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Abstract. Quantitative reconstructions of the past climate
statistics from geochemical coral or mollusk records require
quantified error bars in order to properly interpret the ampli-
tude of the climate change and to perform meaningful com-
parisons with climate model outputs. We introduce here a
more precise categorization of reconstruction errors, differ-
entiating the error bar due to the proxy calibration uncer-
tainty from the standard error due to sampling and variability
in the proxy formation process. Then, we propose a numer-
ical approach based on Monte Carlo simulations with sur-
rogate proxy-derived climate records. These are produced
by perturbing a known time series in a way that mimics the
uncertainty sources in the proxy climate reconstruction. A
freely available algorithm, MoCo, was designed to be pa-
rameterized by the user and to calculate realistic system-
atic and standard errors of the mean and the variance of the
annual temperature, and of the mean and the variance of
the temperature seasonality reconstructed from marine accre-
tionary archive geochemistry. In this study, the algorithm is
used for sensitivity experiments in a case study to character-
ize and quantitatively evaluate the sensitivity of systematic
and standard errors to sampling size, stochastic uncertainty
sources, archive-specific biological limitations, and climate
non-stationarity. The results of the experiments yield an il-
lustrative example of the range of variations of the standard
error and the systematic error in the reconstruction of cli-
mate statistics in the Eastern Tropical Pacific. Thus, we
show that the sample size and the climate variability are

the main sources of the standard error. The experiments
allowed the identification and estimation of systematic bias
that would not otherwise be detected because of limited mod-
ern datasets. Our study demonstrates that numerical simula-
tions based on Monte Carlo analyses are a simple and pow-
erful approach to improve the understanding of the proxy
records. We show that the standard error for the climate
statistics linearly increases with the climate variability, which
means that the accuracy of the error estimated by MoCo is
limited by the climate non-stationarity.

1 Introduction

Reconstructions of the past climate from proxy records in-
volve a wide range of uncertainties at every step of the pro-
cess. These uncertainties and the subsequent error bar in the
reconstruction of a paleoclimatic variable need to be under-
stood and quantified in order to properly interpret the recon-
structed variability and to perform meaningful comparisons
with climate model outputs. In a recent overview of methods
used in high resolution paleoclimatology, Hughes and Am-
mann (2009) concluded that “the study of the processes by
which climate proxy records are formed [...] should be ac-
corded high priority”.

Corals and mollusks are privileged archives for high reso-
lution paleoceanographic studies and especially for El Niño
Southern Oscillation (ENSO) reconstructions (Cole and
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Fairbanks, 1990; Cole et al., 1993; Welsh et al., 2011). Short-
term windows of monthly sea surface temperature (SST) se-
ries can be reconstructed from these accretionary archives
using paleo-temperature proxies such as Sr/Ca (Beck et al.,
1992; Marshall and McCulloch, 2002; Corrège et al., 2004;
Rosenheim et al., 2004) orδ18O (Epstein et al., 1953; Gross-
man and Ku, 1986; B̈ohm et al., 2000; Carré et al., 2005)
serially measured along the growth axis. For these archives,
the proxy development work has been mainly concentrated
on the calculation of empirical regression models (or trans-
fer functions) linking the geochemical proxies to the envi-
ronmental variables. The error bar is then estimated for
each calculated data point from the scattering of the cali-
bration dataset. As for the reconstructed climate statistics,
like the mean or the variance, the confidence in the recon-
structed value is generally subjectively linked to the quality
of the transfer function, but is not quantified with an error
bar, except for a few studies in which the propagation of
known errors was calculated for a reconstructed mean value
(Abram et al., 2009) or for a reconstructed trend (Nurhati
et al., 2011). Tudhope et al. (2001) estimated the ENSO-
related variance in successive stages of the Late Quaternary
from coralδ18O records and could only address qualitatively
the question of the statistical representativeness of their sig-
nal. A small number of studies focused on the uncertain-
ties of coral-derived reconstructions. Evans et al. (1998)
studied the effect of observational errors and the network
of sparse coral records for the reconstruction of global SST.
Brown et al. (2008) proposed that the variance of anoma-
lies was the most robust measure of ENSO activity, and also
pointed out that short records may reflect sampling of natural
ENSO variability rather than a response to external forcing.
Thompson et al. (2011) compared coralδ18O records with
pseudo-corals linearly calculated from climate model output
and suggested that differences may be due to uncertainties in
the proxy model and in the way coral record environmental
variables. Sources of uncertainties are numerous (de Villers
et al., 1995) but the way they affect reconstructions is un-
clear. There is growing agreement in the paleoclimate sci-
ence community on the need for better methods to evaluate
the uncertainties in climate proxy records (Jones et al., 2009).
However, a full assessment of paleoclimate reconstruction
uncertainties from the statistical analysis of modern dataset
is strongly limited for corals and mollusks by the small size
of datasets due to the practical constraints that characterize
these archives (limited number of sites, scarcity, protection
laws, analytical costs). In this case, we propose an approach
based on Monte Carlo simulations with numerical surrogate
climate proxy records.

Specifically, we provide a ready-to-use, parameterize-
yourself, open access algorithm called MoCo available for
Matlab® andR (Supplement) for estimating systematic and
standard errors of the mean and variance of the annual
SST, and the mean and variance of the SST seasonality
reconstructed from mollusk and coral geochemistry. This

algorithm is used in a case study using two instrumental SST
time series from the Eastern Tropical Pacific to characterize
and quantitatively evaluate the sensitivity of systematic and
standard errors to categories of (1) sampling, (2) stochas-
tic uncertainty sources, (3) archive-related biological limi-
tations, and (4) climate non-stationarity when reconstruct-
ing the time series statistics from samples of short mollusk
records.

Monte Carlo simulations have been used in previous stud-
ies (Briskin and Harrell, 1980; Ballentine and Hall, 1999;
Touchan et al., 1999; Meibom et al., 2003; Kaufman, 2003;
Evans et al., 2007) to estimate the error of a paleoclimate re-
construction. The method is thus not novel but its use has
been limited to the estimation of a raw uncertainty value.
Here we develop a methodological framework to quantita-
tively explore how systematic and standard errors of recon-
structed statistics build from multiple sources, and to im-
prove the understanding of the proxy signal, and eventually
the quality of the coral and mollusk-based paleoclimate re-
constructions. This technique is conceptually very simple
compared to the full probabilistic modelling studies using
Bayesian inferences that have been developed by statisti-
cians for climate field reconstructions (Jones et al., 2009).
It is intended for use as an intermediate method, realistic
enough to provide reliable assessments of paleoclimate er-
rors, while being technically and conceptually accessible to
a broad community in paleoclimate science. We only con-
sider the case where the statistics for the mean and variance
of the climate state are estimated for a discrete time inter-
val (similarly to Tudhope et al, 2011). We do not address
the case of time series data being used to assess temporal
changes in variability (similarly to Cole et al., 1993 or Cobb
et al., 2003) where chronological uncertainties would also
need to be addressed.

2 The MoCo program

As in all surrogate proxy (also referred to as “pseudo-proxy”)
studies, the basic principle is to use a realistic climate time
series, sample and perturb it in a way that mimics the real
sources of uncertainties (Mann and Rutherford, 2002). The
inputs to use the MoCo program are (1) a monthly “target”
time series from the studied locality, (2) a linear non-biased
relationship linking the proxy to the reconstructed variable
(thereafter referred to as the proxy model), and (3) the pa-
rameters defining the perturbations (more details in Sect. 3).
MoCo randomly draws a sample of short windows out of the
target time series and perturb them to simulate the sources
of uncertainties characteristic of mollusks and corals. The
perturbed chunks are considered as surrogate proxy-derived
climate records and used together to estimate the statistics of
the target time series. MoCo calculates the error of this simu-
lated reconstruction by comparing the pseudo-reconstructed
value with the “true” value, which is known from the original
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Fig. 1. Conceptual representation of the calculation of reconstruction errors in the MoCo algorithm.

non perturbed time series. By iterating this process thou-
sands of times (Monte Carlo analysis), MoCo yields an es-
timate of the systematic error (the average error) and of the
standard error (the standard deviation of the error) for the
type of reconstruction that was simulated (Fig. 1).

Throughout the article, the variable of the original time se-
ries is the water temperatureT , but, with slight modifications
of MoCo, the method is suitable for any variable such as car-
bonateδ18O, salinity or pH. We explore the reconstruction
of the statistics of the target climate,T0, VT 0, 10, andV10,
which are respectively the average and the variance of the
annual temperature, and the average and variance of the tem-
perature annual amplitude, defined as follows for aN0 year
long monthly time series:

T0 = 1
N0

·
∑

i=1,N0

Ti , whereTi is the mean temperature of

yeari.

V0 = σ 2(Ti)i=1,N0

10 = 1
N0

·
∑

i=1,N0

1i , where1i is the annual amplitude (Tmax

− Tmin) of yeari.

V10 = σ 2(1i)i=1,N0

T0 and10 define the average climate, whereasVT 0 andV10
are considered as measures of the interannual climatic vari-
ability. These statistics are estimated byTm, 1, VT , andV1

respectively, calculated from a random sample ofN surro-
gate climate proxy series ofNY years, cumulatingNS years
(NS =N · NY ), with the following equations:

Tm =
1

NS

·

∑
i=1,NS

Ti; VT =
NS

NS − 1
· σ 2(Ti)i=1,NS

1 =
1

NS

·

∑
i=1,NS

1i; V1 =
NS

NS − 1
· σ 2(1i)i=1,NS

.

Tm, 1, VT , andV1 are unbiased estimators ofT0, 10, VT 0,
andV10.

2.1 Different types of error

We explore both systematic and standard errors,SE andσE

of the estimatorsTm, 1, VT , andV1, defined as follows:

SE (Tm) = E(Tm) − T0; σE (Tm) = σ (Tm − T0)

SE(1) = E(1) − 10; σE(1) = σ(1 − 10)

SE (VT ) = E(VT ) − VT 0; σE (VT ) = σ (VT − VT 0)

SE (V1) = E(V1) − V10; σE = (V1) = σ (V1 − V10).

The esperance and standard deviation of the estimators are
calculated from a population of 5000 values obtained from
5000 random samples of surrogate climate proxy records
(Fig. 1). Identifying and estimating systematic errors may al-
low us to correct the reconstruction and improve its accuracy.
A quantitative estimate of the standard error is also essential
to determine a threshold of significance in the amplitude of
the climate proxy variations.

Defining the error in a paleoclimate reconstruction from a
local archive like a coral is not trivial because it depends on
the climate information sought. An ideal proxy would pro-
vide the exact temperature in a precise location and thus be
considered as error-free, but if the aim is to have regional
scale information, the proxy signal would still be noisy ow-
ing to micro-environment effects. Weather also contributes to
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the noise inherent in climate statistics. Thus, part of the un-
certainty in the reconstruction is related to random sampling
in time and space and is thus independent of the quality of the
empirical regression model linking the proxy to the climate.

The formation of the proxy record involves a complex
chain of physical and biological processes (for instance,
mechanisms of Strontium incorporation into coral aragonite)
that introduce non-climate-related stochasticity and limita-
tions in the climate-proxy relationship (Allison et al., 2001,
2005; Meibom et al., 2003). The scatter inherent in in situ
calibration datasets partly captures this stochastic variability
but does not allow the exploration of its full range or the char-
acterization of the uncertainty produced by different sources.
Stochastic parameters may contribute to the standard error in
the reconstruction of climate statistics as well as to system-
atic errors as we will show.

Paleoclimate reconstructions also involve systematic er-
rors that cannot be estimated and corrected for, and could
be referred to as potential systematic errors. They include er-
rors related to the proxy calibration model. Considering that
the mechanisms behind such errors are identical for all spec-
imens in the archive (which is generally assumed), then the
model would be identically wrong for all the climate calcula-
tions. Therefore, the paleoclimate error due to the imperfec-
tion of the proxy calibration model does not contribute to the
standard error, but instead is more comparable to a system-
atic error (although its value might be linearly dependent on
the proxy variable). It belongs thus to the category of poten-
tial systematic errors which are systematic errors for which
only a potential range of values can be statistically estimated.

Here we only consider the potential systematic errorSP

related to the uncertainty of the linear regression model
between the reconstructed variableT and the proxyP :
T =α · P +β. SP is not estimated through a Monte Carlo
simulation. ±SP defines a 95 % confidence interval calcu-
lated as follows:

SP (Tm) =

√
E2

β + (Tm − TC)2
· E2

α; SP (VT ) = VT ·
Eα

|α|

SP (1) = 1 · Eα; SP (V1) = V1 ·
Eα

|α|

whereTC is the mean temperature of the linear model cali-
bration set.Eα andEβ are the uncertainty associated to the
coefficientsα andβ so thatα ± Eα andβ ± Eβ define the
95 % confidence interval ofα andβ. They are calculated by
the following equations:

Eα = t ·
σT

σP

·

√(
1 − R2

)
NC − 2

; Eβ = t · σT ·

√(
1 − R2

)
NC − 2

whereNC is the number of data points in the calibration
dataset,σT andσP the standard deviations ofT andP re-
spectively in the calibration dataset,R is the Pearson’s cor-
relation coefficient, andt is the value of the Student variable

at the 0.05 confidence level andNC − 2 degrees of freedom.
MoCo yields estimates of the standard error, systematic er-
ror, and calculates the potential systematic error associated
to the proxy linear model.

2.2 The Monte Carlo simulation

Monte Carlo techniques are useful for the analysis of com-
plex stochastic systems (Metropolis and Ullam, 1949; Hast-
ings, 1970). In our study, we simulate the reconstruction of
climate statistics from samples of corals or shells from the
same area. The shells of the sample are not strictly contem-
poraneous but belong to the same studied time period. The
shell samples are simulated by samples of surrogate climate
proxy records that are obtained by sampling a known sea
surface temperature (SST) time series and perturbing each
individual of the sample with a suite of random noises and
constraints. The estimator of the climate statistics calcu-
lated from a sample surrogate climate proxy record is only
the product of one random sample and of one realization of
the infinite number of values and combinations that noise can
take. In the Monte Carlo simulation, this process (Fig. 1) is
repeated many times (5000 iterations in the experiments pre-
sented here) in order to have a representative sample of the
range of responses of the estimatorsTm, 1, VT , andV1 and
robust estimates of the systematic and standard errors as de-
fined in the previous section.

2.3 Using the MoCo application

The MoCo program is available as online supplementary
material and can also be downloaded athttp://www.isem.
univ-montp2.fr/carrematthieu, along with a parameter file
and the MoCoreadme.txt file which contains step by step
instructions for users. Two versions are available: inR and
in Matlab® language. The algorithm is parameterized by the
user according to the specifics of the study. The input param-
eters are listed in Table 1. The inputs required for the calcu-
lation of the potential systematic error related to the proxy
model uncertainty are described in Sect. 2.1. In the next
section, we only describe the inputs required for the Monte
Carlo simulation.

3 Inputs to the algorithm

3.1 A linear proxy calibration model

The linear empirical relationship linking the geochemical
proxy (e.g. Sr/Ca orδ18O) to the climate variable (SST)
is thereafter referred to as the proxy model:T =α · P +β

(Sect. 2.1). As in all paleoclimate reconstructions, the proxy
model is assumed to be unbiased and to be valid in the past.
The statistics of the calibration dataset (detailed in Table 1)
are used to calculate the potential systematic error related to
the calibration scattering (Sect. 2.1). The parametersα and
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Table 1. MoCo input parameters and output variables.

Parameters Description Type

Input parameters

Monte Carlo analysis

N Number of specimen per sample Integer
NY Number of years spanned by individual records Integer
TS Biological superior limit for skeletal growth Real (T unit)
TI Biological inferior limit for skeletal growth Real (T unit)
gbi, i = 1 to 12 Does skeletal growth occur during monthi? 0/1
gap How many random 1-month growth gaps per year ? Integer[0, 12]
σS Standard deviation of spatialT variations Real (T unit)
σW standard deviation of weather monthly noise Real (P unit)
σC standard deviation of carbonate micro-heterogeneity Real (P unit)
σA Analytical error (1σ ) Real (P unit)
Niter Number of iteration of the Monte Carlo analysis Integer

Proxy model calibration

Alpha Slope of the linear proxy model Real (T/P unit)
Beta Intercept of the linear proxy model Real (T unit)
σT Standard deviation ofT in calibration dataset Real (T unit)
σP Standard deviation ofP in calibration dataset Real (P unit)
R Pearson’s correlation coefficient in calibration dataset Real in[0, 1]
NC Number of datapoints in calibration dataset Integer
T 0 Average value ofT in calibration dataset Real (T unit)

Output Variables

Systematic errors

EsystTm Systematic error forTm Real (T unit)
EsystvTm Systematic error forVT Real (T 2 unit)
Esystdelta Systematic error for1 Real (T unit)
Esystvdelta Systematic error forV1 Real (T 2 unit)

Standard errors

EstTm Standard error forTm Real (T unit)
EstvTm Standard error forVT Real (T 2 unit)
Estdelta Standard error for1 Real (T unit)
Estvdelta Standard error forV1 Real (T 2 unit)

Potential systematic error related to the proxy model (95 % confidence level)

RETm Error bar forTm Real (T unit)
REvTm Error bar forVT Real (T 2 unit)
REmdelta Error bar for1 Real (T unit)
REvdelta Error bar forV1 Real (T 2 unit)

β of the proxy model allow a direct isometry between the
proxy space and the temperature space.

3.2 A target time series

When using MoCo, a climate time series is first chosen that
will be used as the “target climate”. As will be discussed
later, the characteristics of the target time series have a large

influence on the estimation of the reconstruction uncertainty.
The number of yearsN0 of the time series should be larger
than the total number of yearsNS of the proxy records sam-
ple to allow adequate random sampling. ANS/N0 ratio
lower than 0.2 would keep the average overlap rate in the
random samples under 10 %. The length of the target time
series should also be chosen according to the period the sam-
ple is expected to be representative of. For instance, if coral
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records are being used to study millennial scale variability of
ENSO, a time series of about 1000 years should be used as a
target in the Monte Carlo simulation. Such a long time series
could be either provided by climate models or by a very old
modern coral, or could be statistically synthesized. Instru-
mental time series may be used when century-scale periods
are studied from short-lived proxy archives such as one-year
long mollusk shells. Here, proxy records and target time se-
ries have a monthly resolution.

3.3 Random sampling of target time series

Once the target time series is identified,N time windows
of NY years are randomly drawn from it.N represents the
sample size or the number of specimens that were analyzed
to study the paleoclimate.NY is the typical duration (num-
ber of years) of the proxy records. Two approximations are
made in this process: (1) the proxy record time resolution is
assumed to be monthly and constant; and (2) all specimens
of the sample are assumed to have the same duration.

3.4 Signal perturbation

In this step, the random sample ofN windows is perturbed
by stochastic noise and by archive-related limitations to sim-
ulate the effects of the real-world uncertainty sources. Over-
lap of the windows within a sample is possible but is gener-
ally limited since the size of the windows (NY years) is much
smaller than the target time series (Sect. 3.1). Every win-
dow in the sample is independently perturbed. The product
is a group ofN monthly windows of surrogate proxy-derived
SST. Specific details about the perturbations is given below.

3.4.1 Spatial heterogeneity

Corals and mollusks, as sessile organisms, record only a
micro-scale environmental variability that may differ from
the regional environmental variability. This effect is espe-
cially significant in coastal environments where large spatial
heterogeneity can occur. In MoCo, this stochastic noise is
represented by a random parameter with a normal distribu-
tion N (0, σS). A random value is drawn for every specimen
and added uniformly to the climate variableT over the whole
time window.σS should be estimated by field measurements
according to the studied geographic scale.

3.4.2 Monthly noise

MoCo provides for three additional sources of month-to-
month noise: (1) the geochemical analysis standard error,
(2) the weather scale variability during the life time of the
specimen, and (3) biogenic carbonate heterogeneity at the
µm scale of microsampling owing to vital effects and dia-
genesis. These three types of noise follow here the normal
distributions N(0,σA), N (0, σW ) andN (0, σC), respectively,
where the standard deviations are expressed in the proxy unit

(e.g. mmol mol−1 for coral Sr/Ca). These three sources of
uncertainty add in quadration because they are independent
and yield a month-to-month noise with normal distribution
N (0, σm) (σ 2

m =σ 2
A +σ 2

W +σ 2
C). For every monthly value of

every time window, a random value is drawn, converted to
the temperature scale, and added to the monthly SST value.
All the stochastic noise sources are here considered to be nor-
mally distributed because they are expected to have symmet-
ric distributions, and each is comprised of a large number of
stochastic processes.

3.4.3 Limitations of the biological archives

The archives considered in this study, corals and mollusks,
are living organisms. Their biology constrains their growth
and thus the way in which they record the environment. Ev-
ery species is defined by a range of physico-chemical tol-
erances beyond which they stop precipitating new carbon-
ate skeletal material. If it is possible that the reconstructed
variable may represent a growth limitation (like temperature
or salinity) the effect of these limits should be explored and
quantified. In MoCo,TS andTI represent temperature lim-
its above and under which precipitation of skeletal material
stops. The values beyond these threshold in a sample are
discarded.

Some species systematically stop growing at a precise pe-
riod of the year because their resources are exclusively ded-
icated to reproduction. This implies a systematic growth
break in the record that may affect the final calculated av-
erages or variance. The typical monthly growth pattern of
the species is defined in MoCo by parameters gb1 to gb12
(Table 1).

Finally, growth breaks may occur randomly because of
storms, predation, or sickness. In the MoCo program, the
parametergap allows the choice of occurrence of zero to
12 random growth breaks per year, of a monthly duration
each (Table 1).

4 Sensitivity experiments

Six sensitivity experiments were performed using the MoCo
algorithm to explore the influence of specific parameters on
the systematic and standard errors calculated by MoCo. In
every experiment, MoCo was used repeatedly with different
settings to produce a series of error values that were plot-
ted against the studied parameter. Experiments were thus
designed to explore under different angles the influence of
(1) the sample size (exp. 1, 2, and 6), (2) stochastic perturba-
tions (exp. 1, 2, and 3), (3) the biological limitations of the
archive (exp. 4 and 5), and (4) the target time series (exp. 3,
4, 5, and 6) on the systematic and standard errors when re-
constructing the statistical characteristics of the target time
series using the estimatorsTm, 1, VT , and V1. To per-
form these experiments we chose the illustrative case study
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M. Carr é et al.: Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations 439

Table 2. Characteristics of monthly SST time series used as target in sensitivity experiments. Only the first 100 years of the GCM
Niño1+2 SST time series are shown. The mean and variance of the annual SST (Tm andVT ), and the mean and variance of the seasonal
amplitude of SST (1 andV1) were calculated for the complete series as described in Sect. 2.
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of temperature reconstructions in the Eastern Tropical Pacific
from mollusk shell oxygen isotopes. We used the empirical
proxy model established by Grossmann and Ku (1986) for
biogenic aragonite (Eq. 2), which is often considered as the
definition of isotopic equilibrium for biogenic aragonite and
has been widely used for paleoclimate studies from arago-
nitic mollusk shells:

T
(
◦C

)
= 19.73 − 4.34

(
δ18Oarag. − δ18OW

)
.

δ18Oarag. andδ18OW are expressed in ‰ versus the V-PDB
and V-SMOW international standards respectively (Coplen,
1996). This proxy model is used here for the case study. Any
other proxy model could be used with MoCo. The biologi-
cal characteristics of the species (growth breaks, temperature
tolerance range, length of record...) are varied in the experi-
ments to evaluate their influence on the reconstruction skills.

Three sea surface temperature (SST) time series were
used as “target” climatology: (1) the 1925–2002 monthly in
situ instrumental record from Puerto Chicama, Peru (Quispe
Arce, 1993, dataset available athttp://jisao.washington.edu/
datasets/#timeseries), (2) the 1950–2009 monthly SST
time series of the Niño1+2 region (NOAA Climate Pre-
diction Center,http://www.cpc.ncep.noaa.gov/data/indices/),
and (3) the 1000-year long monthly SST time series of the
Niño1+2 area from the preindustrial control simulation of
the IPSLCM4v2 coupled ocean atmosphere general circu-
lation model (GCM) (for details about the simulation, see

Servonnat et al., 2010). The target time series are presented
in Table 2. The first 2 time series were used in all experi-
ments except for the experiment 2 in which the GCM time
series was used (Table 3). The parameterization of the sensi-
tivity experiments are summarized in Table 3.

4.1 Experiment 1: influence of random sampling and
stochastic noise

The first experiment was designed to test the effect of sam-
pling on the standard and systematic errors and compare it
to the effect of three stochastic noises that were turned off
or on (Fig. 2). Realistic values were assigned toσS (spa-
tial heterogeneity) andσm (month-to-month noise) based on
field measurements on the Peruvian coast. The effect of ran-
dom 1-month growth gaps was also tested (Table 3). In this
experiment, shell records span one year and no biological
limitations were included.

4.2 Experiment 2: should long or short records be
preferred?

Experiment 2 was designed to explore the advantages and
drawbacks of using short or long records for a reconstruction
considering a constant sample size (i.e. a fixed total num-
ber of yearsNS), and realistic stochastic perturbations of
the proxy signal (Fig. 3). No biological limitations were in-
cluded. The record lengthNY ranged from 1 to 200 years
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Fig. 2. Results of experiment 1 with the 1950–2009 Niño1+2 SST time series. Mean values ofTm, VT , 1, andV1 (black bold lines)
calculated from 5000 iterations of surrogate proxy simulations (MoCo algorithm), and compared to the true values (green) of the target time
series, versus the sample size (e.g. number of shells). Systematic errors are indicated by the difference between the mean calculated value
and the true value. Dotted lines show the standard error interval (±1σ ) for an ideal proxy (no signal perturbation) versus the sample size.
Thin black lines show the standard error interval (±1σ ) for surrogate proxies with stochastic noise. In the first three columns, the effects
of spatial variability (σS ), monthly variability (σm), and the occurrence of random growth breaks (blue: 1 per year, black: 2 per year) are
investigated separately. Their effects are combined in the fourth column.

as would be expected for coral-based records, and the total
number of yearsNS =N · NY recorded by the sample was
held constant at 200 years. No instrumental record was long
enough for this experiment so a 1000 year long pre-industrial
OA-GCM simulation of the Nĩno1+2 SSTs was used as a
monthly target time series. Although this time series is not
realistic, it is useful for this sensitivity test.

4.3 Experiment 3: influence of month-to-month noise

Experiment 3 explored further the effect of the individual
data point quality degraded by the monthly noise, character-
ized byσm, which includes the analytical error, weather scale
noise, and skeletal carbonate heterogeneity (Sect. 3.3.2).
Here, all perturbations were turned off and all parameters
were fixed except forσm. In MoCo, this noise is added to
the SST time series as a random monthly series characterized

Clim. Past, 8, 433–450, 2012 www.clim-past.net/8/433/2012/
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by a standard deviation ofα · σm. In this experiment,α · σm

increased gradually from 0 toσ , the standard deviation of
the instrumental SST time series. The error values ob-
tained from MoCo were plotted against the noise/signal ratio
R =α · σm/σ . Simulations were performed with samples of
20 one-year long shells, and two different target time series
(Fig. 4).

4.4 Experiment 4: influence of a yearly growth break

Experiment 4 was designed to test the effect on reconstruc-
tion errors of yearly growth breaks always occurring at the
same period (such as spawning growth breaks) (Fig. 5). All
other perturbations were turned off and all parameters ex-
ceptgbi were fixed. We only considered the case of a single

one-month growth break per year, and compared the effect
of varying its month of occurrence. Simulations were per-
formed with samples of 20 one-year long shells, and with
two different target time series.

4.5 Experiment 5: influence of temperature tolerance
range

In experiment 5, we explored the effect of skeletal growth
temperature threshold on the errors of reconstruction of two
target time series. In this experiment, an upper (lower) tem-
perature threshold was imposed so that temperatures beyond
that threshold were not recorded. The upper (lower) thresh-
old value decreased from the maximum (minimum) temper-
atureTmax(Tmin) of the target time series toTmax− 10◦C
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Table 3. Parameter setting in sensitivity experiments 1 to 5. Gray cells indicate varying parameters.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Parameters of Monte Carlo analyses

N 1 to 30 1 to 200b 20 20 20 10 to 30

NY 1 1 to 200 1 1 1 1

TS 100 100 100 100 Tmax− 10 to 100
T c

max

TI 0 0 0 0 Tmin to 0
Tmin + 10c

gbi, i = 1 to 12 1 1 1 0/1 1 1

gap 0/1 1 0 0 0 1

σS 0/1.5 1.5 0 0 0 1.5

σa
m 0/0.14 0.17 0 to 0.5 0 0 0.17

Niter 5000 5000 5000 5000 5000 5000

Target SST time series

1950–2009 Nĩno1 + 2 x x x x

1950–2002 Puerto Chicama x x x x x

GCM Niño 1+2 x

a σ2
m =σ2

A
+σ2

W
+σ2

C
; b N · NY = 200;c Tmax andTmin are the maximum and minimum temperature values of the monthly SST time series used as a “target”.

(Tmin + 10◦C) by 0.1◦C increments. The standard and sys-
tematic error values calculated by MoCo under these condi-
tions were plotted against the threshold values (Fig. 6). All
other perturbations were turned off and all parameters except
TS andTI were fixed. Simulations were performed with sam-
ples of 20 one-year long shells.

4.6 Experiment 6: influence of the time series
variability

Experiment 6 was designed to explore the effect on the stan-
dard errors of changes in the time series climate variabil-
ity. We used MoCo with the Puerto Chicama time series and
11 additional time series with decreasing variability. These
additional time series were produced by removing El Niño
and La Nĩna years from the Puerto Chicama time series.
Since most of the interannual variability in this area is pro-
duced by ENSO, the values ofVT andV1 decreased when
more El Nĩno or La Nĩna years were removed from the orig-
inal time series, while the other general characteristics of the
climate are conserved. The experiment was performed us-
ing 10, 20, and 30 shells of 1 year (Fig. 7). Realistic stochas-
tic perturbations were included but no biological temperature
threshold (Table 3).
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5 Results

5.1 Potential systematic error

The MoCo program calculates the potential systematic error
bar (at 95 % confidence level) due to uncertainties in the lin-
ear proxy model calibration. This error is not estimated from
surrogate proxy records but is simply calculated from the
equations of error propagation presented in Sect. 2.1. This
error bar not only depends on the proxy model calibration
dataset but also on the target climate. When calculating the
mean temperature, for instance, the error bar increases with
the difference between the reconstructed conditions and the
calibration dataset mean value. The mean valueT0 of Gross-
mann and Ku’s (1986) dataset was 10.5◦C. When using the
Puerto Chicama time series (Tm = 17.1◦C), the error bar for

Tm reconstruction due to the proxy model only is±2.1◦C
(95 % confidence level). It increases to±3.8◦C with the
Niño1+2 time series (Tm = 23.0◦C). These uncertainties are
so large because the target temperature range is far from the
temperature calibration range. If the mean value of the tar-
get time series was 11◦C, the uncertainty at 95 % confidence
level would only be±0.4◦C. The proxy model-related error
bar for the mean seasonal amplitude (1) was also significant
for Puerto Chicama (±1.4◦C) and for Nĩno1+2 (±1.9◦C)
time series. This confirms the importance of local specific
calibration works to minimize this type of errors. For the
interannual variability variablesVT andV1, the relative un-
certainty related to the proxy model is constant and equal to
Eα/|α| (see Sect. 2.1), which is here 7 %. These error bars
are different from the standard errors studied thereafter and
should therefore be represented separately.
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444 M. Carré et al.: Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
-4

-3

-2

-1

0

1

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

0 2 4 6 8 10
-6

-4

-2

0

2

0 2 4 6 8 10
-8

-6

-4

-2

0

2

0 2 4 6 8 10
-4

-2

0

2

0 2 4 6 8 10
-4

-3

-2

-1

0

1

Ti - Tmin Tmax - TS

Niño1+2
Puerto Chicama

Systematic Error  
low temperature threshold

Systematic Error 
upper temperature threshold

SE(Tm)

SE(VT)

SE(∆)

SE(V∆)

Fig. 6. Results of experiment 5. Systematic errors forTm, VT , 1, andV1 due to growth temperature limits. The effects of inferior (superior)
temperature limits are shown on the left (right). In the upper panels are indicated the temperature ranges of Niño1+2 SSTs (blue) and Puerto
Chicama SSTs (red). The darker intervals show the range of temperature recorded by the archive limited byTI (left panels) andTS (right
panel).

5.2 Random sampling (Exp. 1 and 2)

In experiment 1, the effect of the sample size is quantitatively
estimated and compared to the effect of stochastic noisesσm,
σS andgap (Fig. 2). The effect of sampling only is repre-
sented in Fig. 2 by the “ideal proxy” curves obtained with all
the perturbations turned off. It appears that random sampling
is one of the main sources of the standard error. This standard
error decreases rapidly with the sample size and becomes rel-
atively insignificant forTm and1 whenN reaches 20. On the
other hand, the standard error forVT andV1 due to sampling
remains relatively significant up toN = 30. The strong effect
of the sample size on the standard errors is also evidenced by
the results of experiment 6 (Fig. 7).

In experiment 2, we test whether reconstructions from
long proxy records are more reliable than reconstructions
obtained from short proxy records considering a fixed total
number of years recorded.NS is kept constant and equal
to 200 in order to test only the influence of the record length
in the sampling and not of the total sample size. For mean
temperature (Tm) reconstructions, a large sample set of short
records provides a lower standard error than a few long
records because local spatial temperature heterogeneity is
better averaged out with numerous specimens. In a similar
way, the effect of spatial variability (σS) tends to overwhelm
the climatic variabilityVT when the number of records is
small, unless it is calculated from a single record (Fig. 3,
N = 1, NY = 200). Short or long records do not yield signif-
icantly different results for systematic errors except forVT .

Clim. Past, 8, 433–450, 2012 www.clim-past.net/8/433/2012/
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VT is overestimated when using short records because the
spatial variability adds up to the climatic variability, but this
effect decreases when using fewer longer records. Finally it
appears that intermediate values ofN andNY (here 20 10-
years old shells) would yield the best compromise for accu-
racy and precision in the reconstruction ofTm andVT . The
reconstruction skills for1, andV1 are not significantly af-
fected by the record length in our experiment.

5.3 Effects of stochastic noise (Exp. 1, 2, and 3)

Three kinds of stochastic perturbations (see Sect. 4) are ap-
plied to the climate signal in experiments 1, 2, and 3 in order
to produce surrogate climate proxy records. In the first exper-
iment, their influence is observed separately and compared
to ideal proxy reconstruction errors. As expected, spatial
variability greatly affects the standard error of theTm recon-
struction (Fig. 2) and this effect decreases whenN increases
(Fig. 3). It also induces a systematic positive bias forVT re-
construction which also decreases whenN increases (Fig. 3).

In our case study, the monthly stochastic perturbation
characterized byσm involves monthly waterδ18O variabil-
ity, carbonateδ18O analytic error, and shell carbonate het-
erogeneity. The monthly stochastic perturbation in experi-
ment 1 does not significantly affect theTm andVT recon-
structions but it produces an unexpected overestimation of

the annual amplitude1 and of its varianceV1 (Fig. 2). Its
effect on1 andV1 reconstructions is further explored in ex-
periment 3 (Fig. 4) using two different target SST time series.
The maximum value ofσm corresponded to a noise/signal ra-
tio R = 1, which represents an extremely noisy proxy record.
The systematic positive bias on1 estimate is∼0.1◦C when
R = 0.1 and increases to 3◦C whenR = 0.8. For other pa-
rameters, the response depends on the target time series. For
R = 0.4, the systematic error forV1 is about 0.8 (or 100 %)
for the Niño1+2 time series, while it is almost null for the
Puerto Chicama time series. Standard errors for Niño1+2
SSTs are more sensitive to the monthly noise than those for
Puerto Chicama SSTs. This can be explained by the higher
interannual climate variability of Puerto Chicama (Table 2),
which makes the noise-related variability relatively smaller.

Random growth breaks have no significant impact on the
standard error for any of the variable (Fig. 2). They induce
a slight positive bias forVT and a slight negative bias for1.
These biases are due to the time series properties since they
are not observed when using the Puerto Chicama time series
(not shown).
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5.4 Effects of biological limitations (Exp. 4 and 5)

Growth hiatuses may occur every year at approximately the
same date for breeding or other reasons (Sato et al., 1999). In
experiment 4 (Fig. 5), we showed that the date of the growth
break has little impact on standard errors but may produce
systematic errors. As expected, the mean annual tempera-
ture would be underestimated (overestimated) if the growth
breaks occur in the warmest (coldest) period. Here, the max-
imum systematic error forTm was−0.3◦C. The annual am-
plitude may be largely underestimated if the growth hiatuses
occur during seasonal extrema. In our experiment the sys-
tematic bias for1 reached−0.4◦C, with a systematic growth
break in March for the Nĩno1+2 SST time series. Proxy re-
constructions of variances were affected by growth hiatuses
in a much less predictable way. For Puerto Chicama SSTs,
maximum systematic errors reached about 8 % forVT when
growth breaks occurred in September. The largest underesti-
mation (8 %) forV1 as obtained for growth breaks occurring
in December, January, or February. This is becauseV1 is
strongly related to El Nĩno events whose maximum devel-
opment occurs during these months. Again, the error was
strongly dependent on the target time series.

Temperature tolerance for skeletal growth is an especially
important biological limitation that may induce significant
systematic biases in paleoclimate reconstructions. These bi-
ases were explored with two different time series in experi-
ment 5 (Fig. 6). While it is obvious that upper (lower) tem-
perature limits cause underestimation (overestimation) of the
mean temperatureTm, and that1 is in both cases underes-
timated, our experiment permits calculation of a quantitative
estimate of this systematic biases. In experiment 5, the sys-
tematic error responses to lower and upper limits were not
symmetrical. For Nĩno1+2, the effect of the lower temper-
ature limit began to be significant forTm and 1 when it
reached∼1.5◦C above the time series minimum tempera-
ture, whereas the effect of the upper limit began to be sig-
nificant when it reached∼3◦C under the time series maxi-
mum temperature. The biases produced forVT andV1 re-
constructions remained relatively low for Niño1+2 while, for
Puerto Chicama, they rapidly became significant and had un-
predictable profiles, switching from positive to negative val-
ues (Fig. 6), especially for the lower temperature limit. This
is due to the particular variability of coastal SSTs in Peru
characterized by a weak annual cycle of∼4◦C periodically
perturbed by very strong El Niño anomalies that can reach up
to 9◦C in austral summer. Therefore, when the lower temper-
ature threshold reaches 4 ˚ C above the minimum SST, most
of the annual cycle is not recorded, so that the variability
is restricted to the highly irregular El Niño-related summer
anomalies. On the other side, the upper threshold cuts the
largest El Nĩno anomalies and systematically induces an un-
derestimation of the internannual variabilityVT or V1.

5.5 Influence of the target time series (Exp. 3, 4, 5,
and 6)

The results of experiments 3, 4, and 5 showed that the be-
havior and values of standard and systematic errors strongly
depend on the climate time series used as a target in the
experiment because they depend on the probability density
function of the temperature. The Puerto Chicama time series
has a much wider distribution than the Niño1+2 time series
(Table 2) so that standard error due to random sampling is
much larger for Puerto Chicama (Fig. 4,σm = 0; Fig. 5). In
the experiments 3, 4, and 5, the error responses to perturba-
tions were strongly modulated by the characteristics of the
target time series. The same proxy perturbation may induce
strong errors with one time series and be insignificant with
another. For instance, the upper growth temperature limit had
no significant effect on the reconstruction ofTm and1 until it
reached∼6◦C under the maximum value of the Puerto Chi-
cama SST (Fig. 6) because of the highly asymmetric distribu-
tion of temperature due to El Niño phenomenon at this loca-
tion. These results show that the choice of the target time se-
ries when using MoCo to estimate paleoclimate reconstruc-
tion errors is a critical step. The standard and systematic er-
ror estimated with the IPSLCM4v2 GCM Niño1+2 time se-
ries are therefore not reliable because the seasonal cycle and
the ENSO variability are not correctly represented (Table 2).

The experiment 6 showed that the standard error of all the
proxy climate statistics increases almost linearly with the in-
terannual variability in Puerto Chicama (R2 values ranges
from 0.81 to 0.98). The dependence, indicated by the slope
of the linear regressions, is about 10 times lower for the stan-
dard error of the reconstructedTm and1, than for the re-
constructed varianceVT andV1. The relationships are also
strongly affected by the sample size N. This result means
that the reconstruction of past ENSO activity indicated by
the variance has an error bar that varies with the ENSO ac-
tivity itself.

6 Discussion

6.1 Implications for paleoclimate error representation

Three types of errors have been distinguished in this study
that should all be treated distinctively. Systematic errors
are meant to be corrected for when detected and quantified,
and thus are not supposed to be represented. Large modern
datasets are required to detect and calculate a robust estimate
of a bias in a proxy climate reconstruction. The number of
modern coral records in a location is always small because of
limited specimen availability and/or analytical costs. MoCo
provides an alternative way to detect and quantify biases and
thus improve the accuracy of coral and mollusk reconstruc-
tions provided the parameterization and the target time series
are realistic in the specific context of the study.
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The standard error is due to sampling, stochasticity at
different time and space scale, and the biological limita-
tions that have been explored in our experiments. This er-
ror bar exists even if the proxy model is ideal. The stan-
dard errors estimated for different shell or coral samples are
independent.

The errors related to the proxy model calculated in differ-
ent samples of the same type of archive are not independent
since they originate from the same proxy model. For this
reason, this type of error is fundamentally different from the
standard error.

Depending on the context, these two errors may be com-
bined or represented separately. Generally, if estimating the
error bar for a single period or event, both errors may be
added in quadrature. Nurhati et al. (2009, 2011) combined
the analytical standard error with the uncertainty related to
the proxy calibration to estimate the error bar of a recon-
structed temperature trend through the 20th century. How-
ever, if several successive samples are analyzed to study
long-term climate variability, the standard error and the po-
tential systematic error may be represented separately in pa-
leoclimate results as in Carré et al. (2012) for a more com-
plete representation of the reconstruction uncertainty.

6.2 Understanding the proxy

A sensor-specific precision of reconstruction is often at-
tributed to the paleoclimate proxy estimates (for example
Beck et al., 1992; Anand et al., 2003). Our numerical ex-
periments simulating the process of paleoclimate reconstruc-
tion from coral or mollusk shell geochemistry show that the
error cannot be considered a constant value characteristic
of the proxy. Stochastic uncertainties and biological limita-
tions significantly affect the resulting climate reconstruction,
in different manners depending on the studied statistics (Tm,
VT , 1, V1) and on the studied location. General qualitative
relationships between the perturbations, the target time series
characteristics and the reconstruction skills are described in
the result section. However, standard and systematic errors
are so sensitive to the noise parameterization and the target
time series that we recommend reproducing the sensitivity of
experiments described here with a parameterization specific
to the study in order to get a quantitative understanding of
the proxy records.

The results of the experiments yield an illustrative exam-
ple of the range of variations that climate reconstruction er-
rors may undergo, and bring to light their complexity. Al-
though classic calibration-validation techniques are useful
for a first approximation test of corals and mollusks reli-
ability as archives, they are not well-suited for identifying
the causes of reconstruction errors, estimating their relative
contribution, or understanding how errors accumulate from a
multitude of sources.

While the influences of several sources of error were quali-
tatively predictable, some perturbations produced significant

unpredictable systematic bias (Figs. 4–6). Beyond the find-
ings of error sources for coral and mollusk-based recon-
structions, our study demonstrates that numerical simulations
based on Monte Carlo analyses are a simple and powerful ap-
proach to improve the proxy calibration process. A thorough
understanding of the proxy record errors is essential for the
interpretation of paleoclimate records from proxies derived
from accretionary skeleton geochemistry.

6.3 Quantifying errors: contribution and limitations

Quantifying errors in paleoclimate reconstructions is essen-
tial for accurate and meaningful proxy-proxy and proxy-
model comparisons. In the case of mollusks and corals,
modern datasets are necessarily limited by costs and mate-
rial availability, which limits statistical techniques to accu-
rately estimate reconstruction uncertainties. The MoCo al-
gorithm was designed to provide quantitative estimates of the
three kinds of errors identified in Sect. 2.1 for coral and mol-
lusk based climate reconstructions. It implies that the linear
proxy model has been previously validated. The accuracy of
the systematic and standard error quantification using MoCo
may be affected by several limitations, as we now describe.

The model for the paleoclimate reconstruction process im-
plies simplifications including: (1) proxy records in a sample
are considered of equal duration and of constant monthly res-
olution, and (2) stochastic noise was represented by station-
ary normal distributions. Furthermore, the parameterization
of MoCo by the user requires field measurements and knowl-
edge of the organism ecology and growth, characterized by
fixed values that have their own uncertainty and variability.
Uncertainties and non-stationarity inσS , σm, TI or TS esti-
mates may affect the quantification of errors.

The standard and systematic errors calculated by MoCo
are not true errors but only estimates from simulations based
on the assumption that the temperature distribution of the pa-
leoclimate is similar to the distribution of the time series used
in the simulation. The main limitation is thus related to the
non-stationarity of climate, although this issue is not pecu-
liar to our method but is general in paleoclimatology since
uncertainties are necessarily assessed in modern conditions.
By definition, the true target climate is unknown, and neces-
sarily different from the target time series used in the MoCo
simulation. Therefore, the estimation of the standard and sys-
tematic errors may be biased by the difference of variability
between the true climate and the target time series. In the
selection process for the simulation target time series, it is
recommended to seek the most realistic time series.

However, this bias can be minimized for the standard er-
rors. Experiment 6 showed that in a defined location, the
standard error is linearly correlated to the interannual vari-
ability through a relationship that is strongly modulated by
the conditions of the reconstructions and especially the sam-
ple size. Therefore, MoCo should be used repeatedly as in
experiment 6 to estimate the linear relationships specific to
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the paleoclimate study. The standard error of a proxy re-
construction can then be calculated using this relationship
and the reconstructed values ofVT andV1. This method is
valid if we consider that in a defined location, the interannual
or decadal variability may change significantly through time
but the larger climatic features responsible for these modula-
tions remain similar, at least on multi-millennial timescales.
For example, in the tropical Pacific, the characteristics of the
climate variability can be considered conservative in a de-
fined location and its amplitude is modulated by the activity
of ENSO and the Pacific Decadal Oscillation (PDO). There-
fore, based on experiment 6, ifV1 = 3◦C2 is reconstructed
in the Peruvian coast from 20 1-year long mollusk shells, the
linear relationship estimated in experiment 6 (Fig. 7) yields a
value of standard error of 0.4◦C2 for 1 and 1.3◦C2 for V1.
This method uses the information of the reconstruction itself
to narrow the potential biases due to climate non-stationarity
but is not perfect because the reconstruction is necessarily
not exact and because it assumes the stationarity of the vari-
ability vs. standard error relationship.

Very few coral and mollusk paleoclimate studies include a
proper error calculation. One of the most complete attempt
was made by Abram et al. (2009) who estimated the stan-
dard error of mean temperatures estimated from Sr/Ca coral
records combining the variability between several corals
from the same area (which corresponds to the parameterσS

in our study) and a measured standard error related to analyti-
cal precision and variability within corals (which is similar to
our parameterσm). Although a large part of the standard er-
ror is due to these parameters, MoCo represents a significant
improvement since it involves additional error sources for a
more realistic estimate. It also offers the possibility to quan-
titatively estimate the influence of individual error sources.
The improvements of this method are: (1) the identification
of 3 independent categories of errors, (2) the quantification
of the standard error due to uncertainty sources that were so
far not considered, and (3) the identification and estimation
of systematic biases that would not otherwise be detected be-
cause of the limited modern dataset. It thus offers the possi-
bility of correcting the proxy-based climate from these biases
for a more accurate reconstruction.

6.4 Extending applications

Sensitivity experiments were based on an illustrative case
study of SST reconstruction from mollusk or coralδ18O in
an environment where waterδ18O is reasonably constrained.
These experiment could be similarly performed to improve
the understanding of other proxies including temperature re-
constructions from Sr/Ca ratios in corals (Beck et al., 1992;
De Villiers et al., 1994; Marshall and McCulloch, 2002) and
sclerosponges (Swart et al., 2002; Rosenheim et al., 2004),
Mg/Ca ratios in coralline algae (Kamenos et al., 2008), and
pH from coralδ11B (Rollion-Bard et al., 2011).

In many environments, calcium carbonateδ18O variations
yield a mixed signal between water temperature and water
δ18O variations related to freshwater input. Changes in the
climate variability are thus estimated by theδ18O variability
in the fossil coral compared to modern corals (Tudhope et al.,
2001). Under such conditions, the uncertainties of the proxy
reconstructions should be evaluated in the space of the proxy
variable (δ18Ocarb), which would require very little modifica-
tions of the MoCo since the climate and the proxy space are
linearly linked by the proxy regression model (Sect. 3.1). A
target time series ofδ18Ocarbwould be required, that could be
either provided by a very long modern coral of the same area
or calculated from temperature and waterδ18O time series.
This approach, referred to as forward modelling, has been
applied to corals by Thompson et al. (2011) and a variety
of proxies, such as planktonic foraminiferaδ18O (Schmidt,
1999), or stalagmiteδ18O (Baker and Bradley, 2010). The
strength of forward modelling that incorporates Monte Carlo
analyses for paleoclimate proxy calibration was showed by
Evans (2007) through a case study with wood celluloseδ18O.
To our knowledge it has never been applied to corals or mol-
lusks. MoCo-type algorithms would also be useful for ex-
ploring the uncertainties of salinity or waterδ18O reconstruc-
tions based on the combination of coralδ18O and Sr/Ca ra-
tios, since the perturbations of both proxies add with differ-
ent types of perturbations and propagate in an unpredictable
way.

This study does not apply to time series reconstructions
used to assess temporal changes in variability. Further work
in a similar methodological framework is needed to study the
effect of age uncertainty, stochasticity and proxy biological
limitations on the correlation between the reconstructed time
series and target time series.

7 Conclusions

Reconstructions of paleoclimate statistics (annual mean,
mean seasonal amplitude and interannual variability) from
coral and mollusk geochemistry were so far performed ei-
ther without quantified error bars or with error estimates that
do not involve all the sources of uncertainty. We defined
here the error bar due to the proxy calibration as a poten-
tial systematic error, and defined two additional and inde-
pendent categories of errors: the standard error and the sys-
tematic error that build from multiple sources and are po-
tentially larger than those estimated from empirical calibra-
tion scatter. We provided an open access program, MoCo,
available forR and Matlab® (Supplement and also athttp:
//www.isem.univ-montp2.fr/carrematthieu), that calculates
the error related to the proxy linear model, and estimate
with a Monte Carlo simulation the systematic biases, and
the standard errors for the reconstruction of climate statistics
from mollusks and corals. MoCo involves realistic surrogate
proxy-derived climate records, and was designed to improve
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the accuracy and the quantification of coral and mollusk-
based SST reconstructions. We showed in an illustrative case
study that surrogate proxy techniques associated with Monte
Carlo analyses are powerful tools to improve the understand-
ing and calibration of mollusk and coral proxy records. Sen-
sitivity experiments showed the significant and often unpre-
dictable influence of random sampling, stochastic variability
in the proxy formation, archive biological limitations, and
climate characteristics. These numerical experiments are a
fast and efficient technique for a quantitative assessment of
the relative contribution of these influences in the systematic
and standard errors of the paleoclimate reconstruction.

The accuracy of error quantification by MoCo is mainly
limited by: (1) the simplification of the simulated climate
reconstruction process, (2) the variability of the parameters
used in MoCo, (3) the potential non-stationarity of the proxy
model, and (4) the non-stationarity of climate between the
modern reference used in the simulation and the studied pe-
riod. We propose a technique to constrain this latter source
of bias using the value of the reconstructed variability and
the relationship between the standard error and the variability
that can be estimated with MoCo. While the errors estimated
by MoCo are only the product of simulations and may be
imperfect, this method is still a significant improvement for
quantitative reconstructions of climate statistics from mol-
lusks and corals. Its conceptual simplicity should allow it to
be adapted for a wide range of applications in paleoclimate
research involving, among other archives, corals, mollusks,
sclerosponges and coralline algae.

Supplementary material related to this
article is available online at:
http://www.clim-past.net/8/433/2012/
cp-8-433-2012-supplement.zip.
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450 M. Carré et al.: Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations

Coplen, T. B.: New guidelines for reporting stable hydrogen, car-
bon, and oxygen isotope-ratio data, Geochim. Cosmochim, Acta,
60, 3359-3360, 1996.

Corr̀ege, T., Gagan, M. K., Beck, J. W., Burr, G. S., Cabioch, G.,
and Le Cornec, F.: Interdecadal variation in the extent of South
Pacific tropical waters during the Younger Dryas event, Nature,
428, 927–929, 2004.

De Villiers, S., Shen, G. T., and Nelson, B. K.: The Sr/Ca-
temperature relationship in coralline aragonite: Influence of
variability in (Sr/Ca)seawaterand skeletal growth parameters,
Geochim. Cosmochim. Acta, 58, 197–208, 1994.

Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.:
Revised carbonate-water isotopic temperature scale, Bull. Geol.
Soc. Am., 64, 1315–1326, 1953.

Evans, M. N.: Toward forward modeling for paleoclimatic proxy
signal calibration: A case study with oxygen isotopic composi-
tion of tropical woods, Geochem. Geophy. Geosys., 8, Q07008,
doi:10.1029/2006GC001406, 2007.

Evans, M. N., Kaplan, A., and Cane, M. A.: Optimal sites for coral-
based reconstruction of global sea surface temperature, Paleo-
ceanography, 13, 502–516, 1998.

Grossman, E. L. and Ku, T.-L.: Oxygen and carbon fractionation in
biogenic aragonite: Temperature effect, Chem. Geol., 59, 59–74,
1986.

Hastings, W. K.: Monte Carlo sampling methods using
Markov chains and their applications, Biometrika, 57, 97–109,
doi:10.1093/biomet/57.1.97, 1970.

Hughes, M. and Ammann, C.: The future of the past – an earth sys-
tem framework for high resolution paleoclimatology: editorial
essay, Climatic Change, 94, 247–259, 2009.

Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Om-
men, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers,
F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buck-
ley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N.,
Jansen, E., Kiefer, T., Kull, C., K̈uttel, M., Mosley-Thompson,
E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W.,
Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-
resolution palaeoclimatology of the last millennium: a review
of current status and future prospects, Holocene, 19, 3–49,
doi:10.1177/0959683608098952, 2009.

Kamenos, N. A., Cusack, M., and Moore, P. G.: Coralline algae are
global palaeothermometers with bi-weekly resolution, Geochim.
Cosmochim. Acta, 72, 771–779, 2008.

Kaufman, D. S.: Amino acid paleothermometry of Quaternary os-
tracodes from the Bonneville Basin, Utah, Quaternary Sci. Rev.,
22, 899–914, 2003.

Mann, M. E. and Rutherford, S.: Climate reconstruction
using “Pseudoproxies”, Geophys. Res. Lett., 29, 1501,
doi:10.1029/2001gl014554, 2002.

Marshall, J. F. and McCulloch, M. T.: An assessment of the Sr/Ca
ratio in shallow water hermatypic corals as a proxy for sea sur-
face temperature, Geochim. Cosmochim. Acta, 66, 3263–3280,
2002.

Meibom, A., Stage, M., Wooden, J., Constantz, B. R., Dunbar,
R. B., Owen, A., Grumet, N., Bacon, C. R., and Chamber-
lain, C. P.: Monthly Strontium/Calcium oscillations in symbi-
otic coral aragonite: Biological effects limiting the precision
of the paleotemperature proxy, Geophys. Res. Lett., 30, 1418,
doi:1410.1029/2002GL016864, 2003.

Metropolis, N. and Ulam, S.: The Monte Carlo Method, J. Am. Stat.
Assoc., 44, 335–341, 1949.

Nurhati, I. S., Cobb, K. M., Charles, C. D., and Dunbar,
R. B.: Late 20th century warming and freshening in the
central tropical Pacific, Geophys. Res. Lett., 36, L21606,
doi:10.1029/2009GL040270, 2009.

Nurhati, I. S., Cobb, K. M., Charles, C. D., and Dunbar, R. B.:
Correction to “Late 20th century warming and freshening in
the central tropical Pacific”, Geophys. Res. Lett., 38, L24707,
doi:10.1029/2011GL049972, 2011.

Quispe Arce, J.: Variaciones de la temperatura superficial del mar
en Puerto Chicama y del indice de oscilacı́on del sur:1925:1992,
Bull. Inst. Fr. Etudes Andines, 22, 111–124, 1993.

Rollion-Bard, C., Blamart, D., Trebosc, J., Tricot, G., Mussi, A.,
and Cuif, J.-P.: Boron isotopes as pH proxy: A new look at boron
speciation in deep-sea corals using 11B MAS NMR and EELS,
Geochim. Cosmochim. Acta, 75, 1003–1012, 2011.

Rosenheim, B. E., Swart, P. K., Thorrold, S. R., Willenz, P., Berry,
L., and Latkoczy, C.: High-resolution Sr/Ca records in scle-
rosponges calibrated to temperature in situ, Geology, 32, 145–
148, 2004.

Sato, S. I.: Temporal change of life history traits in fossil bivalves: a
example ofPhacosoma japonicumfrom the pleistocene of Japan,
Palaeogeogr. Palaeocl., 154, 313–323, 1999.

Schmidt, G. A.: Forward Modeling of Carbonate Proxy Data from
Planktonic Foraminifera Using Oxygen Isotope Tracers in a
Global Ocean Model, Paleoceanography, 14, 482–497, 1999.
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