zeroto around 0.5 after assimilation. As with skill, the ben- the results, the findings presented here are qualitatively ro-
efits of data assimilation decrease with increasing distancéust to the choice of reference simulation (not shown).
from the assimilated information. In boreal summer, in con- Finally, we investigate the effect of the ensemble size
trast, increases in correlation after data assimilation are mucbn data assimilation. In EnSRF, the model physics are rep-
more moderate (Fighd). resented through the error covariance maRf which is
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Fig. 6. Mean square error skill score (see BYjfor boreal winter and summer im)and @), and correlation for boreal winter and summer

in (c) and @) respectively for seven large-scale indicators. The indicators are Northern Hemispheric near-surface temperature over land
(NHt2m), northern European temperature (NEUt2m) and precipitation (NEUpr) over land, the strength of the northern subtropical jet (SJ),
the northern Hadley cell (HC), the stratospheric polar vortex (z100, boreal winter only), and the dynamic Indian monsoon index (DIMI,
boreal summer only). Boxes indicate the interquartile range of skill scores (correlation) for the individual simulations, and the whiskers
indicate the range of skill scores(correlation); the arrowheads indicate the skill scores (correlation) of the ensemble n)eard i),

the grey boxes and right-facing arrowheads indicate correlation between the unconstrained ensemble and the reference simulation; the whit
boxes and left-facing arrowheads are the correlation between the simulations after data assimilation and the reference simulation.

estimated directly from the ensemble. Thus, increasing enindividual simulations only with ensembles of size 10 or
semble size allows us to capture more details of the interrelamore. We find simulations that perform well even with small
tion of variables and its spatial features. In addition, estima-ensembles; the positive effect of increasing ensemble size,
tion errors decrease with increasing ensemble size. Complhowever, is clearly visible in reducing the number of simula-
tation of very large ensembles, however, is very costly, andions with negative skill. For indicators with marginal skill,
therefore we would like to learn about minimal requirementssuch as the dynamic Indian monsoon index (DIMI, Fil),
for climate reconstructions. Therefore, we run the EnSRF apincreasing ensemble size reduces the spread in the results for
proach with randomly selected sets of 5, 10, 15, 20, 25, andhe individual simulations without affecting the overall skill.
29 ensemble members and compare the results with the ref-or all indicators, the ensemble mean skill strongly benefits
erence simulation. In order to reduce sampling issues, we refrom large ensembles.
peated the experiment 10 times for each ensemble size.

Mean square error skill generally increases with ensem-
ple size fpr th_e various |nd|cator§ (_shown in Fi9. This 5 Discussion
increase in skill is moderate for indicators close to the as-

§|mllated mforma’uorp such as mean temperature over Iand1'his study illustrates the potential of data assimilation us-
in the 'Northgrn Hemisphere or northern Europgan total p.re-Ing EnSRF for paleoclimatology. Depending on the indica-
cipitation (Fig.7a, b, e and f). In contrast, the increase in y, ot jnterest, we find considerable skill even when assim-

skill with increasing ensemble siz_e i_s con§iderable_ for indi'ilating spatially sparse information with low temporal reso-
cators further away from the assimilated information, suchy sion positive skill is not only constrained to the climatic

as the strength of the subtropical jet (SJ, Fig.and g) or
the strength of the stratospheric polar vortex (z100, Fi.
For these indicators, we find positive skill for most of the

parameters that are assimilated, but it extends to other cli-
matic variables as well. Furthermore, we find positive skill
constraining upper air quantities, such as the strength of the
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Fig. 7. Skill in dependence of ensemble size for different aggregated indicators. The boxes summarise the distribution of the mean squared
error skill for individual simulations (10 times the number of ensemble members). The black bars denote the spread of skill for the ensemble
mean for the 10 different realisations of varying ensemble size; the black diamond indicates the average ensemble mean skill over these 1(
realisations. For 29 ensemble members, there is only one analysis.

northern subtropical jet or the strength of the polar vortexof assimilating early instrumental observations and docu-
through assimilation of surface quantities (here indirect andmentary evidence.
thus noisy observations of near-surface temperature). The skill metric presented here reflects value added to the
Skill is generally confined to the Northern Hemisphere. initial condition ensemble by the data assimilation. The re-
This is a consequence of both the greater number of proxyults are thus not comparable with previous studies mak-
records and the larger fractional land area in the Northerring use of pseudo-proxied@ann and Rutherford2002 von
Hemisphere. As a consequence of the experimental setup (eé®torch et al.2004 Burger et al,2006. In the following, we
atmosphere-only GCM), we do not expect large differenceshighlight the most important difference between the study
over oceans and adjacent land due to the dominant influencpresented here and earlier work involving pseudo-proxies.
of sea surface temperatures (SSTs), which are prescribed ifihe crucial element of empirical climate reconstructions is
the model simulations. We find strongest positive skill for to establish the relationship between proxy records and cer-
variables in boreal winter, during which weather in the north-tain climatic features (e.g. local climate or large-scale pat-
ern midlatitudes is strongly influenced by large-scale circu-terns) in the calibration period. Pseudo-proxy analyses have
lation. In boreal summer, when weather is much more de-been used to investigate how well these relationships can
pendent on local processes, data assimilation is less benée extrapolated to characterise past climatesRagherford
ficial (see Fig.6). This finding is in line with other studies et al, 2005 Burger et al. 2006 Mann et al, 2007 Chris-
(Bronnimann and Luterbache&004 Rutherford et a].2005 tiansen et a).2009 for a discussion of different reconstruc-
Franke et al.201Q Griesser et a]2010. tion methods). In the data assimilation framework, the proxy-
We assimilate semi-annual data and analyse skill both irclimate relationship is characterised by the observation op-
summer and in winter. The extension of the methodology toeratorH and the update of the unconstrained model simu-
be able to assimilate data with higher (monthly) or lower (an-lations further depends on the observation error covariance
nual to decadal) temporal resolution is straightforward. MostR and the background error covariar As we are inter-
temperature-sensitive climate proxies, such as tree rings, reested in quantifying the skill emerging from the assimilation
flect summer temperatures; however, we assess skill also farf spatially sparse information with low temporal resolution,
the winter half-year in order to explore the potential benefitswe do not touch on the issue of how to best estinkatend
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R. Instead, we focus on the differences between an unconis much less straightforward and beyond the scope of this
strained ensemble and the analysis after data assimilatiorstudy.
Nevertheless, we recognise that correct formulation of for- Furthermore, we investigate the effect of ensemble size on
ward proxy models and their related observation operator®ur ability to successfully constrain the simulations with the
is crucial for real-world applications of the data assimilation available proxy information (see Fig@). Both the ensemble
procedure for climate reconstruction, and we are currentlymean and simulations with negative skill benefit most from
working on this issue. increasing ensemble size. For indicators close to the assimi-
Correlations between individual simulations and the ref-lated information, small ensembles are sufficient to represent
erence simulation improve considerably after assimilation ofthe relationship between proxies and the respective indicator.
pseudo-proxies (Figsc and d). This indicates that we can For indicators that are less directly related to and/or further
indeed use data assimilation to constrain internal variability.away from the assimilated information, large ensembles help
It is noteworthy that positive correlations occur also in the to better specify the relation between proxies and indicators.
unconstrained simulations (grey boxes and right-facing ar\We note, however, that the covariance localisation is depen-
rows), indicating that the individual ensemble members co-dent on the ensemble size, as its goal is to account for in-
vary with the reference simulation. This is due to the de-creasing sampling errors with decreasing ensemble size. For
terministic response to changing boundary conditions, as il-an infinite ensemble, no covariance localisation is needed.
lustrated for annual average temperature north 6f\en We do not optimise the cutoff length for different ensemble
Fig. 1. Due to the strong anthropogenic forcing during the sizes here. We conclude that while EnSRF with ensembles as
twentieth century, we find positive correlations for most in- small as 15 ensemble members leads to considerable skill in
dicators. Co-variability in the unconstrained ensemble is reregions close to the assimilated information, larger ensem-
duced for indicators aloft such as z100 and SJ, but also fobles are needed to reduce uncertainty in areas further away
non-thermal indicators such as northern European precipitaand for variables that are less directly connected to the as-
tion (NEUpr). This illustrates that the deterministic responsesimilated proxy information.
to varying boundary conditions is weak compared to inter- Finally, we would like to touch on more general limi-
nal variability for these indicators. The dominance of inter- tations arising from the experimental setup. By using an
nal variability in turn highlights the potential benefits of data atmosphere-only GCM, we restrict climate to closely follow
assimilation approaches. reconstructed boundary conditions. These reconstructions, in
Our ensemble of analyses also indicates combined moddurn, are themselves uncertain. It would thus be desirable to
and proxy reconstruction uncertainty. In this idealised setupallow for uncertainties in the boundary conditions as well.
the analysis ensemble spread directly measures reconstrugve refrain from perturbing boundary conditions, as such
tion uncertainty. In a real-world application, however, inter- an ensemble would not allow us to properly investigate the
pretation of reconstruction ensemble spread will be compli-strengths and limitations of the non-recursive data assimi-
cated by the fact that the model provides an imperfect reprefation approach due to severe sampling issues. Instead, our
sentation of the true physics and dynamics of the system. experimental setup, and the thus resulting ensemble, offers
To ensure that the analysis ensemble reliably captures thaes the opportunity to develop our capabilities in assimilat-
uncertainty, we apply a covariance localisation. The local-ing proxy data (this study) and in formulating proxy forward
isation uses horizontal distance to artificially reduce corre-models (on-going work) and to understand the respective im-
lation and thus suppress the influence of spurious correlapacts on our ability to reconstruct climate.
tion arising from the small ensemble size used to estimate It is important to note, however, that the use of an
the correlation. This seems to work well for surface quan-atmosphere-only GCM limits the potential skill of a data as-
tities (e.g. near-surface temperature and precipitation). Nevsimilation approach rather than overemphasising it. Neglect-
ertheless, we cannot rule out the possibility that our localisaing additional sources of uncertainty, such as forcing and pa-
tion procedure suppresses real, far-reaching correlations (e.gameter uncertainty (not explored here), reduces the variabil-
teleconnections) and that we thus unintentionally reduce skility of the unconstrained ensemble. This will generally lead to
in areas far away from the assimilated information. Given conservative estimates of the assimilation skill, as the uncon-
the issue of “overcorrection” (Fig) and underestimation of strained ensemble is already close to the reference simula-
reconstruction uncertainty (Fig) without localisation, we tion. In a study with a coupled ocean-atmosphere GCM, data
consider the potential reduction in skill due to overly restric- assimilation should lead to more considerable improvements
tive localisation to be a conservative approach. Several authan documented here.
thors developed adaptive approaches to allow for spatially The natural extension of our approach would be to assim-
and temporally more complex patterns of influence @ee ilate data in a coupled Earth system model to better quan-
derson 2007 Bishop and Hodys007, Fertig et al, 2007). tify our uncertainty about past climates. Such an experimen-
While these adaptive approaches are potentially useful taal setup, however, requires on-line data assimilation, as the
overcome the problem described above, their implementatiotremporal limit for predictability of slowly varying parts of the
Earth system such as the ocean or the land surface exceeds
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