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Abstract. Quantitative reconstructions of the past climate the main sources of the standard error. The experiments
statistics from geochemical coral or mollusk records requireallowed the identification and estimation of systematic bias
quantified error bars in order to properly interpret the ampli- that would not otherwise be detected because of limited mod-
tude of the climate change and to perform meaningful com-ern datasets. Our study demonstrates that numerical simula-
parisons with climate model outputs. We introduce here ations based on Monte Carlo analyses are a simple and pow-
more precise categorization of reconstruction errors, differ-erful approach to improve the understanding of the proxy
entiating the error bar due to the proxy calibration uncer-records. We show that the standard error for the climate
tainty from the standard error due to sampling and variability statistics linearly increases with the climate variability, which
in the proxy formation process. Then, we propose a humermeans that the accuracy of the error estimated by MoCo is
ical approach based on Monte Carlo simulations with sur-limited by the climate non-stationarity.
rogate proxy-derived climate records. These are produced
by perturbing a known time series in a way that mimics the
uncertainty sources in the proxy climate reconstruction. A
freely available algorithm, MoCo, was designed to be pa-1 Introduction
rameterized by the user and to calculate realistic system-
atic and standard errors of the mean and the variance of thBeconstructions of the past climate from proxy records in-
annual temperature, and of the mean and the variance ofolve a wide range of uncertainties at every step of the pro-
the temperature seasonality reconstructed from marine accr&ess. These uncertainties and the subsequent error bar in the
tionary archive geochemistry. In this study, the algorithm is reconstruction of a paleoclimatic variable need to be under-
used for sensitivity experiments in a case study to characterstood and quantified in order to properly interpret the recon-
ize and quantitatively evaluate the sensitivity of systematicstructed variability and to perform meaningful comparisons
and standard errors to sampling size, stochastic uncertaintyith climate model outputs. In a recent overview of methods
sources, archive-specific biological limitations, and climateused in high resolution paleoclimatology, Hughes and Am-
non-stationarity. The results of the experiments yield an il-mann (2009) concluded thatie study of the processes by
lustrative example of the range of variations of the standardVhich climate proxy records are formed [...] should be ac-
error and the systematic error in the reconstruction of cli-corded high priority.
mate statistics in the Eastern Tropical Pacific. Thus, we Corals and mollusks are privileged archives for high reso-
show that the sample size and the climate variability arelution paleoceanographic studies and especially for BoNi
Southern Oscillation (ENSO) reconstructions (Cole and
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Fairbanks, 1990; Cole etal., 1993; Welsh et al., 2011). Shortalgorithm is used in a case study using two instrumental SST
term windows of monthly sea surface temperature (SST) setime series from the Eastern Tropical Pacific to characterize
ries can be reconstructed from these accretionary archiveand quantitatively evaluate the sensitivity of systematic and
using paleo-temperature proxies such as Sr/Ca (Beck et alstandard errors to categories of (1) sampling, (2) stochas-
1992; Marshall and McCulloch, 2002; Cége et al., 2004; tic uncertainty sources, (3) archive-related biological limi-
Rosenheim et al., 2004) 6t%0 (Epstein et al., 1953; Gross- tations, and (4) climate non-stationarity when reconstruct-
man and Ku, 1986; 8hm et al., 2000; Cagret al., 2005) ing the time series statistics from samples of short mollusk
serially measured along the growth axis. For these archivesecords.
the proxy development work has been mainly concentrated Monte Carlo simulations have been used in previous stud-
on the calculation of empirical regression models (or trans-ies (Briskin and Harrell, 1980; Ballentine and Hall, 1999;
fer functions) linking the geochemical proxies to the envi- Touchan et al., 1999; Meibom et al., 2003; Kaufman, 2003;
ronmental variables. The error bar is then estimated forEvans et al., 2007) to estimate the error of a paleoclimate re-
each calculated data point from the scattering of the cali-construction. The method is thus not novel but its use has
bration dataset. As for the reconstructed climate statisticsbeen limited to the estimation of a raw uncertainty value.
like the mean or the variance, the confidence in the reconHere we develop a methodological framework to quantita-
structed value is generally subjectively linked to the quality tively explore how systematic and standard errors of recon-
of the transfer function, but is not quantified with an error structed statistics build from multiple sources, and to im-
bar, except for a few studies in which the propagation ofprove the understanding of the proxy signal, and eventually
known errors was calculated for a reconstructed mean valu¢ne quality of the coral and mollusk-based paleoclimate re-
(Abram et al., 2009) or for a reconstructed trend (Nurhaticonstructions. This technique is conceptually very simple
et al., 2011). Tudhope et al. (2001) estimated the ENSO-compared to the full probabilistic modelling studies using
related variance in successive stages of the Late Quaternaiayesian inferences that have been developed by statisti-
from corals'80 records and could only address qualitatively cians for climate field reconstructions (Jones et al., 2009).
the question of the statistical representativeness of their sigh is intended for use as an intermediate method, realistic
nal. A small number of studies focused on the uncertain-enough to provide reliable assessments of paleoclimate er-
ties of coral-derived reconstructions. Evans et al. (1998)rors, while being technically and conceptually accessible to
studied the effect of observational errors and the networka broad community in paleoclimate science. We only con-
of sparse coral records for the reconstruction of global SSTsider the case where the statistics for the mean and variance
Brown et al. (2008) proposed that the variance of anoma-of the climate state are estimated for a discrete time inter-
lies was the most robust measure of ENSO activity, and alswal (similarly to Tudhope et al, 2011). We do not address
pointed out that short records may reflect sampling of naturathe case of time series data being used to assess temporal
ENSO variability rather than a response to external forcing.changes in variability (similarly to Cole et al., 1993 or Cobb
Thompson et al. (2011) compared cos&fO records with et al., 2003) where chronological uncertainties would also
pseudo-corals linearly calculated from climate model outputneed to be addressed.
and suggested that differences may be due to uncertainties in
the proxy model and in the way coral record environmental
variables. Sources of uncertainties are numerous (de Viller2 The MoCo program
et al., 1995) but the way they affect reconstructions is un-
clear. There is growing agreement in the paleoclimate sci-As in all surrogate proxy (also referred to as “pseudo-proxy”)
ence community on the need for better methods to evaluatstudies, the basic principle is to use a realistic climate time
the uncertainties in climate proxy records (Jones et al., 2009)series, sample and perturb it in a way that mimics the real
However, a full assessment of paleoclimate reconstructiorsources of uncertainties (Mann and Rutherford, 2002). The
uncertainties from the statistical analysis of modern dataseinputs to use the MoCo program are (1) a monthly “target”
is strongly limited for corals and mollusks by the small size time series from the studied locality, (2) a linear non-biased
of datasets due to the practical constraints that characterizeslationship linking the proxy to the reconstructed variable
these archives (limited number of sites, scarcity, protection(thereafter referred to as the proxy model), and (3) the pa-
laws, analytical costs). In this case, we propose an approactameters defining the perturbations (more details in Sect. 3).
based on Monte Carlo simulations with numerical surrogateMoCo randomly draws a sample of short windows out of the
climate proxy records. target time series and perturb them to simulate the sources
Specifically, we provide a ready-to-use, parameterize-of uncertainties characteristic of mollusks and corals. The
yourself, open access algorithm called MoCo available forperturbed chunks are considered as surrogate proxy-derived
Matla® and R (Supplement) for estimating systematic and climate records and used together to estimate the statistics of
standard errors of the mean and variance of the annuahe targettime series. MoCo calculates the error of this simu-
SST, and the mean and variance of the SST seasonalitiated reconstruction by comparing the pseudo-reconstructed
reconstructed from mollusk and coral geochemistry. Thisvalue with the “true” value, which is known from the original
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Fig. 1. Conceptual representation of the calculation of reconstruction errors in the MoCo algorithm.

non perturbed time series. By iterating this process thou-p — i . Z A Va = Ns T UZ(Ai)i—l Ns -
Ns — -

sands of times (Monte Carlo analysis), MoCo yields an es- Ns i=1Ng
timate of the systematic error (the average error) and of the
standard error (the standard deviation of the error) for thelm, A, Vr, andV, are unbiased estimators of, Ao, Vro,
type of reconstruction that was simulated (Fig. 1). andVao.

Throughout the article, the variable of the original time se-
ries is the water temperatufe but, with slight modifications
of MoCo, the method is suitable for any variable such as car- .
bonates180, salinity or pH. We explore the reconstruction V\]c/ehexplor e both systematic and stanfgiard errfgﬁand@
of the statistics of the target climat®, Vro, Ao, andVa,, of the estimator,, A, Vr, andV,, defined as follows:
which are respectively the average and the variance of thg . (7 ) — E(T,) — To: 0r(Ty,) = o (T, — To)
annual temperature, and the average and variance of the tem-
perature annual amplitude, defined as follows favayear — §p(A) = E(A) — Ag; or(A) = o(A — AD)
long monthly time series:

TO:NAO' > T;, whereT; is the mean temperature of Sg(Vr) = E(Vr) — Vro; og(Vr) = o(Vr — Vro)
i=1,No

2.1 Different types of error

yeari. SE(Va) = E(Va) — Vao; o8 = (Va) = 0 (Va — Vao).

Vo = o2(T)i=1n,

_ 1

Ao - N_O .
i=1,Ng

— Tmin) of yeari.

Vao = UZ(Ai)izl,No

To and Ag define the average climate, wherdgsg andVag

> A;, whereA; is the annual amplitud€elfyax

The esperance and standard deviation of the estimators are
calculated from a population of 5000 values obtained from
5000 random samples of surrogate climate proxy records
(Fig. 1). Identifying and estimating systematic errors may al-
low us to correct the reconstruction and improve its accuracy.
A quantitative estimate of the standard error is also essential
to determine a threshold of significance in the amplitude of

are considered as measures of the interannual climatic varhe climate proxy variations.

ability. These statistics are estimatedBy, A, Vr, andVu
respectively, calculated from a random sampleNogurro-
gate climate proxy series &y years, cumulatingVy years

(Ns =N - Ny), with the following equations:

Tm:Ni- >

S i=1,Ng

T, Vr=

Ns
Nsg —

www.clim-past.net/8/433/2012/

-0 2(T})i—1. Ny

Defining the error in a paleoclimate reconstruction from a
local archive like a coral is not trivial because it depends on
the climate information sought. An ideal proxy would pro-
vide the exact temperature in a precise location and thus be
considered as error-free, but if the aim is to have regional
scale information, the proxy signal would still be noisy ow-
ing to micro-environment effects. Weather also contributes to
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the noise inherent in climate statistics. Thus, part of the un-at the 0.05 confidence level ang — 2 degrees of freedom.
certainty in the reconstruction is related to random samplingMoCo yields estimates of the standard error, systematic er-
in time and space and is thus independent of the quality of theor, and calculates the potential systematic error associated
empirical regression model linking the proxy to the climate. to the proxy linear model.

The formation of the proxy record involves a complex
chain of physical and biological processes (for instance2.2 The Monte Carlo simulation
mechanisms of Strontium incorporation into coral aragonite) ) )
that introduce non-climate-related stochasticity and limita-Monte Carlo techniques are useful for the analysis of com-
tions in the climate-proxy relationship (Allison et al., 2001, Plex stochastic systems (Metropolis and Ullam, 1949; Hast-
2005; Meibom et al., 2003). The scatter inherent in in situiNgs; 1970). In our study, we simulate the reconstruction of
calibration datasets partly captures this stochastic variabilitycimate statistics from samples of corals or shells from the
but does not allow the exploration of its full range or the char-Same area. The shells of the sample are not strictly contem-
acterization of the uncertainty produced by different sourcesPOraneous but belong to the same studied time period. The
Stochastic parameters may contribute to the standard error jah€ll samples are simulated by samples of surrogate climate
the reconstruction of climate statistics as well as to systemProxy records that are obtained by sampling a known sea
atic errors as we will show. surface temperature (SST) time series and perturbing each

Paleoclimate reconstructions also involve systematic erindividual of the sample with a suite of random noises and
rors that cannot be estimated and corrected for, and coul§onstraints. The estimator of the climate statistics calcu-
be referred to as potential systematic errors. They include erl@ted from a sample surrogate climate proxy record is only
rors related to the proxy calibration model. Considering thatthe Product of one random sample and of one realization of
the mechanisms behind such errors are identical for all spech€ infinite number of values and combinations that noise can
imens in the archive (which is generally assumed), then thda@ke. In the Monte Carlo simulation, this process (Fig. 1) is
model would be identically wrong for all the climate calcula- féPeated many times (5000 iterations in the experiments pre-
tions. Therefore, the paleoclimate error due to the imperfecSented here) in order to have a representative sample of the
tion of the proxy calibration model does not contribute to the @nge of responses of the estimatds A, Vr, andVx and
standard error, but instead is more comparable to a systen{Qb“SF esﬂmateg of the systematlc and standard errors as de-
atic error (although its value might be linearly dependent onfin€d in the previous section.
the proxy variable). It belongs thus to the category of poten-
tial systematic errors which are systematic errors for which
only a potential range of values can be statistically estimated

Here we only consider the potential systematic elfpr
related to the uncertainty of the linear regression model
between the reconstructed varialdfe and the proxyP:
T=a-P+pB. Sp is not estimated through a Monte Carlo
simulation. £Sp defines a 95 % confidence interval calcu-
lated as follows:

2.3 Using the MoCo application

The MoCo program is available as online supplementary
material and can also be downloadedhép://www.isem.
univ-montp?2.fr/carrematthiey along with a parameter file
and the MoCareadme.txt file which contains step by step
instructions for users. Two versions are availableRiand

in Matlad® language. The algorithm is parameterized by the
user according to the specifics of the study. The input param-
eters are listed in Table 1. The inputs required for the calcu-

E
Sp(Tw) = JE3 + (T — T)? - B3 Sp(Vp) = Vp - %

lex| lation of the potential systematic error related to the proxy

model uncertainty are described in Sect. 2.1. In the next

Sp(A) = A - Ey; Sp(Va) = Va - =% sectlon., we o.nly describe the inputs required for the Monte
|| Carlo simulation.

whereT¢ is the mean temperature of the linear model cali-
bration set.E, and E are the uncertainty associated to the 3  |nputs to the algorithm
coefficientse and 8 so thata &+ E, and g &+ Eg define the
95 % confidence interval @f andps. They are calculated by 3.1 A linear proxy calibration model
the following equations:
The linear empirical relationship linking the geochemical
o7 (1 - R?) (1 - R?) proxy (e.g. Sr/Ca 06180) to the climate variable (SST)
Ey =1 op m; Ep =1t -or - Ne — 2 is thereafter referred to as the proxy modé&l=« - P+
(Sect. 2.1). As in all paleoclimate reconstructions, the proxy
where N¢ is the number of data points in the calibration model is assumed to be unbiased and to be valid in the past.
datasetpr andop the standard deviations @f and P re- The statistics of the calibration dataset (detailed in Table 1)

spectively in the calibration datase,is the Pearson’s cor- are used to calculate the potential systematic error related to
relation coefficient, andis the value of the Student variable the calibration scattering (Sect. 2.1). The parameteasd
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Table 1. MoCo input parameters and output variables.

Parameters Description Type

Input parameters

Monte Carlo analysis

N Number of specimen per sample Integer
Ny Number of years spanned by individual records Integer
Ts Biological superior limit for skeletal growth Readr (unit)
T; Biological inferior limit for skeletal growth Reall{ unit)
ghi,i=1to 12 Does skeletal growth occur during morh 0/1

gap How many random 1-month growth gaps per year ? IntgQet 2|
os Standard deviation of spati@l variations Real T unit)
ow standard deviation of weather monthly noise Reéalgit)
oc standard deviation of carbonate micro-heterogeneity Reain(t)
oA Analytical error (1o) Real (P unit)
Niter Number of iteration of the Monte Carlo analysis Integer

Proxy model calibration

Alpha Slope of the linear proxy model Redl/P unit)
Beta Intercept of the linear proxy model Red! (nit)
or Standard deviation df in calibration dataset Real (unit)
op Standard deviation aP in calibration dataset ReaP(unit)
R Pearson’s correlation coefficient in calibration dataset  Refdl,id]
N¢ Number of datapoints in calibration dataset Integer
T0 Average value of’ in calibration dataset Real (unit)
Output Variables

Systematic errors

EsystTm Systematic error fof;, Real (' unit)
EsystvTm Systematic error fovy Real (T2 unit)
Esystdelta Systematic error for Real (T unit)
Esystvdelta Systematic error fobx Real ("2 unit)

Standard errors

EstTm Standard error fofy, Real (T unit)
EstvTm Standard error fovy Real (2 unit)
Estdelta Standard error foA Real ( unit)
Estvdelta Standard error foba Real ("2 unit)

Potential systematic error related to the proxy model (95 % confidence level)

RETm Error bar forT;, Real (T unit)
REVTmM Error bar forVy Real ("2 unit)
REmdelta Error bar forA Real (T unit)
REvdelta Error bar forVa Real (Z"2 unit)

B of the proxy model allow a direct isometry between the influence on the estimation of the reconstruction uncertainty.

proxy space and the temperature space. The number of year#/y of the time series should be larger
than the total number of yeargs of the proxy records sam-
3.2 Atarget time series ple to allow adequate random sampling. Ms/Np ratio

lower than 0.2 would keep the average overlap rate in the

When using MoCo, a climate time series is first chosen thatandom samples under 10%. The length of the target time
will be used as the “target climate”. As will be discussed series should also be chosen according to the period the sam-

later, the characteristics of the target time series have a largele is expected to be representative of. For instance, if coral
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records are being used to study millennial scale variability of(e.g. mmol mot? for coral Sr/Ca). These three sources of
ENSO, atime series of about 1000 years should be used asumncertainty add in quadration because they are independent
target in the Monte Carlo simulation. Such a long time seriesand yield a month-to-month noise with normal distribution
could be either provided by climate models or by a very old N(0, 0,,) (6,2 =032 +02 +02). For every monthly value of
modern coral, or could be statistically synthesized. Instru-every time window, a random value is drawn, converted to
mental time series may be used when century-scale periodhe temperature scale, and added to the monthly SST value.
are studied from short-lived proxy archives such as one-yeaAll the stochastic noise sources are here considered to be nor-
long mollusk shells. Here, proxy records and target time se-mally distributed because they are expected to have symmet-
ries have a monthly resolution. ric distributions, and each is comprised of a large number of
stochastic processes.
3.3 Random sampling of target time series
3.4.3 Limitations of the biological archives
Once the target time series is identified, time windows
of Ny years are randomly drawn from itV represents the  The archives considered in this study, corals and mollusks,
sample size or the number of specimens that were analyzeglre living organisms. Their biology constrains their growth
to study the paleoclimately is the typical duration (num-  and thus the way in which they record the environment. Ev-
ber of years) of the proxy records. Two approximations areery species is defined by a range of physico-chemical tol-
made in this process: (1) the proxy record time resolution iserances beyond which they stop precipitating new carbon-
assumed to be monthly and constant; and (2) all specimengte skeletal material. If it is possible that the reconstructed

of the sample are assumed to have the same duration. variable may represent a growth limitation (like temperature
] . or salinity) the effect of these limits should be explored and
3.4 Signal perturbation quantified. In MoCo,Ts and7; represent temperature lim-

In this step. th d le §fwind . wrbed its above and under which precipitation of skeletal material
n this step, the random sample STwINdows 1S perturbe stops. The values beyond these threshold in a sample are

by stochastic noise and by archive-related limitations to SiIM-yiscarded.

ulate the effects of the real-world uncertainty sources. Over- . . . .
Some species systematically stop growing at a precise pe-

lap of the windows within a sample is possible but is gener- . . :
o . . . . riod of the year because their resources are exclusively ded-
ally limited since the size of the windows®/{ years) is much . : L ;
icated to reproduction. This implies a systematic growth

smaller than the target time series (Sect. 3.1). Every win-, : . i
dow in the sample is independently perturbed. The producPreak in the record that may affect the final calculated av

is a group ofv monthly windows of surrogate proxy-derived erages or variance. The typical monthly growth pattern of
SST. Specific details about the perturbations is given below.the species s defined in MoCo by parameters gbl to gb12

(Table 1).
Finally, growth breaks may occur randomly because of
storms, predation, or sickness. In the MoCo program, the

Corals and mollusks, as sessile organisms, record only Rarametergap allows the choice of occurrence of zero to
micro-scale environmental variability that may differ from 12 random growth breaks per year, of a monthly duration
the regional environmental variability. This effect is espe- €ach (Table 1).

cially significant in coastal environments where large spatial

heterogeneity can occur. In MoCo, this stochastic noise is o _

represented by a random parameter with a normal distribu# Sensitivity experiments

tion N(0, os). A random value is drawn for every specimen

and added uniformly to the climate variaileover the whole ~ Six sensitivity experiments were performed using the MoCo
time window. o should be estimated by field measurementsalgorithm to explore the influence of specific parameters on

3.4.1 Spatial heterogeneity

according to the studied geographic scale. the systematic and standard errors calculated by MoCo. In
every experiment, MoCo was used repeatedly with different
3.4.2 Monthly noise settings to produce a series of error values that were plot-

ted against the studied parameter. Experiments were thus
MoCo provides for three additional sources of month-to- designed to explore under different angles the influence of
month noise: (1) the geochemical analysis standard error(1l) the sample size (exp. 1, 2, and 6), (2) stochastic perturba-
(2) the weather scale variability during the life time of the tions (exp. 1, 2, and 3), (3) the biological limitations of the
specimen, and (3) biogenic carbonate heterogeneity at tharchive (exp. 4 and 5), and (4) the target time series (exp. 3,
pum scale of microsampling owing to vital effects and dia- 4, 5, and 6) on the systematic and standard errors when re-
genesis. These three types of noise follow here the normatonstructing the statistical characteristics of the target time
distributions N(Og4), N(O, ow) andN (0, o¢), respectively,  series using the estimatofs,, A, Vr, and Vo. To per-
where the standard deviations are expressed in the proxy unform these experiments we chose the illustrative case study
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Table 2. Characteristics of monthly SST time series used as target in sensitivity experiments. Only the first 100 years of the GCM
Niflol+2 SST time series are shown. The mean and variance of the annual,38md V), and the mean and variance of the seasonal
amplitude of SST A and V) were calculated for the complete series as described in Sect. 2.

Monthly SST target time series Tn Vi A Va

30 1 1950-2009 Nino1+2

20
230 08 6.2 08

NOAA, http://www.cpc.ncep.noaa.gov/data/indices/
1925-2002 Puerto Chicama
25

15
171 16 45 43

Quispe Arce (1993http://jisao.washington.edu/dasats/#timeseries
30  GCM Nifno1+2

20 268 03 34 038
Servonnat et al. (2010)

of temperature reconstructions in the Eastern Tropical PacifiServonnat et al., 2010). The target time series are presented
from mollusk shell oxygen isotopes. We used the empiricalin Table 2. The first 2 time series were used in all experi-
proxy model established by Grossmann and Ku (1986) forments except for the experiment 2 in which the GCM time
biogenic aragonite (Eq. 2), which is often considered as theseries was used (Table 3). The parameterization of the sensi-
definition of isotopic equilibrium for biogenic aragonite and tivity experiments are summarized in Table 3.

has been widely used for paleoclimate studies from arago-
nitic mollusk shells: 4.1 Experiment 1: influence of random sampling and

stochastic noise
T(°C) = 1973 — 434 (6*%0urag — %0 ).
18 18 - The first experiment was designed to test the effect of sam-
§7Oarag andé™*Oy are expressed in %o versus the V-PDB jing on the standard and systematic errors and compare it
and V-SMOW international standards respectively (Coplen,i, the effect of three stochastic noises that were turned off
1996). This proxy model is used herg for the case study. A.nyor on (Fig. 2). Realistic values were assignedsto(spa-
other proxy model could be used with MoCo. The biologi- {j5| heterogeneity) and,, (month-to-month noise) based on
cal characteristics of the species (growth breaks, temperatu_rﬁem measurements on the Peruvian coast. The effect of ran-

tolerance range, length of record...) are varied in the experiyom 1-month growth gaps was also tested (Table 3). In this
ments to evaluate their influence on the reconstruction Skillsexperiment shell records span one year and no biological

Three sea surface temperature (SST) time series Wergmitations were included.
used as “target” climatology: (1) the 1925-2002 monthly in
situ instrumental record from Puerto Chicama, Peru (Quisp&;.2  Experiment 2: should long or short records be
Arce, 1993, dataset available latp://jisao.washington.edu/ preferred?
datasets/#timeserie3, (2) the 1950-2009 monthly SST
time series of the Niol+2 region (NOAA Climate Pre- Experiment 2 was designed to explore the advantages and
diction Centerhttp://www.cpc.ncep.noaa.gov/data/indi¢es/ drawbacks of using short or long records for a reconstruction
and (3) the 1000-year long monthly SST time series of theconsidering a constant sample size (i.e. a fixed total hum-
Niflol+2 area from the preindustrial control simulation of ber of yearsNs), and realistic stochastic perturbations of
the IPSLCM4v2 coupled ocean atmosphere general circu-the proxy signal (Fig. 3). No biological limitations were in-
lation model (GCM) (for details about the simulation, see cluded. The record lengtiy ranged from 1 to 200 years
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Fig. 2. Results of experiment 1 with the 1950-200Fbdll+2 SST time series. Mean valuesf, Vr, A, andV, (black bold lines)
calculated from 5000 iterations of surrogate proxy simulations (MoCo algorithm), and compared to the true values (green) of the target time
series, versus the sample size (e.g. number of shells). Systematic errors are indicated by the difference between the mean calculated valt
and the true value. Dotted lines show the standard error intetdad § for an ideal proxy (no signal perturbation) versus the sample size.

Thin black lines show the standard error intervall) for surrogate proxies with stochastic noise. In the first three columns, the effects

of spatial variability &), monthly variability ¢,,), and the occurrence of random growth breaks (blue: 1 per year, black: 2 per year) are
investigated separately. Their effects are combined in the fourth column.

as would be expected for coral-based records, and the total.3 Experiment 3: influence of month-to-month noise
number of yeardVs =N - Ny recorded by the sample was
held constant at 200 years. No instrumental record was Ion?E
enough for this experiment so a 1000 year long pre-industrial
OA-GCM simulation of the Niol+2 SSTs was used as a
monthly target time series. Although this time series is not
realistic, it is useful for this sensitivity test.

xperiment 3 explored further the effect of the individual
data point quality degraded by the monthly noise, character-
ized byo,,, which includes the analytical error, weather scale
noise, and skeletal carbonate heterogeneity (Sect. 3.3.2).
Here, all perturbations were turned off and all parameters
were fixed except fos,,. In MoCo, this noise is added to
the SST time series as a random monthly series characterized
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Fig. 3. Results of experiment 2 with the 1950-20091dlL+2 SST time series. Standard error (left panel) and systematic error (right panel)
obtained for the reconstruction @},, Vr, A, andV using the MoCo algorithm, versus the length (humber of years) of the proxy record,
considering a constant number of 200 recorded years (from 200 one-year old shells to one 200-years old shell). Results using an ideal proxy
(dotted line) were compared to results involving stochastic noise (black line).

by a standard deviation of - g,,. In this experimenty - o, one-month growth break per year, and compared the effect
increased gradually from 0 t@, the standard deviation of of varying its month of occurrence. Simulations were per-
the instrumental SST time series. The error values obformed with samples of 20 one-year long shells, and with
tained from MoCo were plotted against the noise/signal ratiotwo different target time series.

R=a -0, /0. Simulations were performed with samples of

20 one-year long shells, and two different target time series4.5 Experiment 5: influence of temperature tolerance

(Fig. 4). range

4.4 Experiment 4: influence of a yearly growth break In experiment 5, we explored the effect of skeletal growth
temperature threshold on the errors of reconstruction of two
Experiment 4 was designed to test the effect on reconstructarget time series. In this experiment, an upper (lower) tem-
tion errors of yearly growth breaks always occurring at theperature threshold was imposed so that temperatures beyond
same period (such as spawning growth breaks) (Fig. 5). Allthat threshold were not recorded. The upper (lower) thresh-
other perturbations were turned off and all parameters exold value decreased from the maximum (minimum) temper-
ceptgbi were fixed. We only considered the case of a singleature Tmax(Tmin) Of the target time series t@nax— 10°C
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Table 3. Parameter setting in sensitivity experiments 1 to 5. Gray cells indicate varying parameters.

Parameters Exp.1 Exp.2 Exp. 3 Exp.4 Exp.5 Exp. 6
Parameters of Monte Carlo analyses
N 11030 1to20® 20 20 20 10to 30
Ny 1 1to200 1 1 1 1
Tg 100 100 100 100  Tmax—10to 100
Thax
Ty 0 0 0 0 Tmin to 0
Tin + 10°
gbi,i=1to 12 1 1 1 0/1 1 1
gap 0/1 1 0 0 0 1
os 0/1.5 15 0 0 0 15
o2 0/0.14 0.17 0to05 O 0 0.17
Niter 5000 5000 5000 5000 5000 5000

Target SST time series

1950-2009 Niol +2 X X X X
1950-2002 Puerto Chicama  x X X X X
GCM Nifo 1+2 X

ag2 :aﬁ +av2V + rrg; b N . Ny =200;° Tmax andTmi, are the maximum and minimum temperature values of the monthly SST time series used as a “target”.

(Tiin+10°C) by 0.1°C increments. The standard and sys- Standard Error Systematic Error
tematic error values calculated by MoCo under these condi- o °
tions were plotted against the threshold values (Fig. 6). All o ¢
other perturbations were turned off and all parameters except ) e °
Ts andl'; were fixed. Simulations were performed with sam- 02 2

ples of 20 one-year long shells. 1

4.6 Experiment 6: influence of the time series

variability s

4

Experiment 6 was designed to explore the effect on the stan- zvv_,vfﬂ/ .

dard errors of changes in the time series climate variabil- v, Se(Vy) ,
1

ity. We used MoCo with the Puerto Chicama time series and
11 additional time series with decreasing variability. These

additional time series were produced by removing EidNi % 05 1 0 05 1
and La Nia years from the Puerto Chicama time series. R

Since most of the interannual variability in this area is pro- ——— 1950-2009 Nifio1+2 SST

duced by ENSO, the values & and V5 decreased when — 1925-2002 Puerto Chicama SST

more EI Nfo or La Niha years were removed from the orig-

inal time series, while the other general characteristics of theFig. 4. Results of experiment 3. Standard error and systematic error
climate are conserved. The experiment was performed usfor AT and varQAT) versus the standard deviation of the monthly
ing 10, 20, and 30 shells of 1 year (Fig. 7). Realistic stochas-Stochastic perturbation. The effect was investigated using the 1950
tic perturbations were included but no biological temperature2009 Nfol+2 (thin line) and the 1925-2002 Puerto Chicama (bold
threshold (Table 3). line) time series.
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Fig. 5. Results of experiment 4. Standard and systematic errors for proxy reconstruclipn¥of, A, andV of Nifiol+2 SSTs (blue) and
Puerto Chicama SSTs (red), versus the month of systematic growth hiatuses.

5 Results T,, reconstruction due to the proxy model only4®.1°C
(95 % confidence level). It increases 4#8.8°C with the
5.1 Potential systematic error Nifiol+2 time seriesTf, =23.0°C). These uncertainties are

so large because the target temperature range is far from the

The MoCo program calculates the potential systematic errof€mperature calibration range. If the mean value of the tar-
bar (at 95 % confidence level) due to uncertainties in the lin-9€t time series was I'C, the uncertainty at 95 % confidence
ear proxy model calibration. This error is not estimated from |€vel would only be+0.4°C. The proxy model-related error
surrogate proxy records but is simply calculated from thePar for the mean seasonal amplituds) (vas also significant
equations of error propagation presented in Sect. 2.1. Thi€or Puerto Chicama£1.4°C) and for NRol+2 (£1.9°C)
error bar not only depends on the proxy model calibrationtiMe Series. This confl'rr'ns'the importance of local specific
dataset but also on the target climate. When calculating th&2libration works to minimize this type of errors. For the
mean temperature, for instance, the error bar increases witiiterannual variability variable¥r andVa, the relative un-
the difference between the reconstructed conditions and theertainty related to the proxy model is constant and equal to
calibration dataset mean value. The mean valyef Gross- ~ Eo/lo| (see Sect. 2.1), which is here 7%. These error bars
mann and Ku's (1986) dataset was 1005 When using the &€ different from the standard errors studied thereafter and

Puerto Chicama time serie,(=17.1°C), the error bar for  Should therefore be represented separately.
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Fig. 6. Results of experiment 5. Systematic errorsfgr, V7, A, andV due to growth temperature limits. The effects of inferior (superior)
temperature limits are shown on the left (right). In the upper panels are indicated the temperature ranges+@ S88Ts (blue) and Puerto
Chicama SSTs (red). The darker intervals show the range of temperature recorded by the archive lifiitddfbpanels) and’s (right
panel).

5.2 Random sampling (Exp. 1 and 2) In experiment 2, we test whether reconstructions from
long proxy records are more reliable than reconstructions
In experiment 1, the effect of the sample size is quantitativelyobtained from short proxy records considering a fixed total
estimated and compared to the effect of stochastic nejses number of years recordedNy is kept constant and equa|
os andgap (Fig. 2). The effect of sampling only is repre- to 200 in order to test only the influence of the record length
sented in Fig. 2 by the “ideal proxy” curves obtained with all in the sampling and not of the total sample size. For mean
the perturbations turned off. It appears that random samplingemperatureX,) reconstructions, a large sample set of short
is one of the main sources of the standard error. This standargecords provides a lower standard error than a few long
error decreases rapidly with the sample size and becomes refecords because local spatial temperature heterogeneity is
atively insignificant for7,, andA whenn reaches 20. Onthe petter averaged out with numerous specimens. In a similar
other hand, the standard error fof andVx due to sampling  way, the effect of spatial variability) tends to overwhelm
remains relatively significant up 9 = 30. The strong effect the climatic variability V; when the number of records is
of the sample size on the standard errors is also evidenced bymall, unless it is calculated from a single record (Fig. 3,
the results of experiment 6 (Fig. 7). N =1, Ny =200). Short or long records do not yield signif-
icantly different results for systematic errors except ¥or.
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Fig. 7. Results of experiment 6. Left panels: Linear relationships betWgeand V; standard errors obtained from MoCo versgsin

12 time series modified from the Puerto Chicama time series. Right panels: Linear relationships rebmelén, standard errors obtained

from MoCo versusV,. For every variable, a least-square linear correlation was obtained for reconstructions using 10 shells (squares),
20 shells (diamonds), and 30 shells (triangles).

Vr is overestimated when using short records because thihe annual amplitude and of its variancé/ (Fig. 2). Its
spatial variability adds up to the climatic variability, but this effect onA andV, reconstructions is further explored in ex-
effect decreases when using fewer longer records. Finally iperiment 3 (Fig. 4) using two different target SST time series.
appears that intermediate valuesifand Ny (here 20 10- The maximum value of,, corresponded to a noise/signal ra-
years old shells) would yield the best compromise for accu-tio R =1, which represents an extremely noisy proxy record.
racy and precision in the reconstructionf andVy. The  The systematic positive bias anestimate is~0.1°C when
reconstruction skills foA, andV are not significantly af- R =0.1 and increases to°€ whenR =0.8. For other pa-

fected by the record length in our experiment. rameters, the response depends on the target time series. For
R =0.4, the systematic error far, is about 0.8 (or 100 %)
5.3 Effects of stochastic noise (Exp. 1, 2, and 3) for the Nilo1+2 time series, while it is almost null for the

Puerto Chicama time series. Standard errors fgrolili2
Three kinds of stochastic perturbations (see Sect. 4) are a@STs are more sensitive to the monthly noise than those for
plied to the climate signal in experiments 1, 2, and 3 in orderPuerto Chicama SSTs. This can be explained by the higher
to produce surrogate climate proxy records. In the first experinterannual climate variability of Puerto Chicama (Table 2),
iment, their influence is observed separately and comparewhich makes the noise-related variability relatively smaller.
to ideal proxy reconstruction errors. As expected, spatial Random growth breaks have no significant impact on the
variability greatly affects the standard error of thgrecon-  standard error for any of the variable (Fig. 2). They induce
struction (Fig. 2) and this effect decreases wheimcreases a slight positive bias fol’r and a slight negative bias fa.
(Fig. 3). It also induces a systematic positive biasWerre- These biases are due to the time series properties since they
construction which also decreases wieincreases (Fig. 3).  are not observed when using the Puerto Chicama time series

In our case study, the monthly stochastic perturbation(not shown).

characterized by, involves monthly wates'80 variabil-
ity, carbonates'®0 analytic error, and shell carbonate het-
erogeneity. The monthly stochastic perturbation in experi-
ment 1 does not significantly affect thig, and Vr recon-
structions but it produces an unexpected overestimation of
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5.4 Effects of biological limitations (Exp. 4 and 5) 5.5 Influence of the target time series (Exp. 3, 4, 5,

and 6)
Growth hiatuses may occur every year at approximately the

same date for breeding or other reasons (Sato et al., 1999). lfihe results of experiments 3, 4, and 5 showed that the be-
experiment 4 (Fig. 5), we showed that the date of the growthhavior and values of standard and systematic errors strongly
break has little impact on standard errors but may producedepend on the climate time series used as a target in the
systematic errors. As expected, the mean annual temperaxperiment because they depend on the probability density
ture would be underestimated (overestimated) if the growthfunction of the temperature. The Puerto Chicama time series
breaks occur in the warmest (coldest) period. Here, the maxhas a much wider distribution than theffdil+2 time series
imum systematic error fof,,, was—0.3°C. The annual am- (Table 2) so that standard error due to random sampling is
plitude may be largely underestimated if the growth hiatusesmuch larger for Puerto Chicama (Fig. &}, =0; Fig. 5). In
occur during seasonal extrema. In our experiment the systhe experiments 3, 4, and 5, the error responses to perturba-
tematic bias forA reached-0.4°C, with a systematic growth tions were strongly modulated by the characteristics of the
break in March for the Nio1+2 SST time series. Proxy re- target time series. The same proxy perturbation may induce
constructions of variances were affected by growth hiatusestrong errors with one time series and be insignificant with
in a much less predictable way. For Puerto Chicama SSTsanother. For instance, the upper growth temperature limit had
maximum systematic errors reached about 8 %d/fpmwhen no significant effect on the reconstructionf andA until it
growth breaks occurred in September. The largest underestreached~6°C under the maximum value of the Puerto Chi-
mation (8 %) forV, as obtained for growth breaks occurring cama SST (Fig. 6) because of the highly asymmetric distribu-
in December, January, or February. This is becadséas tion of temperature due to El Ndo phenomenon at this loca-
strongly related to El Nio events whose maximum devel- tion. These results show that the choice of the target time se-
opment occurs during these months. Again, the error wasies when using MoCo to estimate paleoclimate reconstruc-
strongly dependent on the target time series. tion errors is a critical step. The standard and systematic er-
Temperature tolerance for skeletal growth is an especiallyror estimated with the IPSICM4v2 GCM Nifio1+2 time se-
important biological limitation that may induce significant ries are therefore not reliable because the seasonal cycle and
systematic biases in paleoclimate reconstructions. These bthe ENSO variability are not correctly represented (Table 2).
ases were explored with two different time series in experi- The experiment 6 showed that the standard error of all the
ment 5 (Fig. 6). While it is obvious that upper (lower) tem- proxy climate statistics increases almost linearly with the in-
perature limits cause underestimation (overestimation) of theéerannual variability in Puerto Chicam#?{ values ranges
mean temperaturg,,, and thatA is in both cases underes- from 0.81 to 0.98). The dependence, indicated by the slope
timated, our experiment permits calculation of a quantitativeof the linear regressions, is about 10 times lower for the stan-
estimate of this systematic biases. In experiment 5, the sysdard error of the reconstructet}, and A, than for the re-
tematic error responses to lower and upper limits were notonstructed varianc€y and V. The relationships are also
symmetrical. For Nio1+2, the effect of the lower temper- strongly affected by the sample size N. This result means
ature limit began to be significant fdf, and A when it that the reconstruction of past ENSO activity indicated by
reached~1.5°C above the time series minimum tempera- the variance has an error bar that varies with the ENSO ac-
ture, whereas the effect of the upper limit began to be sig-ivity itself.
nificant when it reached-3°C under the time series maxi-
mum temperature. The biases producedWgrand Va re-
constructions remained relatively low foridil+2 while, for
Puerto Chicama, they rapidly became significant and had un. - . .
) . o Iy . 6.1 Implications for paleoclimate error representation
predictable profiles, switching from positive to negative val-

ues (Fig. 6), especially for the lower temperature limit. This 1 a6 types of errors have been distinguished in this study
is due to the particular variability of coastal SSTs in Peruya; should all be treated distinctively. Systematic errors
characterized by a weak annual cycle~e$°C periodically 416 meant to be corrected for when detected and quantified,
perturb_ed by very strong El No anomalies that can reach up 544 thus are not supposed to be represented. Large modern
t0 9°C in austral summer. Therefore, when the lower temper-y,aqets are required to detect and calculate a robust estimate
ature threshold reaches 4 ° C above the minimum SST, mOs§¢ 5 pias in a proxy climate reconstruction. The number of
of the annual cycle is not recorded, so that the variability ng4erm coral records in a location is always small because of
is restricted to the highly irregular EI Ro-related summer jimiteq specimen availability and/or analytical costs. MoCo
anomalies. On the other side, the upper threshold cuts thg,,\iges an alternative way to detect and quantify biases and
largest EI Nfo anomalies and systematically induces an un-, s improve the accuracy of coral and mollusk reconstruc-
derestimation of the internannual variability or V. tions provided the parameterization and the target time series
are realistic in the specific context of the study.

6 Discussion
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The standard error is due to sampling, stochasticity atunpredictable systematic bias (Figs. 4-6). Beyond the find-
different time and space scale, and the biological limita-ings of error sources for coral and mollusk-based recon-
tions that have been explored in our experiments. This erstructions, our study demonstrates that numerical simulations
ror bar exists even if the proxy model is ideal. The stan-based on Monte Carlo analyses are a simple and powerful ap-
dard errors estimated for different shell or coral samples argroach to improve the proxy calibration process. A thorough
independent. understanding of the proxy record errors is essential for the

The errors related to the proxy model calculated in differ- interpretation of paleoclimate records from proxies derived
ent samples of the same type of archive are not independerfitom accretionary skeleton geochemistry.
since they originate from the same proxy model. For this
reason, this type of error is fundamentally different from the 6.3 Quantifying errors: contribution and limitations
standard error.

Depending on the context, these two errors may be comQuantifying errors in paleoclimate reconstructions is essen-
bined or represented separately. Generally, if estimating th&al for accurate and meaningful proxy-proxy and proxy-
error bar for a single period or event, both errors may bemodel comparisons. In the case of mollusks and corals,
added in quadrature. Nurhati et al. (2009, 2011) combinednodern datasets are necessarily limited by costs and mate-
the analytical standard error with the uncertainty related tofial availability, which limits statistical techniques to accu-
the proxy calibration to estimate the error bar of a recon-rately estimate reconstruction uncertainties. The MoCo al-
structed temperature trend through the 20th century. Howdorithm was designed to provide quantitative estimates of the
ever, if several successive samples are analyzed to studjiree kinds of errors identified in Sect. 2.1 for coral and mol-
long-term climate variability, the standard error and the po-lusk based climate reconstructions. It implies that the linear
tential systematic error may be represented separately in p42f0xy model has been previously validated. The accuracy of
leoclimate results as in Céret al. (2012) for a more com- the systematic and standard error quantification using MoCo

plete representation of the reconstruction uncertainty. may be affected by several limitations, as we now describe.
The model for the paleoclimate reconstruction process im-
6.2 Understanding the proxy plies simplifications including: (1) proxy records in a sample

are considered of equal duration and of constant monthly res-

A sensor-specific precision of reconstruction is often at-olution, and (2) stochastic noise was represented by station-
tributed to the paleoclimate proxy estimates (for exampleary normal distributions. Furthermore, the parameterization
Beck et al., 1992; Anand et al., 2003). Our numerical ex-of MoCo by the user requires field measurements and knowl-
periments simulating the process of paleoclimate reconstrucedge of the organism ecology and growth, characterized by
tion from coral or mollusk shell geochemistry show that the fixed values that have their own uncertainty and variability.
error cannot be considered a constant value characteristidncertainties and non-stationarity a3, o,,,, T; or Ts esti-
of the proxy. Stochastic uncertainties and biological limita- mates may affect the quantification of errors.
tions significantly affect the resulting climate reconstruction, The standard and systematic errors calculated by MoCo
in different manners depending on the studied statisfigs (  are not true errors but only estimates from simulations based
Vr, A, Va) and on the studied location. General qualitative on the assumption that the temperature distribution of the pa-
relationships between the perturbations, the target time seridgoclimate is similar to the distribution of the time series used
characteristics and the reconstruction skills are described iim the simulation. The main limitation is thus related to the
the result section. However, standard and systematic errorson-stationarity of climate, although this issue is not pecu-
are so sensitive to the noise parameterization and the targdiar to our method but is general in paleoclimatology since
time series that we recommend reproducing the sensitivity olincertainties are necessarily assessed in modern conditions.
experiments described here with a parameterization specifiBy definition, the true target climate is unknown, and neces-
to the study in order to get a quantitative understanding ofsarily different from the target time series used in the MoCo
the proxy records. simulation. Therefore, the estimation of the standard and sys-

The results of the experiments yield an illustrative exam-tematic errors may be biased by the difference of variability
ple of the range of variations that climate reconstruction er-between the true climate and the target time series. In the
rors may undergo, and bring to light their complexity. Al- selection process for the simulation target time series, it is
though classic calibration-validation techniques are usefurecommended to seek the most realistic time series.
for a first approximation test of corals and mollusks reli- However, this bias can be minimized for the standard er-
ability as archives, they are not well-suited for identifying rors. Experiment 6 showed that in a defined location, the
the causes of reconstruction errors, estimating their relativestandard error is linearly correlated to the interannual vari-
contribution, or understanding how errors accumulate from aability through a relationship that is strongly modulated by
multitude of sources. the conditions of the reconstructions and especially the sam-

While the influences of several sources of error were quali-ple size. Therefore, MoCo should be used repeatedly as in
tatively predictable, some perturbations produced significanexperiment 6 to estimate the linear relationships specific to
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the paleoclimate study. The standard error of a proxy re- In many environments, calcium carbonat€O variations
construction can then be calculated using this relationshipyield a mixed signal between water temperature and water
and the reconstructed valuesf and V. This method is 8180 variations related to freshwater input. Changes in the
valid if we consider that in a defined location, the interannualclimate variability are thus estimated by &0 variability

or decadal variability may change significantly through time in the fossil coral compared to modern corals (Tudhope et al.,
but the larger climatic features responsible for these modula2001). Under such conditions, the uncertainties of the proxy
tions remain similar, at least on multi-millennial timescales. reconstructions should be evaluated in the space of the proxy
For example, in the tropical Pacific, the characteristics of thevariable §180cart), which would require very little modifica-
climate variability can be considered conservative in a de-tions of the MoCo since the climate and the proxy space are
fined location and its amplitude is modulated by the activity linearly linked by the proxy regression model (Sect. 3.1). A
of ENSO and the Pacific Decadal Oscillation (PDO). There-target time series @804, Would be required, that could be
fore, based on experiment 6, iy =3°C? is reconstructed  either provided by a very long modern coral of the same area
in the Peruvian coast from 20 1-year long mollusk shells, theor calculated from temperature and waiéfO time series.
linear relationship estimated in experiment 6 (Fig. 7) yields aThis approach, referred to as forward modelling, has been
value of standard error of 0°€2 for A and 1.3 C? for V. applied to corals by Thompson et al. (2011) and a variety
This method uses the information of the reconstruction itselfof proxies, such as planktonic foraminifes¥0 (Schmidit,

to narrow the potential biases due to climate non-stationarityl999), or stalagmité'®0 (Baker and Bradley, 2010). The
but is not perfect because the reconstruction is necessarilgtrength of forward modelling that incorporates Monte Carlo
not exact and because it assumes the stationarity of the varanalyses for paleoclimate proxy calibration was showed by
ability vs. standard error relationship. Evans (2007) through a case study with wood cellul38e.

Very few coral and mollusk paleoclimate studies include aTo our knowledge it has never been applied to corals or mol-
proper error calculation. One of the most complete attempiusks. MoCo-type algorithms would also be useful for ex-
was made by Abram et al. (2009) who estimated the stanploring the uncertainties of salinity or wai#f?O reconstruc-
dard error of mean temperatures estimated from Sr/Ca coraions based on the combination of cosafO and Sr/Ca ra-
records combining the variability between several coralstios, since the perturbations of both proxies add with differ-
from the same area (which corresponds to the paramgter ent types of perturbations and propagate in an unpredictable
in our study) and a measured standard error related to analytivay.
cal precision and variability within corals (which is similarto ~ This study does not apply to time series reconstructions
our parametes,,). Although a large part of the standard er- used to assess temporal changes in variability. Further work
ror is due to these parameters, MoCo represents a significamt a similar methodological framework is needed to study the
improvement since it involves additional error sources for aeffect of age uncertainty, stochasticity and proxy biological
more realistic estimate. It also offers the possibility to quan-limitations on the correlation between the reconstructed time
titatively estimate the influence of individual error sources. series and target time series.

The improvements of this method are: (1) the identification

of 3 independent categories of errors, (2) the quantification

of the standard error due to uncertainty sources that were sé Conclusions

far not considered, and (3) the identification and estimation

of systematic biases that would not otherwise be detected beReconstructions of paleoclimate statistics (annual mean,
cause of the limited modern dataset. It thus offers the possimean seasonal amplitude and interannual variability) from
bility of correcting the proxy-based climate from these biasescoral and mollusk geochemistry were so far performed ei-

for a more accurate reconstruction. ther without quantified error bars or with error estimates that
do not involve all the sources of uncertainty. We defined
6.4 Extending applications here the error bar due to the proxy calibration as a poten-

tial systematic error, and defined two additional and inde-
Sensitivity experiments were based on an illustrative casgyendent categories of errors: the standard error and the sys-
study of SST reconstruction from mollusk or co&O in  tematic error that build from multiple sources and are po-
an environment where watét®0 is reasonably constrained. tentially larger than those estimated from empirical calibra-
These experiment Could be Similal‘ly performed to imprOVetion scatter. We provided an Open access program, MOCO,
the understanding of other proxies including temperature re+, siiable fork and Matla® (Supplement and also Attp:

constructions from Sr/Ca ratios in corals (Beck et al., 1992\ isem.univ-montp2.fricartenatthie), that calculates
De Villiers et al., 1994; Marshall and McCulloch, 2002) and (he error related to the proxy linear model, and estimate

sclerosponges (Swart et al., 2002; Rosenheim et al.,, 2004)yit, 54 Monte Carlo simulation the systematic biases, and

Mg/Ca ratios irllcoralling algae (Kamenos et al., 2008), andie standard errors for the reconstruction of climate statistics
pH from corals™"B (Rollion-Bard et al., 2011). from mollusks and corals. MoCo involves realistic surrogate
proxy-derived climate records, and was designed to improve
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