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Abstract. The study of weather extremes and their impacts,
such as weather-related disasters, plays an important role in
research of climate change. Due to the great societal con-
sequences of extremes – historically, now and in the future
– the peer-reviewed literature on this theme has been grow-
ing enormously since the 1980s. Data sources have a wide
origin, from century-long climate reconstructions from tree
rings to relatively short (30 to 60 yr) databases with disaster
statistics and human impacts.

When scanning peer-reviewed literature on weather ex-
tremes and its impacts, it is noticeable that many different
methods are used to make inferences. However, discussions
on these methods are rare. Such discussions are important
since a particular methodological choice might substantially
influence the inferences made. A calculation of a return pe-
riod of once in 500 yr, based on a normal distribution will
deviate from that based on a Gumbel distribution. And the
particular choice between a linear or a flexible trend model
might influence inferences as well.

In this article, a concise overview of statistical methods
applied in the field of weather extremes and weather-related
disasters is given. Methods have been evaluated as to station-
arity assumptions, the choice for specific probability density
functions (PDFs) and the availability of uncertainty infor-
mation. As for stationarity assumptions, the outcome was
that good testing is essential. Inferences on extremes may
be wrong if data are assumed stationary while they are not.
The same holds for the block-stationarity assumption. As
for PDF choices it was found that often more than one PDF
shape fits to the same data. From a simulation study the con-
clusion can be drawn that both the generalized extreme value

(GEV) distribution and the log-normal PDF fit very well to
a variety of indicators. The application of the normal and
Gumbel distributions is more limited. As for uncertainty, it
is advisable to test conclusions on extremes for assumptions
underlying the modelling approach. Finally, it can be con-
cluded that the coupling of individual extremes or disasters
to climate change should be avoided.

1 Introduction

The study of weather extremes, and impacts thereof, plays
an important role in climate-change research. Due to the
great societal consequences of extremes – historically, now
and in the future – the peer-reviewed literature on this theme
has been growing enormously since the important findings
of Mearns et al. (1984) and Wigley (1985). These au-
thors showed that small shifts in the mean and variance of
a weather or climate variable might lead to a strong nonlin-
ear shift in the frequency of extreme values of that variable.
Examples of recent publications on extremes are Trenberth
and Jones (2007, Sect. 3.8), Gamble et al. (2008), Karl et
al. (2008) and IPCC-SREX (2011). Furthermore, the lit-
erature shows that inferences on extremes can be based on
all types of meteorological/climatological information: doc-
umentary evidence and paleo-climatological proxies (Batti-
paglia et al., 2010; Stoffel et al., 2010; Büntgen et al., 2011),
instrumental data (Alexander et al., 2006; Klein Tank et
al., 2006), disaster statistics (Pielke, 2006; Bouwer, 2011,
Guha-Sapir et al., 2011) and model-generated climate data
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(Kharin and Zwiers, 2005; Tebaldi et al., 2006; Orlowsky
and Seneviratne, 2012).

In scanning the peer-reviewed literature on weather ex-
tremes and impacts, we noticed that many different methods
are used to make inferences on extremes. However, discus-
sions on methods are rare. We name Katz et al. (2002) in
the field of hydrology and Katz (2010) in the field of climate
change research. Zhang at al. (2004) study the detection of
three types of trends in extreme values, based on Monte Carlo
simulations. A third example is that of Wigley (2009) and
Cooley (2009), where the use of linear trends and normal
distributions (Wigley) is opposed to the use of extreme value
theory with time-varying parameters (Cooley). Clearly, the
calculation of a return period of, say, once in 500 yr, based on
a normal distribution will deviate from that based on a gen-
eralized extreme value (GEV) distribution. In other words,
the specific choice of methods (here the shape of probability
density functions or PDFs in short) might influence the infer-
ences made on these extremes. Another example is the par-
ticular choice of a trend model to highlight temporal patterns
in extreme-weather indicators. Conclusions based on an OLS
straight line might differ from those made by more flexible
trends. And the inclusion or exclusion of uncertainty infor-
mation may influence inferences. A rising trend or increasing
return periods are not necessarily statistically significant.

In this article, we will review the statistical methods used
in the peer-reviewed literature. First, we will give a concise
overview of methods applied. These methods deal with the
computation of return periods of extremes, chances of cross-
ing a pre-defined high (or low) threshold, the estimation of a
trend in weather indicators (number of warm and cold days,
annual maximum of 1-day/5-day precipitation, global num-
ber of floods, etc.) or the comparison of PDFs over different
periods in time.

Next to this overview we will discuss a number of method-
ological aspects. We will discuss (i) the assumption of a sta-
tionary climate when making inferences on extremes, (ii) the
choice of (extreme value) probability distributions for the
data at hand, (iii) the availability of uncertainty information
and (iv) the coupling of weather or disaster statistics to cli-
mate change. As for point (iv) we will pay attention to meth-
ods in the peer-reviewed literature and to the way these re-
sults are assessed by the Intergovernmental Panel on Climate
Change (IPCC).

There are two aspects of weather extremes and their im-
pacts (disasters) which willnotbe dealt with in this methods
review. The first aspect concerns the quality of the data, and
more specifically, methods for testing the quality of data and
correcting them, if necessary. For homogeneity issues the
reader is referred to Aguilar et al. (2003) and Klein Tank et
al. (2009). For the reliability of disaster statistics please refer
to Gall et al. (2009).

The second methodological aspect not dealt with, is that
of methods for detecting anthropogenic influences in climate
or disaster data. For detection studies in relation to extremes

please refer to Hegerl and Zwiers (2007), Zwiers et al. (2011)
and Min et al. (2011). For a review on detecting climate
change influences in disaster trends, the reader is referred
to Höppe and Pielke (2006) and Bouwer (2011). We fur-
ther note that we will use the term “climate change” in the
general sense, thus, climate change both due to natural and
anthropogenic influences (unless denoted otherwise).

The contents of this article are as follows. In Sect. 2, we
will give a concise description of how inferences on extremes
are made in the peer-reviewed literature. Then, we will dis-
cuss these methods in Sect. 3 through 6 with respect to four
aspects: the assumption of a stationary climate (Sect. 3), as-
sumptions on probability distributions (Sect. 4), the use of
uncertainty information (Sect. 5) and the coupling of ex-
tremes to climate change (Sect. 6). Conclusions are given
in Sect. 7. A number of statements throughout this article
will be illustrated by an analysis of annual maxima of daily
maximum temperatures for station De Bilt in the Netherlands
(TXX t ; Figs. 1, 4 and 6).

2 Methods for making inferences on extreme events and
disasters

2.1 Preliminaries

There is a diverse use of terminology in the fields of cli-
mate change research and disaster risk management. Terms
used in the literature comprise weather or climate extremes,
weather or climate extreme events, weather or climate indica-
tors, weather or climate extreme indicators and indices of ex-
tremes. As for disasters, any type of weather-related disasters
can be analysed (floods, droughts, heat waves, hurricanes,
etc.). Mostly, three types of disaster burden are presented in
the literature: economic losses, the number of people killed
and the number of people affected. For details see Guha-
Sapir et al. (2011). The general term that is used throughout
this article, is “extreme indicator”.

Extreme indicators can be constructed from underlying
data (mostly daily data) by computing block extremes or
threshold extremes. Block extremes are gained by taking
highest (or lowest) values in a block of observations. In
most cases seasonal or annual blocks are taken. Examples
are the annual maximum value of daily maximum temper-
atures (TXXt ), the annual maximum value of one- or five-
day precipitation totals (RX1Dt , RX5Dt ) or the annual max-
imum of river discharges. Another block value is gained by
taking the r-largest value. For example, one can choose the 7-
largest value from annual daily data (or, in other words, take
the 98 percentile). As for disaster burden indicators block
indicators are generally chosen to be blocksums(e.g. the an-
nual number of flood disasters or annual global economic
losses due to weather-related disasters). An overview of
extreme indicators, as well as their definition and notation,
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can be found in Alexander et al. (2006) or the ECA website
http://eca.knmi.nl/indicesextremes/indicesdictionary.php.

Block extremes are often modelled by applying the gen-
eralized extreme value (GEV) distribution. Also normal or
log-normal distribution can be chosen. For a description of
these methods please see Coles (2001, Chapters 3 and 6) and
Katz et al. (2002), and for a description in the context of
Bayesian statistics see Renard et al. (2006).

Threshold extremes, also denoted as peaks over thresh-
old (POT), are gained by taking exceedances of a predefined
threshold. Here, one can be interested in the number of ex-
ceedances of that threshold, as in the number of summer days
or tropical nights, or in the positive differences between data
within a block and the threshold chosen (the excesses). Gen-
erally, excess variables are modelled by applying the gener-
alized Pareto distribution (GPD). For a description of these
methods take note of Coles (2001, Chapters 4 and 5), Katz et
al. (2002) and Coelho et al. (2008). For a description in the
context of Bayesian statistics please see Renard et al. (2006).
The frequency of exceedances may be analysed by a non-
homogeneous Poisson process (Caires et al., 2006) or by a
Poisson regression model (Villarini et al., 2011).

2.2 Stationarity and trend methods

At the basis of any analysis of extreme indicators lies the es-
timation of trends1. Trends play a key role in judging if the
data at hand arestationary, i.e. if the data follow a stochastic
process for which the PDF does not change when shifted in
time (or space). Consequently, parameters such as the mean
and variance do not change over time (or position) for a sta-
tionary process. Loosely formulated, stationarity means that
“the data” are stable over time: no trends, breaks, shocks,
ramps or changes in variance over time. Methods for as-
sessing stationarity are given by Diermanse et al. (2010) and
Villarini et al. (2011) and references therein.

Once a choice for stationarity has been made, trends can
be estimated as such or as part of a specific non-stationary
time-series approach. Examples of the latter approach are
(i) making the location parameter of a GEV distribution time-
varying in a certain pre-defined way (e.g. Katz et al., 2002),
or (ii) making the threshold in a GPD analysis time-varying
(e.g. Coelho et al., 2008).

1Harvey (2006) gives two definitions for “trend”. In much of
the statistical literature a trend is conceived of as that part of a se-
ries which changes relatively slowly (smoothly) over time. Viewed
in terms ofprediction, a trend is that part of the series which, when
extrapolated, gives the clearest indication of the future long-term
movements in the series. In many situations these definitions will
overlap. But not in all situations. In case of data following a
random walk, the latter trend definition does not lead to a smooth
curve. Typical examples of the first definition are splines, LOWESS
smoothers and Binomial filters. Typical example of the second defi-
nition is the IRW trend model in combination with the Kalman filter
(examples shown in Figs. 1, 4 and 6).

The choice of a specific trend model is not a trivial
one. If we scan the climate literature on trend methods,
an enormous amount of models arises. We found the fol-
lowing trend models or groups of models (without being
complete): low pass filters (various binomial weights; with
or without end point estimates), ARIMA models and vari-
ations (SARIMA, GARMA, ARFIMA), linear trend with
OLS, kernel smoothers, splines, the resistant (RES) method,
Restricted Maximum Likelihood AR(1) based linear trends,
trends in rare events by logistic regression, Bayesian trend
models, simple Moving Averages, neural networks, Struc-
tural Time-series Models (STMs), smooth transition models,
Multiple Regression models with higher order polynomials,
exponential smoothing, Mann-Kendall tests for monotonic
trends (with or without correction for serial correlations),
trend tests against long-memory time series, robust regres-
sion trend lines (MM or LTS regression), Seidel-Lanzante
trends incorporating abrupt changes, wavelets, Singular
Spectrum Analysis (SSA), LOESS and LOWESS smoothing,
Shiyatov corridor methods, Holmes double-detrending meth-
ods, piecewise linear fitting, Students t-test on sub-periods in
time, extreme value theory with a time-varying location pa-
rameter and, last not but least, some form of expert judgment
(drawing a trend “by hand”). See Mills (2010) and references
therein for a discussion.

This long list of trend approaches holds for trends in cli-
mate data in general. However, the number of trend models
applied to extreme indicators, appears to be much more lim-
ited. The trend model almost exclusively applied, is the OLS
straight line. This model has the advantage of being simple
and generating uncertainty information for any trend differ-
ence [µt - µs ] (indices “t” and “s” are arbitrary time points
within the sample period)2. Examples of OLS trend fitting
are given by Brown et al. (2010). They estimate trends in 17
temperature and 10 precipitation indices (all for extremes)
at 40 stations. Their sample period is 1870–2005. Further-
more, Brown et al. (2010) analyse the sensitivity of their re-
sults with respect to the linearity assumption. To do so, they
splitted the sample period in two parts of equal length and
estimated the OLS trends on these two sub-periods.

Other examples of OLS linear trend fits can be found in
Klein Tank et al. (2006) and Alexander (2006), albeit that the
significance of the trend slope is estimated differently. Klein
Tank et al. (2006) apply the Student’s t-test, while Alexander
et al. (2006) apply Kendall’s tau-based slope estimator along
with a correction for serial correlation according to a study
of Wang and Swail (2001). Karl et al. (2008, Appendix A)

2The OLS regression model reads as yt = µt + εt = a + b*t +εt

, with “a” the intercept, “b” the slope of the regression line andεt

a noise process. Now, the variance of any trend differential [µt -
µs ] follows from var(µt −µs) = var(b̂ * (t-s) ) = (t-s)2 * var(b̂).
Note 1: this variance estimate is only unbiased if the residuals are
normally distributed and not serially correlated. Note 2: some au-
thors estimatêb using Sen’s estimator. This estimator is more robust
against outliers.
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choose linear trend estimation in combination with ARIMA
models for the residuals. This is another way of correcting
for serial correlation.

In the field ofdisaster studiesOLS trends are the dominant
method, albeit that the original data are log-transformed in
most cases. See Pielke (2006, Figs. 2 and 3) or Munich Re
(2011, p. 47) for examples. Another trend method in this
field is the moving average trend model where the flexibility
is influenced by the length of the averaging window chosen.
See Pielke (2006, Fig. 5) for an example. We only found
one example where the GPD distribution with time-varying
parameters was applied to economic loss data due to floods
in the USA (Katz, 2002).

Occasionally, other trend approaches for extreme indica-
tors are reported. Frei and Schär (2001) apply logistic re-
gression to time series of very rare precipitation events in
the Alpine region of Switzerland. They include a quantifica-
tion of the potential/limitation to discriminate a trend from
the stochastic fluctuations in these records. Visser (2005)
applies sub-models from the class of STMs, in combination
with the Kalman filter, to estimate trends and uncertainty in
weather indicators where trends may be flexible. The mea-
sure of flexibility is estimated by ML optimization. Klein
Tank et al. (2006) use the LOWESS smoother to highlight
trend patterns in extreme weather indicators (their Figs. 3, 4,
6 and 7). Tebaldi et al. (2006) do not apply any specific trend
model but show increases or decreases over two distant 20-yr
periods: indicator differences between 2080–2099 and 1980–
1999, and between 1980–1999 and 1900–1919 (their Figs. 3
and 4). Hu et al. (2012) apply Mann-Kendall tests with cor-
rection for serial correlation (no actual trend estimated in
this approach).

Finally, some authors acknowledge that the use of a spe-
cific trend model, along with uncertainty analysis, may lead
to deviating inferences on (significant) trend changes. There-
fore, they chose to evaluate trends usingmore than one trend
model. For example, Moberg and Jones apply two differ-
ent trend models to the same data: the OLS trend model and
the resistant (RES) model. Subsequently, they evaluate all
their results with respect to these two trend models. Even
more methods are evaluated by Young et al. (2011). They es-
timate five different trend models to 23-yr wind speed and
wave height data and evaluate uncertainty information for
each model (their supporting material). We note that the
application of more than one trend model to the same data
has been published more often (not specifically for the eval-
uation of extremes). The reader is referred to Harvey and
Mills (2003) and to Mills (2010) with references therein.

2.3 Return periods

If a particular analysis deals with extreme indicators, based
on block extremes, return periods or the chance for cross-
ing a pre-defined threshold can be calculated from the spe-
cific PDF chosen. These chancespt , with t some time point

within the sample period, follow directly from the PDF. Av-
erage return periodsRt follow simply by taking the inverse
of pt . An example of return periods is given in Fig. 4 of
IPCC-SREX (2011).

A variant is the so-calledx-year return period, with x
some fixed number (often 20 in the literature). If we de-
note an extreme indicator byIt , a 20-yr return period, de-
noted asI20

t , stands for an indicator value in yeart which
is crossed once in 20 yr, on average. In fact,I20

t stands for
the 95 percentile of the PDF at hand. Confidence limits for
such extreme percentiles can be computed by standard theory
(e.g. Serinaldi, 2009).

An example illustrates the calculation of return periods.
Suppose we are interested in the following extreme indica-
tor: annual extreme temperatures TXXt , with t in years. For
the Netherlands we constructed a time series for this indi-
cator over the period 1901–2010 (station De Bilt). Homo-
geneity tests showed a large discontinuity in 1950, the year
where the type of temperature screen changed. Therefore, we
decided to limit analyses to the period 1951–2010. Other ho-
mogeneity tests were satisfactory (Visser, 2007). The TXXt

series is shown in Fig. 1.
The upper panel shows the data along with an Integrated

Random Walk (IRW) trend model and 95 % confidence lim-
its (Visser, 2004; Visser and Petersen, 2009). Tests showed
the residuals (or in Kalman filter terms: innovations or
one-step-ahead prediction errors) to be normally distributed.
These normal distributions are shown in the lower panel
for the years 1951, 1980 and 2010. The panel shows how
chances (p35

t ) of crossing a certain threshold, here 35◦C,
are changing for these three distributions (the yellow areas).
For this example we findp35

1951= 0.002, p35
1980= 0.02 and

p35
2010= 0.18. Average return periods are gained by taking the

inverse ofp35
t , yielding return periodsR35

t of once in 420, 62
and 5.6 yr, respectively. For the calculation of annual 20-yr
return periods (TXX20

t ) we choose the yellow area such that
it covers 5 % of right-hand tail of the normal distributions,
for all timest . We find the temperature thresholds 32.8, 34.1
and 36.4◦C, respectively (cf. Fig. 6).

2.4 Comparing PDFs

Next to trends and return periods one may make inferences
on extreme indicators by computing PDFs for distinct peri-
ods of time. These PDFs can be derived from historic data,
or from GCM calculations (historic or future periods). Dif-
ferences between PDFs can be discussed qualitatively, as in
Alexander et al. (2006) and Ballester et al. (2010), or by ap-
plying statistical tests (t-test for means, F-test for variances,
Kolmogorov-Smirnov test for any difference in PDF shape,
etc.). Non-parametric techniques have been summarized by
Ferro et al. (2005).
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Fig. 1. Example of an extreme weather indicator, the TXXt series for station De Bilt in the Netherlands. The upper panel shows the annual
data, along with an IRW trend fit (µt ) and 95 % confidence limits. The lower panel shows three normal distributions corresponding to the
years 1951, 1980 and 2010. The yellow area illustrates the chance of crossing the 35◦C threshold. Clearly, the area for the years 1951 and
1980 is much smaller, a phenomenon first shown by Mearns et al. (1984) and Wigley (1985). A return period is calculated as the inverse of
these chances. For each of the three normal distributions one could calculate the temperature which is exceeded once in x years, the x-year
return periods. For statistical details see Von Storch and Zwiers (1999, Ch. 2). Chances and return periods are further illustrated in Fig. 6.

2.5 Software

Standard statistical techniques mentioned in this Section are
available in software packages such as SPSS, S-PLUS, SAS
or STATA. These packages also contain a wide range of
trend models (OLS straight lines and polynomials, ARIMA
models, robust trend models (MM or LTS), and a range
of smoothing filters (splines, Kernel smoothers, LOESS
smoothers, Supersmoothers).

For the estimation of GEV models and POT-GPD distri-
butions (stationary or non-stationary) we refer to Stephen-
son and Gilleland (2006) and Gilleland and Katz (2011).
On their website a wide range of software is given, based

on extreme value theory (EVT):http://www.ral.ucar.edu/
\simericg/softextreme.php. For a software package based on
the book of Coles (2001) the reader to the extRemes soft-
ware, written inR: http://cran.r-project.org/web/packages/
extRemes/extRemes.pdf.

The software for estimating structural time series mod-
els (STMs), as applied in this article, is freely available
from the first author (H. Visser). Other software on STMs
is the package STAMP. For information please seehttp:
//stamp-software.com/.
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2.6 Methods in the literature

In this Section, we will give a concise overview of the recent
literature on extremes and disasters. In doing so, we have
categorized the literature for the stationarity assumptions
that researchers have made. Besides stationarity and non-
stationarity we will give examples for block-stationarity, that
is a period or “block” of a certain length, typically between
20 to 30 yr, where climate is assumed to be stationary.

2.6.1 Assuming a stationary climate

Non-statistical approaches

Extreme events or disasters can be analysed without as-
suming statistical properties. The method employed is
simply by enumerating a number of record-breaking val-
ues. These records can be discussed with respect to
their spreading over time. Ifx of the highest values oc-
curred in the past decade, this might give an indication
of a shifting climate. The method of enumeration is of-
ten applied in communication to the media. An example
is the annually recurring discussions on the extremity of
global mean temperatures. For example, see the NOAA
and NASA GISS websiteshttp://www.noaanews.noaa.gov/
stories2011/20110112globalstats.htmlandhttp://www.giss.
nasa.gov/research/news/20110113/, discussing the extremity
of the 2010 value.

In the peer-reviewed literature enumeration is found only
incidentally. For instance, Prior and Kendon (2011) stud-
ied the UK winter of 2009/2010 in relation to the severity
of winters over the last 100 yr. They give an overview of
coldness rankings for monthly and seasonal average temper-
atures, as well as rankings for the number of days with snow.
Furthermore, Battipaglia et al. (2010) study temperature ex-
tremes in Central Europe reconstructed from tree-ring den-
sity measurements and documentary evidence. Their tables
and graphs show a list of warm and cold summers over the
past five centuries.

In the grey literature (reports) many examples of enumer-
ation can be found. Buisman (2011) gives a detailed descrip-
tion of weather extremes and disasters, for a large part based
on documentary information in the area of the Netherlands.
His enumeration covers the period from the Middle Ages up
to the present. Enumerations of disasters in recent decades
are found in, e.g. WHO (2011) and Munich Re (2011).

Statistical approach assuming no specific PDF

Zorita et al. (2008) consider the likelihood that the ob-
served recent clustering of warm record-breaking mean
temperatures at global, regional and local scales may oc-
cur by chance in a stationary climate. They conclude this
probability to be very low (under two different hypotheses).

Assuming GEV distributions

Wehner (2010) fits GEV distributions to pre-industrial con-
trol runs from 15 climate models in the CMIP3 dataset.
These control runs are assumed to be stationary; 20-yr return
periods are estimated for annual maximum daily mean sur-
face air temperatures along with uncertainties in these return
periods. Min et al. (2011) also estimate the GEV distribu-
tion. They analyse 49-yr time series of the largest one-day
and five-day precipitation accumulations annually (RX1Dt

and RX5Dt ). Afterwards, these distributions are used to
transform precipitation data to a “probability-based index”
(PI), yielding a new 49-yr time series with values between 0
and 1. Time-dependent behaviour of the PIt series is shown
by estimating trends (their Fig. 1).

Assuming GDP distributions (POT approach)

Della-Marta et al. (2009) apply the POT approach in com-
bination with the generalized Pareto distribution (GDP) and
declustering. They apply this approach to extreme wind
speed indices (EWIs). The GDP parameters are regarded to
be time-independent.

Assuming normal distributions

Scḧar et al. (2004) estimate a normal distribution through
monthly and summer temperatures in Switzerland, 1864–
2003, to characterise the 2003 European heat wave (their
Figs. 1 and 3). Barriopedro et al. (2011) estimate a normal
distribution for European summer temperatures for 1500–
2010 (see their Fig. 2). The five coldest and highest values
are highlighted. The 2010 summer temperature appears to be
the highest by far.

2.6.2 Assuming a block-stationary climate

Assuming no specific PDF shape

Alexander et al. (2006) analyse changes in PDF shapes with-
out specifying the shape itself. In their Fig. 8 the sam-
ple period (1901–2003) is split-up into three block periods
and PDF shapes are discussed in a qualitative way. In their
Figs. 9, 10 and 11 two block periods have been chosen.
Brown et al. (2010) analyse temporal changes in PDFs in
their Figs. 5 and 6. Data are seasonal minimum and max-
imum temperatures over the period 1893–2005, taken from
northeastern US stations. The block size is around 28 yr. No
specific PDF shape is assumed in their analyses.

Assuming GEV distributions

Kharin and Zwiers (2007) evaluate temperature and precip-
itation extremes in the IPCC ensemble of global coupled
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model simulations. For that purpose they assume climate to
be stationary over 20-yr periods. For selected blocks GEV
distributions are estimated and 20-yr return periods are cal-
culated. They argue that longer return periods (≥50 yr) are
less advisable given the short block length of 20 yr. Bar-
riopedro et al. (2011) analyse multi-model projections of fu-
ture mega-heatwaves (their Fig. 4). To this end they choose
blocks of 30 yr and base their return-period calculations on
these 30-yr blocks. Uncertainties in return periods are gained
through 1000 times resampling of block data. Zwiers et
al. (2011) choose 10-yr blocks for the location parameter of
the GEV distribution. The other two GEV parameters are
kept constant in their approach.

Assuming normal distributions

Beniston and Diaz (2004) use a block length of 30 yr to anal-
yse the rarity of the 2003 heat wave in Europe. They esti-
mate a normal distribution through mean summer maximum
temperature data at Basel, Switzerland, for the 1961–1990
period. They argue that what may be regarded as an extreme
beyond the 90th percentile under current (= stationary) cli-
mate, becomes the median by the second half of the 21st
century. Their results are repeated in Trenberth and Jones
(2007, p. 312 – Fig. 2, lower panel).

2.6.3 Assuming a non-stationary climate

Assuming GEV distributions

Trömel and Scḧonwiese (2005, 2007) analyse monthly to-
tal precipitation data from a German station network of 132
time series, covering the period 1901–2000. They use a de-
composition technique which results in estimations of Gum-
bel distributions with a time-dependent location and scale
parameter. Kharin and Zwiers (2005) estimate extremes in
transient climate-change simulations. Their sample period is
1990–2100. They assume annual extremes of temperature
and precipitation to be distributed according to a GEV distri-
bution with all three parameters time-varying (linear trends).
In doing so, their GEV model has six unknown parame-
ters to be estimated. Brown et al. (2008) essentially follow
the same approach for extreme daily temperatures over the
period 1950–2004.

Fowler et al. (2010) estimate GEV distributions with lin-
ear changing location parameters and apply this technique to
UK extreme precipitation simulations over the period 2000–
2080. Their approach deviates from that of Kharim and
Zwiers (2005) and Brown et al. (2008) in that they do not
assume this approach to be the only approach possible. They
estimate eight different modelling approaches and evaluate
the best fitting model using Akaike’s AIC criterion. Hanel et
al. (2009) apply GEV distributions where all three parame-
ters are time-varying. Furthermore, the GEV location param-
eter may vary over the region. This non-stationary model has

been applied to the 1-day summer and 5-day winter precip-
itation maxima in the river Rhine basin, in a model simula-
tion for the period 1950–2099. A similar approach has been
followed by Hanel and Buishand (2011).

Assuming GPD distributions

Katz et al. (2002) assumes a general Pareto distribution for
US flood damages where a linear trend is assumed in the
log-transformed scale parameter (their Fig. 5). Parey et
al. (2007) assume a POT model with time-varying parame-
ters and analyse 47 temperature stations in France over the
1950–2003 period. As in Fowler et al. (2010) they consider
a suit of models such as situations where station data are as-
sumed to be stationary versus those where they are assumed
to be non-stationary.

Coelho et al. (2008) apply a flexible generalized Pareto
model that accounts for spatial and temporal variation in
excess distributions. Non-stationarity is introduced by us-
ing time-varying thresholds (local polynomial with a win-
dow of 20 yr). Sugahara et al. (2009) apply the same ap-
proach as Coelho et al. (2008), using largep quantiles
of daily rainfall amounts. A sensitivity analysis was per-
formed by estimating four different GPD models. Acero et
al. (2011) use the POT-GDP approach where thresholds are
made time-varying, allowing them to change linearly over
time. An automatic declustering approach was used to select
independent extreme events exceeding the threshold.

Assuming normal or log-normal distributions

Wigley (2009) analyses changes in return periods using OLS
trend fitting plus a normal distribution for the residuals. He
gives an example for monthly mean summer temperatures
in England (the CET database). We come to this approach
in more detail in Sect. 4.1. Visser and Petersen (2009) ap-
ply a trend model from the group of structural time series
models, the so-called Integrated Random Walk (IRW) model.
This IRW model has the advantage of being flexible where
the flexibility can be chosen by maximum likelihood opti-
mization. The OLS straight line is a special case of the
IRW model. They apply this trend model to an indicator
for extreme cold conditions in the Netherlands for the pe-
riod 1901–2008. Return periods are generated along with
uncertainty information on temporal changes in these return
periods (cf. the TXXt example shown in the Figs. 1, 4 and 6).

Estimating trends only

Alexander et al. (2006) show trends estimated by a 21-term
binomial filter in their Figs. 2 through 7. Results using
straight lines are shown in their Tables 1 and 2, and Figs. 12
and 13. The slope of these trends has been estimated by
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Kendall’s tau-based slope estimator. Klein Tank et al. (2006)
apply LOWESS smoothers in their Figs. 3, 4, 6 and 7. Re-
sults using straight lines are also presented. Here, OLS fits
are used where significance is tested using a Student’s t-test.
Pielke (2006) shows several examples of trend estimation for
disaster data. Both OLS straight lines are shown (after taking
a log-transformation) and 11-yr centred moving averages.

3 Stationarity assumptions

3.1 Stationarity

We have seen in Sect. 2 that methods fall apart with respect
to their assumption of stationarity (Sects. 2.6.1, 2.6.2 and
2.6.3). At first glance one may judge this choice as a matter
of taste. As long as one makes his or her assumptions clear,
all seems okay at this point. Of course, there is no problem
as long as the processes underlying the data at hand are truly
stationary, such as in the study of Wehner (2010) who esti-
mates GEV distributions to pre-industrial control runs from
15 climate models, part of the CMIP3 dataset. The same
holds for Villarini et al. (2011) who apply GEV distribu-
tions for extreme flooding stations with stationary data over
time only.

However, inferences might go wrong if data are assumed
to be stationary when they are not. Figure 2 gives an illus-
tration of this point by simulation. Suppose that a specific
weather index shows an increasing trend pattern over time.
However, the year-to-year variability slowly decreases over
time (heteroscedastic residuals). Now, if we would assume
these data to be stationary, we would conclude that the fre-
quency of high extremes is decreasing over time. This con-
clusion could be easily interpreted as an absence of climate
change. However, the increasing trend in these data is con-
tradictory to this conclusion. The example shows that con-
clusions on the influence of climate change should not be
done on the behaviour of extremes alone. Proper methods
for stationary checks should be applied.

A second danger of assuming stationarity while data are in
fact non-stationary, occurs if GEV distributions are applied.
GEV distributions are very well suited to fit data which are
stable at first and start to rise at the end. See the simula-
tion example in Fig. 3, upper panel. This example is com-
posed of an exponential curve where normally distributed
noise is added. Now, if we regard this hundred-year long
record as stationary and estimate for example the Gumbel
distribution to these data, a perfect fit is found, as illustrated
in the lower panel.

This result might seem surprising, but it is not. The resid-
uals of the simulated series are normally distributed, hav-
ing symmetric tails. Due to the higher values at the end of
the series the right-hand tail of the distribution will become
“thicker” than the tail of the normal distribution if we dis-
card the non-stationarity at the end of the series. And this is
exactly the shape of the right-hand tail of the Gumbel distri-

bution, and more generally the GEV distribution. In practice
the GEV distribution will give a good fit in many such oc-
casions since it hasthreefit parameters instead of the two of
the Gumbel distribution.

Our conclusion is that care should be taken if climate is
assumed to be stationary. If data are assumed to be stationary
when they are not, inferences might become misleading.

Thus, proper testing for stationarity versus non-
stationarity is a prerequisite. For examples of stationarity
tests please refer to Feng et al. (2007), Diermanse et
al. (2010), Fowler et al. (2010), Furió and Meneu (2011),
Villarini et al. (2011) and Rea et al. (2011).

3.2 Block stationarity

As we have described in Sect. 2.6.2, a number of authors as-
sume their data to be stationary over short periods of time,
typically periods of 20 to 30 yr. Such assumptions are of-
ten made in climatology and are clearly reflected in the
definition of “climate” (IPCC, 2007, WG I, Annex I):Cli-
mate in a narrow sense is usually defined as the average
weather, or more rigorously, as the statistical description
in terms of the mean and variability of relevant quanti-
ties over a period of time ranging from months to thou-
sands or millions of years. The classical period for av-
eraging these variables is30 yr, as defined by the World
Meteorological Organization [...](http://www.ipcc.ch/pdf/
assessment-report/ar4/syr/ar4syr appendix.pdf).

Of course, if the extreme indicator at hand shows stable be-
haviour over the block period chosen, the choice of stationar-
ity is satisfactory. However, due to rapid climate change, the
stationarity assumption may be invalid, even for very short
periods. Young et al. (2011) give such examples for 23-yr
extreme wind speed and wave height data. They find many
significant rising trends (their Table 1 and Fig. 3).

Another example is the TXXt series shown in the upper
panel of Fig. 1. The Figure shows an almost linear increase
of these annual maximum temperatures. To analyse the local
behaviour of this trend more closely, we estimated the trend
differences [µ2010–µt−1] and [µt–µt−1] along with 95 %
confidence limits (statistical approach explained in Visser,
2004). See Fig. 4. The Figure shows that the trend value
µ2010 in the final year 2010 is significantly larger thanany
trend valueµs in the period 1951–2009 (α = 0.05). The
lower panel shows an even stronger result: all trend differ-
ences [µt–µt−1] over the period 1967–2010 are significantly
positive (α = 0.05).

Again, our conclusion is that care should be taken in as-
suming stationarity, even for such short periods of time (20 to
30 yr). Changes in extreme weather variables may be highly
significant even over these short periods.
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Fig. 2. Simulated extreme weather indicator for the sample period 1911–2010. The “measurements” are gained by choosing an exponential
as a “trend” (green line) and adding a normally distributed white noise process to this trend. The variance of the noise is linearly decreasing
over time.

4 Choice of probability distribution assumptions

4.1 PDF shapes: normal or GEV?

As described in Sect. 2.6, different types of probability dis-
tributions have been applied to both stationary and non-
stationary extreme indicator data. For example, Beniston
and Diaz (2004) applied the normal distribution, Visser and
Petersen (2009) applied the log-normal distribution, Trömel
and Scḧonwiese (2006) applied the Gumbel distribution and
Brown et al. (2008) applied the GEV distribution. This leads
to the question of which distribution is preferable in which
situation? Or would it be possible that different PDFs fit
equally well to the same data? If the latter were true, it would
still be worthwhile to choose the PDF with care if extrapo-
lations are made far beyond the sample record length (re-
turn periods of once in 500 to 1000 yr, as in Della-Marta et
al. (2009) or Lucio et al. (2010)).

In this context, the comments of Cooley (2009) to an ar-
ticle of Wigley (2009, reprinted from 1988) are relevant.
Wigley estimated linear trends and normal distributions to
monthly mean temperatures in England (the CET database,
Parker and Horton, 2005). Cooley estimated GEV dis-
tributions with time-varying parameters to annual maxima
of daily maximum temperatures, also taken from the CET
database. He finds a linear fit for the GEV location (mean)
parameter, and constants for the variance and shape parame-
ter. Cooley discusses the advantages of taking the GEV dis-
tribution rather than the normal distribution. Who is right, or
are both right?

We re-estimated the CET TXXt data3 with the IRW trend
model (cf. Fig. 1), and checked the distribution of the resid-
uals. The IRW flexibility is estimated by ML optimization
and appears to be a straight line, mathematically equal to the
OLS linear trend. The innovations (= one-step-ahead pre-
diction errors) do not show obvious non-normal behaviour
and we conclude that a straight line, along with normally
distributed residuals, gives feasible results for these TXXt

data. Compared to the trend of Cooley, our trend appears to
have a slightly steeper slope: 0.0155± 0.005 (1-σ) against
their slope estimate 0.0142. This result implies that (i) more
than one PDF may be applied to the same data and (ii) the
choice of the PDF shape (slightly) influences the trend slope
estimate (cf. the simulation example shown in Fig. 3).

4.2 Comparing four PDF shapes

To get a better grip on this “PDF shape discussion” we have
tested four PDF shapes frequently encountered in the litera-
ture, on the same data. PDF shapes are (i) the normal distri-
bution, (ii) the log-normal distribution, (iii) the Gumbel dis-
tribution and (iv) the GEV distribution (of which the Gumbel
distribution is a special case). For such a test, we performed
two groups of simulations yielding a number of TXXt and
RX1Dt “look alikes”. We varied the time series length N
(65, 130 and 1300 yr) and the number of effective days Neff
(1, 60, 180 and 365 days). The latter parameter mimics the
effective number of independent daily data within a year for
a certain weather variable. Details are given in Appendix A.

3The CET TXXt temperatures can most easily be downloaded
from the KNMI Climate Explorer website:http://climexp.knmi.nl/.
Choose “Daily climate indices”, “UK temperatures”, “maximum”,
and in the bottom panel: “annual (January–December)” and new
variable: “max”.
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Fig. 3. The upper panel shows a simulated extreme weather indicator over the sample period 1911–2010. The “measurements” are gained
by choosing an exponential as a “trend” and adding normal distributed white noise to this trend (constant variance) . If it is assumed that
the measurements follow astationaryprocess, the data appear to follow an extreme value (Gumbel) distribution. This is shown in the lower
four panels which are generated by the S-PLUS Envstats module. Shown is the Kolmogorov-Smirnov test, where the data are compared to a
Gumbel distribution. The Gumbel distribution appears to fit very well (QQ-plot shows all data on the 0–1 line;p value of the KS test is 0.93).

An example from these simulations is given in Fig. 5.
Here, we have plotted four PDFs for the same TXXt simula-
tion (Neff = 60 days; N = 130 yr). This simulation resembles
the Wigley – Cooley case with daily CET temperatures since
1880. The four panels show the Kolmogorov-Smirnov good-
ness of fit test, along with three graphic presentations (as in
the lower panel of Fig. 3). The panels show that the only dis-
tribution which fitsnot very well, is the Gumbel distribution
(right tail deviates in the QQ plot, panel lower left).

Although the simulation exercise described in Ap-
pendix, is certainly not exhaustive, the following inferences
can be made:

– both log-normal and GEV distributions fit very well
for the vast majority of simulations, (both TXXt and

RX1Dt simulations). This result is in line with the
many examples of these PDFs in the literature, applied
to real data.

– the Gumbel distribution fits only moderately to the
TXX t simulations. Much better fits are found for data
which are skewed in nature, such as in case of the
RX1Dt simulations. This result is in line with the find-
ings of Tr̈omel and Scḧonwiese (2007) who find Gum-
bel distributions for 132 precipitation series in Germany
(1901–2000). No Gumbel distributions have been re-
ported in the literature for temperature data, which is in
line with our TXXt simulation results.
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Fig. 4. Uncertainties for the IRW trend estimates shown in Fig. 1. The upper panel shows the trend difference [µ2010−µt ] along with 95 %
confidence limits, the lower panel the trend differences [µt −µt−1] along with 95 % confidence limits.

– The normal distribution fits well for the TXXt simu-
lations as long as the number of years is rather small
(sample periods shorter than∼130 yr). This result is
in line with the Wigley – Cooley discussions for CET
data since 1880. For skewed data, as in the second
group of simulations, the normal distribution is not a
good choice.

One might conclude from the inferences above that the
GEV distribution would be the ideal PDF choice in gen-
eral: (i) it fits in almost all cases and (ii) it has an interpre-
tational background in relation to extremes. However, we
note that the estimation of time-varying GEVs in combina-
tion with linearity assumptions on the three parameters, de-
mands the estimation of six parameters (Kharin and Zwiers,
2005). And the linearity assumption for GEV parameters
might be limiting in some cases. In contrast, the estimation
of flexible trends and normal distributions (as in the TXXt

examples for CET and De Bilt) (i) does not fit for skewed
data and (ii) lacks interpretation. However, it demands the
estimation of only one parameter. Also uncertainty infor-
mation on extremes is gained more easily (cf. Fig. 6). The
same advantage is gained after taking logarithms of the indi-
cator at hand, as in Visser and Petersen (2009 – their Fig. 5

and Appendix). The simulations in Appendix A show that
log-normal distributions fit very well.

We found one example in the literature where different
PDFs are analysed for the same data. Sobey (2005) analyses
detrended high and low water levels according to four differ-
ent PDF shapes: the Gumbel distribution, the Fréchet distri-
bution, the Weibull distribution and the log-normal distribu-
tion (the first three distributions are part of the GEV distribu-
tion). Furthermore, he gives a guidance for choosing the suit-
able distribution for the data at hand. For both extreme high
and extreme low water levels at San Francisco the log-normal
distribution fits best to the data. He identifies the Gumbel and
Weibull distribution as promising alternatives. His results are
consistent with the findings from our simulation study above
(although different in detail).

5 Uncertainty information

5.1 Available statistical techniques do not suffice in all
cases

Uncertainty information is an important source of additional
information pertaining to inferences on extremes. Within cli-
mate science, and particularly within the Intergovernmental

www.clim-past.net/8/265/2012/ Clim. Past, 8, 265–286, 2012
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Fig. 5. Kolmogorov-Smirnov graphs and statistics for a simulation example shown in Table A1 of Appendix A (maximum of 60 effective data
in a year and a sample length of 130 yr). All four PDFs have been computed to the same data. Upper left panel: normal distribution; upper
right panel: log-normal distribution; lower left panel: Gumbel distribution; lower right panel: GEV distribution.

Panel on Climate Change (IPCC), there has been increased
attention to dealing with uncertainties over the last decade or
so (see e.g. Moss and Schneider, 2000; Petersen, 2000, 2012;
IPCC, 2005; Risbey and Kandlikar, 2007; Swart et al., 2009;
Hulme and Mahony, 2010; Mastrandrea et al., 2010).

We scanned the literature for their treatment of statisti-
cal uncertainties. In doing so, we discerned three levels of
statistical uncertainty information:

– Class 0: research giving no statistical uncertainty
information.

– Class 1: research giving point-estimate uncertainty for
extreme statistics. Here, we mean uncertainty statistics
at one specific point in time, such as confidence limits
for a return periodRt or confidence limits for a trend
estimateµt . An example for extremes has been given

in the three panels of Fig. 6. An example for trends has
been given in Fig. 1, upper panel.

– Class 2: research giving uncertainty information both
for point estimates and for differential estimates. Here,
we mean “Class 1” uncertainty information along with
uncertainty information on differential statistics such as
the return-period differential [Rt – Rs ], or trend differ-
entials [µt – µs ] (times “t” and “s” lie in the sample pe-
riod with t> s).4 An example has been given in Fig. 4.

4We note that some researchers apply the Mann-Kendall test for
monotonic trends (e.g. Nasri and Modarres, 2009; Young et al.,
2011). Here, the significance is tested for the whole sample pe-
riod only, without specifying the trend shape. Thus, this approach
does not fall within the category of “Class 2”. The same holds for
trends based on ARIMA models: trends are filtered from the data,
but an actual trend is not given.

Clim. Past, 8, 265–286, 2012 www.clim-past.net/8/265/2012/
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Fig. 6. Three characterisations of extremes with uncertainties corresponding to the TXXt example from Fig. 1. The first panel shows the
annual chance of crossing the 35◦C threshold (p35

t ); the second panel shows the corresponding return period for crossing that threshold
(R35

t , expressed in years); the third panel shows the temperature threshold that will be exceeded once every 20 yr (TXX20
t , expressed in◦C).

In all three panels 95 % confidence limits are shown.

This graph shows the trend differentials [µ2010− µt ]
and [µt −µt−1], along with 95 % confidence limits.

With respect toreturn periods or the chance for cross-
ing pre-defined thresholdswe found only rarely examples of
“Class 0”. In most cases “Class 1” uncertainty information is
given: Feng and Nadarajah (2007), Della-Marta et al. (2009),
Fowler et al. (2010), Wehner (2010) and Lucio et al. (2010).
However, we found that “Class 2” uncertainty information
is lacking almost completely. The only example we found
was in a previous paper of ours (Visser and Petersen, 2009).
There, we give approximate uncertainty estimates for return
period differentials in an Appendix.

As for trends, we only rarely found examples of “Class 0”
uncertainty. Examples lacking uncertainty information are
mostly found in the estimation of trends in disaster data: al-
though OLS linear trends have been applied (and, thus, un-
certainty information is easily available), no uncertainty in-
formation is given in publications. Other examples are those
where moving averages of other digital filters have been ap-
plied. These trend models are not statistical in nature and,
thus, do not give uncertainty information.

Since most articles apply OLS linear trend fits to their data,
both “Class 1” and “Class 2” uncertainty information are
covered at the same time (cf. footnote 2). Examples are Klein

www.clim-past.net/8/265/2012/ Clim. Past, 8, 265–286, 2012
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Fig. 7a. Economic losses due to weather-related disasters in the period 1980–2009. The data and trend in the upper panel are taken from
Munich Re (2010a). The trend has been estimated by the OLS straight line fit after taking logarithms. The lower panel shows the IRW trend
fit on logarithms of the same data. Flexibility of the trend has been optimized by ML estimation (Visser, 2004).

Tank and K̈onnen (2003), Klein Tank et al. (2006), Alexan-
der et al. (2006), Brown et al. (2010), Min et al. (2011)
and Charpentier (2011). Brown et al. (2008) give full sta-
tistical uncertainty information for the time-varying location
parameter of the GEV distribution. Trends from the class
of structural time series models (STMs), as shown here in
Figs. 1 and 4, give a generalization of the OLS linear trend:
they also give full statistical uncertainty information (Visser,
2004; Visser et al., 2010).

Our “uncertainty scan” shows that full uncertainty infor-
mation (“Class 2”) is missing for statistics such as return
periods or the chance for crossing thresholds. And the rea-
son for that is simple: the statistical literature on extremes,
such as Coles (2001), does not report methods to compute
these differential uncertainties. Therefore, our conclusion is
a simple one: such methods should be developed. For trend
estimation, we conclude that full uncertainty information is
available as long as OLS linear trends or trend models from
the class of STMs are chosen.
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Fig. 7b. The upper panel shows the annual number of great natural disasters. Source of data is the website of Munich Re. The lower panel
shows an IRW trend, fit on logarithms of the same annual data (i.e. yt = log(xt + 1)). Flexibility of the trend has been optimized by ML
estimation. Details of the IRW trend fit are given by Visser (2004). Source upper graph: Munich Re (2010b), p. 37 and their website.

5.2 Best modelling practices and uncertainty

As described at the end of Sect. 2.2, some authors have cho-
sen to apply more than one trend model to analyse their data.
This type of sensitivity analysis does not evaluate uncertain-
ties in estimators only, but also tries to find the influence of
under-lying model assumptions – thus, often moving beyond

the realm of statistical uncertainty into scenario (what-if) un-
certainty. See Mills (2010) and Charpentier (2011 – Sect. 2).
Another example is given by Moberg and Jones (2005) who
evaluate trends in extreme weather indicators using two trend
models: the OLS linear trend and the RES method. The lat-
ter method is more appropriate if the data contain outliers
and behave non-normally. Zhang et al. (2004) present Monte
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 Fig. 8. Example of coupling climate change to one particular disaster: the 2010 flooding in Pakistan. Text taken from the Scientific American
website:http://www.scientificamerican.com/article.cfm?id=is-the-flooding-in-pakist.

Carlo experiments where three ways of estimating linear
trends have been evaluated (OLS linear trend, Kendall tau-
based method and time-varying GEV distributions). In fact,
the evaluation of different trend models, and corresponding
uncertainty inferences, is a way of evaluatingstructuralun-
certainty, i.e. evaluating the potential influence of specific
model assumptions.

An illustration of the importance of considering more than
one trend model, is given in Fig. 7a. The upper panel shows
the economic losses due to global weather-related disasters,
as published by Munich Re (2010a). The trend is estimated
by fitting the OLS linear trend model, after taking logarithms
of the event data. The result is an exponential increasing
trend. If an IRW trend is estimated, where the flexibility
is optimized by ML (Visser, 2004), a different trend pat-
tern arises (lower panel): an increase up to 1995 and a stabi-
lization afterwards. The trend value in 2009 is significantly
higher than trend values before 1987 (tested forα = 0.05,
graph not shown here). A comparable example is given in
Fig. 7b. The upper panel shows the number of great natural
disasters, as published by Munich Re (2010b) and reprinted
in Pielke (2010, p. 167). Again, the result is an exponential
increasing trend. If an IRW trend is estimated, a different
trend pattern arises (lower panel): an increase up to 1992 and
a decrease afterwards. The trend value in 2010 is not sig-

nificantly higher than the trend values before 1980 (tested
for α = 0.05, graph not shown here). These two examples
illustrate that the interpretation of trend patterns in extreme
indicators might be influenced by the trend method chosen.

Another approach to assess structural uncertainty is the
evaluation of the stationarity/non-stationarity of the data at
hand (cf. discussion in Sect. 3). Examples are:

– Feng and Nadarajah (2007) estimate both stationary and
non-stationary GEVs, and calculate return periods for
both approaches.

– Fowler et al. (2010) evaluate 8 GEV models, both sta-
tionary and non-stationary. For choosing the most ap-
propriate model they use the AIC criterion.

We also found other sensitivity approaches which could be
categorized under the term “best modelling practices”. In the
field of future extremes it might be of importance to evalu-
ate extreme statistics on the basis of more than one GCM or
RCM. Examples are:

– Kharin et al. (2007) give multi-model uncertainty limits
for 20-yr return periods in their Figs. 3, 5, 6 and 7, based
on 14 IPCC AR4 models.
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– Wehner (2010 – Fig. 1) calculates the inter-model un-
certainty for return periods, based on daily data from 15
different CMIP3 models.

– Barriopedro et al. (2011 – Figs. 4 and S12) evaluate
return periods for mega-heatwaves on the basis of 11
RCMs and one reanalysis run.

A second sensitivity approach deals with the sensitivity of
trend estimates and corresponding uncertainties in relation to
thesample period length. Examples are:

– Moberg and Jones (2005 – Table 3) show significant
trends for four periods: 1901–1999, 1921–1999, 1901–
1950 and 1946–1999.

– Klein Tank et al. (2006 – Table 2) show trend decadal in-
crements with uncertainties for the periods 1961–2000
and 1901–2000.

We note that an analogous sensitivity example for linear
trends has been given by Trenberth and Jones (2007 – FAQ
3.1, Fig. 1) for global mean temperatures. A variation is
given by Young et al. (2011, Table S1). They present five
different significance tests for their trends.

Finally, as described in Sect. 4.2, Sobey (2005) analyses
detrended high and low water levels according to four differ-
ent PDF shapes. From his analysis he gives a guidance for
choosing the suitable distribution for the data at hand.

In our judgment, some form of sensitivity analysis is im-
portant to assess the reliability of results. This conclusion of
course pertains more generally to environmental research.

6 Coupling extremes or disasters to climate change

There are several ways to couple trends in extremes or dis-
aster to (anthropogenic) climate change (see, e.g. Hegerl and
Zwiers, 2007; Zwiers et al., 2011; Min et al., 2011 for spatio-
temporal approaches). One has to be careful, however, in
coupling individual extremes to climate change. In fact, sta-
tistical inferences are about chances forgroupsof events and
not aboutindividualevents.

Even though most publications do not strictly couple sin-
gle extremes to climate change, that is, with 100 % cer-
tainty, many are suggestive about the connection while they
focus actually on the changed chances. A recent exam-
ple on flooding is Pall et al. (2011) and an example of
suggestive information on the Pakistan floodings in 2010
is given in Fig. 8. An earlier example is constituted by
publications on the 2003 heatwave in Europe. Schier-
meier (2011) chooses as subtitle:can violent hurricanes,
floods and droughts be pinned on climate change? Scien-
tist are beginning to say yes. For a recent discussion on In-
ternet, please refer tohttp://e360.yale.edu/feature/forumis
extremeweatherlinked to global warming/2411/.

PBL (2010) has analysed the presenting of this 2003 heat
wave as a consequence of climate change in IPCC (2007).
The Working Group II Summary for Policymakers states,
for Europe, on page 14:“For the first time, wide-ranging
impacts of changes in current climate have been docu-
mented: retreating glaciers, longer growing seasons, shift
of species ranges, and health impacts due to a heat wave of
unprecedented magnitude. The observed changes described
above are consistent with those projected for future climate
change.”This text, as well as its counterparts in Table TS4.2
of the Technical Summary (p. 51) and in the Executive Sum-
mary (p. 543), present the health impacts from the 2003 heat
wave as an example of “wide-ranging impact of changes in
current climate”. Thus, the text implicitly suggests that the
2003 heat wave is the result of recent climate change.

However, one can never attribute a specific extreme
weather event of the past – such as that particular heat wave
– to changes in current climate. In fact, we agree with Schär
and Jendritzky (2004) who stated the following:“The Euro-
pean heatwave of 2003: was it merely a rare meteorological
event or a first glimpse of climate change to come? Probably
both.” Stott et al. (2004) come to a comparable conclusion:
“ It is an ill-posed question whether the 2003 heatwave was
caused, in a simple deterministic sense, by a modification of
the external influence on climate – for example, increasing
concentration of greenhouse gases in the atmosphere – be-
cause almost any such weather event might have occurred
by chance in an unmodified climate.” Finally, IPCC-SREX
(2011, p. 6) concludes that “the attribution of single extreme
events to anthropogenic climate change is challenging”.

7 Conclusions

In this article, we have given a concise overview of methods
applied in the peer-review literature to make inferences on
extreme indicators. Furthermore, we have evaluated these
methods for specific choices that researchers have made.
These choices are (i) the choice of a specific type of sta-
tionarity, (ii) the choice for a specific PDF shape of the data
(or residuals) at hand, (iii) the treatment of uncertainties and
(iv) the coupling of extremes or disasters to climate change.
We draw the following conclusions:

– In making a choice for treating data as stationary or
non-stationary, good testing is essential. Inferences on
extremes may be wrong if data are assumed stationary
while they are not (cf. Figs. 2 and 3). Some researchers
choose block-stationarity (blocks of 20 to 30 yr). How-
ever, climate may be non-stationary even for such short
periods (cf. Figs. 1 and 4). Thus, such an assumption
needs testing too.

– In calculating statistics such as average return periods,
a certain PDF shape is assumed. We found that often
more than one PDF shape fits the same data (cf. the
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Table A1.Judgments of distributional fits for (i) simulated meteorological data (cf. Fig. 5) and (ii) daily precipitation data in the Netherlands.
Meaning of codes:−− stands for a very bad fit;− stands for a bad fit; + stands for a good fit; ++ stands for a very good fit. These judgments
are based on visual inspection of the actual fits and onp values of the Kolmogorov-Smirnov goodness of fit tests. All judgments are based
on three repeated simulations (using different seeds in random number generation). Data in black are for 65 yr of simulation, in blue for 130
and in green for 1300 yr of simulation.

Simulations based on Simulations based on 100 yr of daily
normally distributed daily data precipitation data in The Netherlands

Normal Log-normal Gumbel GEV Normal Log-normal Gumbel GEV

N = 65 yr Neff=1 day ++ NA −− + + ++ + ++
N = 65 yr Neff=60 days + +/++ -/+ + -/+ + +/++ +/++
N = 65 yr Neff=180 days + ++ + ++ -/+ +/++ + +/++
N = 65 yr Neff=365 days -/+ +/++ +/++ ++ -/+ +/++ + +/++
N = 130 yr Neff=1 day ++ NA −− ++ -/+ NA + ++
N = 130 yr Neff=60 days + ++ -/+ +/++ -/+ +/++ + +/++
N = 130 yr Neff=180 days -/+ + + ++ - + + +
N = 130 yr Neff=365 days - + + ++ - ++ ++ ++
N = 1300 yr Neff=1 day ++ NA −− + −− NA ++ ++
N = 1300 yr Neff=60 days −− +/++ −− +/++ −− + - -
N = 1300 yr Neff=180 days −− + −/−− ++ −− + −− −−

N = 1300 yr Neff=365 days −− + −− ++ −− -/+ −− −−

Cooley – Wigley example, and Fig. 5). From a simula-
tion study we conclude that both the GEV and the log-
normal PDF fit very well to a variety of indicators (both
symmetric and skewed data/residuals). The normal PDF
performs well for data which are (i) essentially symmet-
rical in nature (such as extremes for temperature data)
and (ii) have relatively short sample periods (∼130 yr).
The Gumbel PDF fits well for data which are skewed
in nature (such as extreme indicators for precipitation).
For symmetrical situations the Gumbel PDF does not
perform very well.

– Statistical techniques are not available for all cases of
interest. We found that theory is lacking for uncertain-
ties for differential statistics of return periods, i.e. uncer-
tainties for a particular difference [Rt – Rs ]. For trends
these statistics are available as long as OLS trends
or structural time series models (STMs) are chosen
(cf. Figs. 1 and 4).

– It is advised to test conclusions on extremes with respect
to assumptions underlying the modelling approach cho-
sen (structural uncertainty). Examples are given for
(i) the application of different trend models to the same
data, (ii) stationary versus non-stationary GEV mod-
els, (iii) evaluation of extremes for a suite of GCMs
or RCMS to evaluate statistics in the future, and (iv)
the role of the sample period length. An example has
been given where the choice of a specific trend model
influences the inferences made (Fig. 7).

– The coupling of extremes to climate change should be
performed by spatio-temporal detection methods. How-

ever, in the communication of extremes to the media it
occurs that researchers couple one specific exceptional
extreme event or disaster to climate change. This (sug-
gestive) coupling should be avoided (Fig. 8). Statisti-
cal inferences are always directed to chances forgroups
of data. They do not apply toonespecific occurrence
within that group.

Appendix A

Simulation and PDF shapes

As described in Sect. 4.2, we have tested four PDF shapes
frequently encountered in the literature, on the same data.
PDF shapes are: the normal, the log-normal, the Gumbel
and the GEV distribution (of which the Gumbel distribu-
tion is a special case). For such a test, we performed two
groups of simulations, one yielding TXXt “look alikes” and
one yielding RX1Dt “look alikes”. The first set is totally
based on random drawings from a normal distribution for
daily values; the second set is based on real daily precipi-
tation totals over the period 1906–2005 (De Bilt, the Nether-
lands). We varied the time series length N (65, 130 and
1300 yr) and the number of effective days Neff (1, 60, 180 and
365 days). The latter parameter mimics the effective number
of independent daily data within a year for a certain weather
variable. The judgment of distributional fit has been done
with two criteria: visual inspection of the QQ plot and the
p value from the Kolmogorov-Smirnov goodness of fit test
(p < 0.05: bad result;p > 0.80: very good result). See Fig. 5
for an example. Each judgment was repeated three times to
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rule out the influence of incidental deviating simulation re-
sults.

Table A1 shows that the log-normal and the GEV distri-
bution give good fits for all simulations (all judgments are
“+/++” or “++”). This result is independent of the spe-
cific choices made for Neff or N. The normal distribution
fits well for the TXXt “look alikes” as long as time se-
ries are shorter than∼130 yr of length and Neff shorter than
180 days. The fit for the precipitation simulations are mod-
erate to bad throughout. For the Gumbel distribution, the
situation is the other way around: a moderate result for the
temperature simulations and a good result for the precipita-
tion simulations. Time series with 1300 yr of length are the
only exception here.
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