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Abstract. The analog method (AM) has found application to
reconstruct gridded climate fields from the information pro-
vided by proxy data and climate model simulations. Here,
we test the skill of different setups of the AM, in a controlled
but realistic situation, by analysing several statistical proper-
ties of reconstructed daily high-resolution atmospheric fields
for Northern Europe for a 50-yr period. In this application,
station observations of sea-level pressure and air tempera-
ture are combined with atmospheric fields from a 50-yr high-
resolution regional climate simulation. This reconstruction
aims at providing homogeneous and physically consistent at-
mospheric fields with daily resolution suitable to drive high
resolution ocean and ecosystem models.

Different settings of the AM are evaluated in this study for
the period 1958–2007 to estimate the robustness of the recon-
struction and its ability to replicate high and low-frequency
variability, realistic probability distributions and extremes of
different meteorological variables. It is shown that the AM
can realistically reconstruct variables with a strong physical
link to daily sea-level pressure on both a daily and monthly
scale. However, to reconstruct low-frequency decadal and
longer temperature variations, additional monthly mean sta-
tion temperature as predictor is required. Our results suggest
that the AM is a suitable upscaling tool to predict daily fields
taken from regional climate simulations based on sparse
historical station data.

1 Introduction

The availability of gridded meteorological forcing data is
a prerequisite for many climate impact related studies in-
cluding hydrological, ocean or ecosystem simulations. De-

tection and attribution studies, e.g. for the climate of Baltic
Sea catchment (Bhend and von Storch, 2008, 2009), are typ-
ical research topics where recent potentially anthropogenic
changes in the climate system need to be detected by com-
paring them to the natural climate variability undisturbed
by human impacts. While such studies can be done based
on coarsely resolved gridded data of single variables, the
detection and attribution of environmental changes includ-
ing eutrophication, e.g. within the Baltic Sea ecosystem,
require a full set of meteorological variables to force re-
lated bio(geo)chemical models (cf. Meier et al., 2011a, 2012;
Gustafsson et al., 2012).

State-of-the-art regional climate models (RCM) are a com-
mon tool to provide such highly resolved and physically con-
sistent atmospheric fields for a given domain by numerically
downscaling global reanalysis data, for instance related to
NCEP/NCAR-reanalysis since 1948 (Kistler et al., 2001),
ERA40-reanalysis since 1957 (Uppala et al., 2006) and ERA-
Interim (Dee et al., 2011) since 1979. However, longer simu-
lations spanning the whole 20th century or even longer would
allow estimating the longer-term variability including peri-
ods in which the anthropogenic greenhouse gas forcing was
not as strong as in the last few decades.

One possibility to reconstruct high-resolution meteorolog-
ical fields is to conduct simulations with a RCM driven at the
boundaries by global general circulation models (GCM) over
the past decades or few centuries (cf. PRUDENCE project;
Vidale et al., 2003; Giorgi et al., 2004; Déqúe et al., 2005).
Although regional simulations of the past millennium, e.g.
over the Baltic Sea (Graham et al., 2009; Schimanke et al.,
2012), provide an important test bed to study the impact of
external forcing on the regional climate, the time evolution
of the simulated meteorological fields is not guaranteed to
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be close to the evolution of the real meteorological fields be-
cause, in the absence of data assimilation, the internal vari-
ability of the model and observations will in general be un-
correlated in time. In addition, the model bias introduced
by the GCM-RCM simulations usually leads to considerable
(systematic) deviations from the observed climate even if en-
sembles of different models are used (Jun et al., 2008). Due
to the deviation in time between GCM runs and observa-
tions, statistical downscaling as another approach to bridge
the gap between the coarse resolution of the large-scale data
of the GCM and the regional or local state of the atmosphere
(von Storch et al., 1993; Zorita and von Storch, 1999; Frı́as
et al., 2006; Matulla, 2005) cannot be used here. In addition
to errors/uncertainties introduced by the statistical model, it
is difficult to estimate if the relationship established is also
valid outside the reference period on longer time scales, i.e. if
the process linking the large-scale with the local scale is
stationary (cf. B̈urger et al., 2006 for regression).

As several long station observations are available for
Northern Europe reaching back to 1850, statistical upscal-
ing provides another possibility to reconstruct atmospheric
fields. This can be done either by different interpolation tech-
niques or by setting up an empirical relation between ob-
servations and the large-scale atmospheric field. The general
difficulty of this approach is to reconstruct atmospheric fields
with high spatial resolution from a limited number of obser-
vations. To achieve physically consistent atmospheric fields
with realistic probability distributions, we set out to develop
an upscaling tool that combines the information provided by
long time series from a few stations together with simulations
from RCMs with high spatial resolution that only span the
rather short reanalysis period. The statistical method applied
here to combine both sources of information – and in the
end provide full high-resolution meteorological fields over
a longer period than that spanned by the reanalysis – is the
analog method (AM).

The AM is a kind of non-linear empirical transfer func-
tion that allows one to estimate a set of predictands from
a set of known predictors. Usually, the sets of predictors
cover a longer time span than the predictands and the AM
aims at estimating the predictands in the period where they
are not available, based on the information provided by
the predictors. The basic idea of the AM itself was intro-
duced earlier into the field of weather prediction in the late
1970s (cf. Lorenz, 1969; Kruizinga and Murphy, 1983), fol-
lowed by studies of short-term climate prediction (Barnett
and Peisendorfer, 1978; van den Dool, 1994). This idea is
illustrated in Fig. 1. Denoting the time stept for which an
estimation of the predictands is needed, the AM searches
through a data archiveP(u) in which predictorP(t) and pre-
dictandP(u) are both available, and identifies the time step
u in which the predictor is closest to its value at timet , its
analogue. The imputed predictand for timet is then the value
of the predictand at timeu. Variants of the AM can be intro-
duced by defining different measures of similarities between

Fig. 1. Scheme for the Analog-Method used as upscaling tool. Any
day a, b, c, etc. ofP(u) is linked to its related fields A, B, C,
etc. taken from RCM/Reanalysis (predictand, analogs). The fields
of a historical dayγ , α, etc. fromP(t) is found by Eq. (1) to be
most similar to c, a, etc. inP(u) forming the analog-pool. Hence, it
is assumed that the fields ofγ , α, etc. are then very similar to the
fields C, A, etc. (upscaling).

the predictor at timet and at timeu to weight more strongly
some properties of the analogues that might be desired for
particular applications. Other possibilities lie in augmenting
the time window around time stepst andu, thereby searching
for analogous successions, instead of just analogous snap-
shots, to retain the serial correlation that may be present in
the predictand.

The AM requires a data archive that is large enough for
sufficiently close analogues to be found. This size increases
with the number of degrees of freedom required to specify
the predictor. If the analogue space is one dimensional, it
is relatively easy to find a close enough analog if the range
of variability is not very different through time. If, however,
the predictor is a multidimensional field with a large num-
ber of degrees of freedom, it will be generally difficult to
find an analog that is close to the target along all dimen-
sions. In this case, a very large data archive is required (van
den Dool, 1994).

The AM was applied to climate research by Zorita et
al. (1995). Following this approach, Cubasch et al. (1996)
and Biau et al. (1999) empirically downscaled GCM output
to the regional scale with the AM. It was found that the AM
performs as well as more complicated empirical downscaling
methods (Zorita and von Storch, 1999). Encouraged by these
findings, the AM was further evaluated by Fernández and
Sáenz (2003) who evaluated the analog search in predictor
fields whose dimensionality had been previously truncated
by either the classical principal component analysis (PCA)
or by a canonical correlation analysis (CCA).

Matulla et al. (2004) applied the AM for the estima-
tion of local temperature and precipitation change scenar-
ios at daily scale over complex terrain like Austria (thus a
downscaling application of the AM). In their study, the au-
thors highlight the importance of choosing the appropriate
predictor variables to obtain meaningful physical links to
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the local predictand. As an example, they show that changes
in sea-level-pressure in a global scenario would fail to de-
scribe the warming produced by anthropogenic greenhouse
gas forcing, whereas the skill of sea-level-pressure to cap-
ture precipitation changes is high. On the other hand, using
additionally relative topography as predictor, local warming
is well predicted, whereas precipitation is strongly underes-
timated.

Wetterhall et al. (2005) evaluated the AM as benchmark
method for downscaling precipitation over Central Sweden,
e.g. dependent on the domain size and different similarity
measures. In a more recent study, Matulla et al. (2008) eval-
uated whether other similarity measures than the commonly
used Euclidian distance for the AM are better suited for
downscaling daily precipitation from the large scale circu-
lation provided by a GCM. They concluded that the Eu-
clidian distance performs better or at least as well as more
complicated similarity measures. In addition, they showed
that, when searching for analogous successions, a stronger
weighting of the previous three days of a precipitation event
can improve the skill of the AM. The performance of the AM
in general increases with increasing precipitation amount;
hence the AM has difficulties in accurately reproducing low
rainfall or dry days. In contrast, the AM shows good perfor-
mance in estimating dry local scale conditions from large-
scale circulation on monthly timescales.

To our knowledge, the AM has only recently been used in
climate research as a statistical upscaling tool in the frame-
work of paleoclimate. Graham et al. (2007) formally intro-
duced the AM as a “proxy surrogate reconstruction” (PSR)
using atmospheric fields from a coupled Atmosphere Ocean
General Circulation Model (AOGCM) as predictand and a set
of proxy records as predictors to reconstruct the full global
meteorological fields compatible with the information pro-
vided by the proxy records. The same technique was also
used by Trouet et al. (2009), applying the PSR as a “proxy-
model analog method” to reconstruct the North Atlantic Os-
cillation (NAO) since 1000 AD from multi-proxy records by
re-ordering the most similar surrogates from an AOGCM.
The basic idea of the AM was also used in a different ap-
proach by Guiot et al. (2010), applying a “spectral analog
method” as one part of a sophisticated model chain to recon-
struct European temperatures back to 600 AD from different
proxies. Similar to the idea of Moberg et al. (2005), differ-
ent proxies were used by Guiot et al. (2010) to reconstruct
different signals by splitting the proxies into three frequency
bands to account for low (lake or ocean sediments), mid and
high frequency (i.e. tree-rings) variations.

The principal advantage of the AM compared to regression
methods has been shown by Fernández and Śaenz (2003).
Although linear empirical downscaling methods perform as
well as the non-linear AM downscaling approach when they
are benchmarked by the correlation between reconstruction
and target, they fail to reproduce a realistic variance and the
non-normal distribution e.g. for daily precipitation is partly

lost. The same problem is also typical for upscaling meth-
ods based on linear regression which often strongly under-
estimate the variability of the predictand. This problem is
caused by the presence of noise in the predictors (von Storch
et al., 2004). Also, whereas the predictand reconstructed by
a linear method is bound to have the same probability distri-
bution as the predictor, the general advantage of the AM is
that no assumption about the probability distribution of the
data is necessary. Hence, it can be applied to predictors and
predictands with different probability distributions without
any intermediate transformation of variables. Furthermore,
the reconstruction shows no loss in variance and preserves
the spatial covariance in the predictand fields (Zorita and von
Storch, 1999). One disadvantage of the AM is that, in con-
trast to linear regression methods, the reconstructions based
on the AM cannot exceed the range of already observed at-
mospheric states, i.e. it cannot extrapolate to unprecedented
states of a possibly strongly different past or future climate.
In the daily reconstruction case, also singular extreme events,
e.g. the atmospheric conditions leading to the severe storm
flood in 1872 at the SW Baltic Sea (Rosenhagen and Bork,
2009), cannot be reconstructed if analogues are not present
in the archive of predictands.

In this study, the AM used as non-linear upscaling tool is
applied and evaluated to reconstruct High RESolution Atmo-
spheric Forcing Fields (HiResAFF) based on a limited set of
station data used as predictors. We restrict the used stations to
those spanning more than 150 yr to anticipate the further ap-
plication of the analog-reconstruction back to 1850 (Meier et
al., 2011a, 2012; Gustafsson et al., 2012) where only a lim-
ited set of homogeneous data is available. The predictands
have been generated by a high-resolution regional climate
simulation driven at the boundaries by global meteorological
reanalysis and thus the simulated fields are co-related in time
with the station data. As the model can evolve more freely
in the interior of the model domain, the temporal agreement
with observation is, however, not perfect. While some RCM
use spectral nudging (e.g. von Storch et al., 2000; Yoshimura
and Kanamitsu, 2008) to bring the simulation closer to ob-
servations, no such simulation is used in this study. The re-
sults presented here are therefore to some extent also model
dependent and provide a conservative validation of the AM
upscaling.

The structure of the paper is as follows: Sect. 2 presents
the data and methods used in the study. Different test cases
for the evaluation and statistical methods for validation are
introduced. Section 3 presents the results of different test
cases related to the robustness of the AM and a validation
of the reconstruction for the period 1958–2007. The results
are discussed in Sect. 4 before a summary and outlook on
a further application of the AM on longer time-scales is
given in Sect. 5.
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Fig. 2. Geographic positions of stations used as predictor in this
study. Green stations provide daily SLP and monthly T2M, black
stations only daily SLP and red stations only monthly T2M. The
domain of the reconstruction is indicated by the red rectangle.

2 Data and methods

2.1 Historical station data (predictor)

As daily predictor, historical station data of up to 23 sta-
tions providing daily sea-level-pressure (SLP) for Northern
Europe (71◦ N to 48◦ N, 5◦ W to 37◦ E, Fig. 2) are used.
Only stations providing at least 100 yr of data are consid-
ered in this study. Daily mean SLP data since 1850 is pro-
vided by the EMULATE project (Ansell et al., 2006). Gaps
have been filled in and the record completed until 2009 by
including data from ECA & D (European Climate Assess-
ment & Dataset) (Klein Tank et al., 2002) and different re-
search institutions. For estimates of the data quality of daily
SLP we refer to Ansell et al. (2006). Data for filling gaps
in the EMULATE stations and the updates have been com-
pared in overlapping periods. All time series were checked
for outliers and systematic break changes. Mountain stations
in the southern domain partly failed to pass this test due to
changes in the hypsometric reduction of station pressure to
sea-level. In this case, we additionally compared these sta-
tions with neighbouring stations with lower elevation. Due
to partly missing or inconsistent conversions of station pres-
sure to sea-level, the whole affected periods, rather than just
single days, were set to missing values. Additional stations
with higher elevations were omitted because daily errors are
considerably large, with deviations of several hPa compared
to neighbouring stations.

Data coverage of daily SLP is partly lower in the 1950s
and after 1990. As a consequence, the reconstruction dur-
ing these periods shows a higher uncertainty due to a re-

duced number of predictors. The effect of a reduced num-
ber of predictors with different spatial distributions is elabo-
rated in greater detail in Sect. 3.2.3. For a further extension
of the reconstruction, we also include a test case where only
six stations are used, as it would be the case when recon-
structing atmospheric fields in 1850. It should be noted that
the availability of more (sub-)daily data is still an ongoing
work with still large differences among the several countries
involved in these projects (Brunet and Jones, 2011) so that
more predictor data will become available in the future.

At daily and monthly time scales, temperature variations
at mid- and high latitudes are linked to the atmospheric cir-
culation. In particular, winter temperatures in Northern Eu-
rope are known to be strongly modulated by the North At-
lantic Oscillation (cf. Hurrel, 1995; Wanner et al., 2001).
However, at longer time scales other factors like external cli-
mate forcings, greenhouse gases, aerosols, land use, etc. may
play a stronger role. Thus, long-term trends in SLP do not
necessarily evolve in parallel to long-term trends of temper-
ature or other variables (Vautard and Yiou, 2009). There-
fore, to capture the (multi-)decadal evolution of air temper-
ature, monthly mean temperatures are reconstructed sepa-
rately using monthly station temperature (T2M) as predictor
(Sect. 2.3.4). For temperature, only 22 stations are selected
from Jones and Moberg (2003) and Auer et al. (2007), which
provide more than 100 yr of homogeneous data (Fig. 2).
Whenever possible, the data were updated from the WMO
database, ECA & D (Klein Tank et al., 2002) and the German
Weather Service (DWD).

2.2 Atmospheric fields (predictand, analogs)

Focusing on Northern Europe and the Baltic Sea region, forc-
ing fields with high spatio–temporal resolution are required
in order to capture the high complexity of Baltic Sea sub-
basins. Therefore, multivariate atmospheric fields of mean
sea-level pressure (SLP), 10 m wind (U , V ), relative humid-
ity (RELHUM), total cloud cover (TCLOUD), near-surface
temperature (T2M) and precipitation (PREC) are taken from
a climate simulation with the coupled Swedish Rossby Cen-
tre Regional Climate Atmosphere Ocean Model (RCAO;
Döscher et al., 2002) over the last decades. The RCAO is
used to numerically downscale ERA40 reanalysis data to a
horizontal resolution of 0.25◦ × 0.25◦ (∼25 km) over North-
ern Europe for the period 1958–2007 (Meier et al., 2011b).
Due to shortcomings in heat fluxes possibly related to the
sea-ice model in RCAO, fields for the mean monthly temper-
ature fields are taken from an atmosphere-only simulation
with RCA3 without ocean (Samuelsson et al., 2011) that
was additionally driven by observed sea-surface tempera-
tures (Christensen et al., 2010). The output of the simulation
is interpolated onto a regular geographical grid with daily
resolution.
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2.3 Methods

2.3.1 Basic concept of the analog-method as statistical
upscaling tool

The AM assumes that given a spatial pattern of pressure, tem-
perature or precipitation, etc. as target, it is possible to find
a similar pattern in a set of observations. As illustrated in
Fig. 1, denotingP as the vector of daily SLP observed in
six stations on 1 January 1850, the AM compares it to all
daily SLP patterns observed in January (or possibly winter
months) during the period 1958–2007 (n = 1550 days)P(u)

used as analog-pool. The day (e.g. 10 December 1963) for
which the SLP is most similar to the target pattern is taken
as the analog of 1 January 1850. In mathematical terms, the
AM simply minimizes the distance betweenP andP(u) for
eachu from 1958–2007:

min ‖P(u) − P(t)‖ . (1)

In general, for each target pattern in the reconstruction pe-
riod P(t) an analogP(u(t)) is found in the calibration pe-
riod, based on the similarities of the corresponding SLP pat-
terns. This analog mapping can be used to reconstruct fields
of other variables, different to SLP and only available dur-
ing the calibration period. In our previous example, the un-
observed temperature or precipitation on 1 January 1850 is
assumed by the AM to be very similar to the ones observed
on 10 December 1963. This assumption will be valid if the
predictor, SLP in this case, is strongly associated with the
predictands (temperature or precipitation, etc.).

Here we have chosen the Euclidian distance in Eq. (1), but
other similarity measures (Wetterhall et al., 2005; Matulla et
al., 2008) may be chosen, for instance if the data recorded
by some subset of the stations are assumed to be more accu-
rate than the others. In general, there exist no optimal settings
for the AM. They always depend on the particular purpose,
i.e. which variables and which statistical properties of the re-
construction are of main interest. In practice, these subjective
criteria for an optimal reconstruction should be defined previ-
ously before adjusting the AM accordingly. In this study, the
optimal setting aims at reconstructing physically consistent
fields of different variables based on the chosen predictor.
This means that the settings used for the AM are not mod-
ified to optimize the reconstruction of each meteorological
variable differently. Hence, the suggested higher weighting
of previous days in the analog-search to improve the skill for
reconstructed precipitation (Matulla et al., 2008) is not used
for the sake of consistency with the other variables. Only in
the temperature case, a modified approach needs to be used
(Sect. 2.3.4).

2.3.2 Standard settings and application of the
analog-method

Here, the standard setting for the AM applied for HiRe-
sAFF includes the use of the full analog-pool defined by the
time span of 50 yr covered by the RCAO simulation driven
by ERA40. The analog-pool consists of daily SLP predictor
data for the period 1 January 1958 until 30 September 2007.
In this period, the corresponding atmospheric fields (predic-
tands) are also available from the simulation (Fig. 1). The
daily reconstruction is separately produced for each of the
twelve months of the annual cycle and possible analogs of a
day in a given monthm are searched in the monthm and in
the two months straddlingm in the analog pool (M3 =m − 1,
m, m + 1). This considerably increases the size of the ana-
log pool and allows to reconstruct possible seasonal shifts
through time. In the period covered by the analog pool, a
day is reconstructed using a leave-one-out approach, i.e. the
year of the target day is excluded in the analog search (oth-
erwise the simulation would be exactly reproduced). Using
the analog pool with M3 spanning over 50 yr yields around
4500 possible analogs for every historical target day in the
reconstruction. The general effect of using smaller analog-
pools taken from different periods is evaluated in Sect. 3.2.1.
Different settings are, however, required for the reconstruc-
tion of T2M (see below).

2.3.3 Implementation of persistence in the
analog-method

In general, daily geophysical time series will display a serial
correlation. As the AM in the standard approach searches the
best analog for a defined target day, Eq. (1) does not explic-
itly optimize the search of the analog to replicate the depen-
dence between consecutive days. However, serial correlation
can still be implicitly captured by the AM if the serial cor-
relation in the predictands is physically linked to the serial
correlation present in the predictors (Fig. 10). Generally, the
serial correlation of any variable in the predictands will be
caused by several mechanisms, and it cannot be expected that
the predictor captures them all. For instance, precipitation on
dayd may in general depend on precipitation on the previous
day (e.g. accumulated soil moisture in summer) and not only
on SLP on dayd. As a consequence, the fields reconstructed
by the standard AM setting will tend to display a weaker se-
rial correlation than the original fields. However, persistence
can be additionally implemented in the AM. In order to con-
sider the persistence in daily temperature predicted by daily
SLP, Eq. (1) can be modified to search for the most similar
sequence ofn-lag days prior toP(t) including P(t). This
means that an analog has to be found now in a space of di-
mension (nlag + 1)· 23. How many days (n-lags) are optimal
for a realistic reconstruction of T2M persistence depends on
the particular application and on the relevance of capturing
the persistence in the predictand (Sect. 3.3.5).
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2.3.4 Temperature reconstruction

Since daily SLP may be only weakly connected to temper-
ature on longer time scales, the T2M fields have been re-
constructed separately using information from station tem-
perature data. Given that only monthly T2M station data are
available prior to 1900, we split up the reconstruction of
high-frequency and long-term temperature variations using
different predictors. Daily temperature anomalies are recon-
structed using daily SLP as predictor. The analog search is
restricted to the monthm = M1 of the target day because it
is not possible to distinguish differences in the seasonal cy-
cle of T2M based on daily SLP. Also, persistence is captured
searching the most similar five-day sequence including the
target day (n-lag = 4, Sect. 3.3.5, Fig. 10).

Monthly mean temperature fields are reconstructed sepa-
rately using 22 stations providing monthly mean as predic-
tor (Fig. 2). To allow seasonal shifts in monthly means, the
analog pool is extended to the two straddling months (M3).
This yields 150 possible analogs to reconstruct the monthly
mean of a given month. The monthly mean T2M fields are
interpolated in time to daily values using a sliding monthly
mean with window length 2. The daily T2M anomalies re-
constructed from the SLP predictor were then added onto
the interpolated values from the monthly T2M reconstruc-
tion to complete the T2M reconstruction. This reconstruc-
tion thus includes the low frequency variations provided by
the monthly station data and the high frequency variability
provided by the daily SLP.

2.4 Testing the robustness of the analog-method

In order to assess the effect of modified settings of the AM
on the reconstruction, several test cases are evaluated here.
In a first test case, the idealized performance of the AM is
evaluated within the surrogate climate of the RCAO simula-
tion (RCAX in T2M case). Instead of using real station SLP
as predictor, time series of daily SLP from model grid points
in the vicinity of the real stations are used as ideal pseudo-
predictors for the reconstruction. The correlation between the
reconstructed fields and the reference fields of RCAO can
be taken as benchmark of the AM’s optimal performance
regarding temporal correlation. The ideal skill is compared
with the correlation based on real SLP predictors in Sect. 3.1.

In order to estimate the robustness of the AM, a second
test evaluates the sensitivity of the AM on the size of the
analog-pool covering different periods. Whereas the final re-
construction of HiResAFF is obtained using the full 50 yr of
analogs (case A), in this test the pool is divided in two parts,
with the first 25 yr (B1 = 1958–1982) followed by a test using
the second 25 yr (B2 = 1983–2007) as analog-pool, respec-
tively. In case C, the pool is divided in 10-yr segments yield-
ing five tests (C1 = 1958–1967, C2 = 1968–1977, C3 = 1978–
1987, C4 = 1988–1997, C5 = 1998–2007). In all cases, the

AM is used to reconstruct the 50 yr covered by the refer-
ence data using standard settings. The retrieved correlations
for the different test cases are shown in Sect. 3.2.1.

In a third test, the robustness of the AM is further eval-
uated by estimating the density of suitable analogs for the
reconstruction of HiResAFF. In this test, we replace the
best analog by the next neighbouring analog, then by the
third, etc. till then-th best neighbour. For every next neigh-
bour we calculate the correlation between the reconstruction
based on increasingly poorer analogs and the reference data
(Sect. 3.2.2). The mean field correlation of the different tests
are depicted in Fig. 4. The slope of the decay in the correla-
tions as a function of the rank in similarity of the chosen ana-
log gives an estimation about the density of suitable analogs.
If the slope is relatively small, the confidence in finding ap-
propriate analogs is higher because the neighbouring analogs
are quite similar to the best analog. A steep slope, in contrast,
indicates a lower density of similar analogs .The AM is then
not able to easily find analogs that are similarly good as the
best one.

Finally, a fourth test evaluates the dependency of the re-
construction skill of the AM on changes of the number and
spatial distribution of predictors. Test cases in which the
number of stations is artificially diminished are defined and
compared to the sixth case, in which all available stations are
used in order to estimate the increased uncertainty using less
stations at different locations (Fig. 5, Sect. 3.2.3).

2.5 Validation

The evaluation of the test cases and the validation of the re-
construction of HiResAFF are done by comparing the recon-
structed fields with those of the RCAO simulation (RCAX
in T2M case). In the temperature case, the reconstructed
fields combine the information of two different models: daily
anomalies of T2M from the RCAO model and the monthly
mean T2M from RCA (Sect. 2.3.4). To avoid introducing an
artificial bias in the validation, the reconstructed temperature
was benchmarked against temperature data from both mod-
els, RCAO and RCA, combined in the same way as in the
reconstructions. This reference field is denoted hereafter as
RCAX. The rationale to validate the AM using the data from
regional model simulations is to sideline the possible defi-
ciencies of the AM itself. Using other independent data to
benchmark the AM would automatically include a contribu-
tion of the RCAO model bias, which in principle is an in-
dependent source of error not related to the AM (Sect. 4.4).
Using a leave-one-out approach, skipping always the actual
year, the comparison between reconstructions and the refer-
ence dataset does not include an artificial skill. The validation
is applied for the period 1958–2007 covered by the simula-
tion with exception of T2M, where only the period 1961–
2007 is available for the reference fields of RCAX.
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Fig. 3. Whisker-Box-Plots showing the field correlations of different test cases based on reconstructions from analog-pools of different size
and periods. The box indicates the range of local correlations between the first and third quartile representing 50 % of the local correlations
around the median (black horizontal line). The pink line represents the mean of field correlation. The whiskers indicate the spread of the
correlations containing 90 % around the median. The reference case (Ref) is based on using model SLP as pseudo-predictor. The same
stations are used for HIRESAFF (case A) but with real SLP. B1 and B2 use only 25 yr, C1–C5 only 10 yr from different periods, respectively.

Fig. 4. Density of suitable analogs for HiResAFF estimated as the
decay in daily mean field correlation as a function ofn next neigh-
bours instead of the best analog chosen from around 4500 possible
analogs. Displayed are the variables of SLP, wind speed (WS) and
PREC for January and July.

Pearson correlation on daily and monthly scale is used
to evaluate temporal covariance between reconstructions
and the reference fields. Non-parametric Spearman rank
correlation is additionally used in the daily precipitation
case and for wind speed due to their non-normal distribu-
tions. Significance levels are estimated from 2-sided t-tests
for p < 0.05 and by±Z(1+p)/2 ·

√
N−1 with Z(1+p)/2 being

the(1+p)/2-quantile of the standard distribution in the rank
correlation case (von Storch and Zwiers, 1999).

For every variable, the ratio of the variance
φ = var(REC)/var(REF) of the reconstruction and the
reference fields from RCAO is used for the evaluation of the
reconstructed variance on daily and monthly scale. A 2-sided
F-test is used for the estimation of significant deviations
with p < 0.05. For non-normally distributed variables of
precipitation and for wind speed, the significance levels
are derived by the bootstrap method (cf. Efron, 1982),
including 1000 iterations for eachN = 1500 samples. More
specifically, amoving blocks bootstrapis used to consider
the effect of the serial correlations in the daily data for
precipitation (block length = 2) and wind speed (block
length = 3) (cf. Liu and Singh, 1992; Ebisuzaki, 1997). The
block length is estimated here based on the lag at which the
autocorrelation of the daily variables becomes< 0.2.
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Fig. 5.Correlation of daily wind speeds between a surrogate reconstruction and reference fields of RCAO (RCAX for T2M) for January and
July 1958–2007 dependent on the number and distribution of SLP predictors. White shaded lines indicate areas whereh0 of zero correlation
cannot be rejected withp < 0.05.

Significance levels for mean difference of the reconstruc-
tion minus reference fields (bias) is estimated from a 2-sided
t-test with p < 0.05 and from bootstrapping for variables
with non-normal distribution. In order to test the deviation
of higher quantiles, significance levels are estimated using
“m out of n” bootstrapping, withm = 2/3n to attribute the
discontinuity of the distribution at higher quantiles (Cheung
and Lee, 2005). For the high percentiles, a block length of
one is used.

When conducting the same statistical test over a large
set of theoretically independent grid-cells, a proportion of
p grid-cells will yield false rejections of the null-hypothesis
at thep significance level even when the null-hypothesis is
correct. To test if the null-hypothesis as a whole (e.g. of no
correlation between the target and the reconstructed multi-
variate fields) can be rejected, the field significance should
be assessed (Livezey and Chen, 1983). This is performed by
counting the number of local tests that surpass the localp

significance level and comparing with thep-quantile in the
distribution of the numbers of grid-cells that would surpass
the localp level of significance under the null-hypothesis. In
practice this can be accomplished by bootstrapping. When
assessing the field significance of correlation between re-

constructions and target field, 1000 bootstrap samples of the
reconstructions are generated by re-sampling (and thus de-
stroying the possibly existing time correlation), and calculat-
ing the correlation with the target field. The number of grid-
cellsNk (k=1,1000) that surpass the localp-level of signifi-
cance are counted. The 95th quantile of the distribution ofN

sets is the 95th significance level. If the numberNreal deter-
mined from the actual reconstructions is higher than the 95th
quantile, field significance can be claimed.

To test the bias and the ratio of variances, the distribu-
tion of N under the null-hypothesis is constructed by sub-
sampling from the reconstructions 1000 bootstrap samples
and counting the number of grid-cells in which the difference
(or ratio of variances) surpasses the local significance level.
When the variable can be assumed to be normally distributed,
the local significance level is calculated from the correspond-
ing theoretical expressions (Fischer Z, t-test, F-test). For vari-
ables that are potentially not normally distributed, like daily
precipitation, the localp-significance level is determined by
standard bootstrapping of the local series of reconstructions
and the target variables as described before. On daily scale,
serial correlation is taken into account by adjusting the block
length for the bootstrapping for each variable, namely 6 for
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SLP, 3 for wind speed, rel. humidity and cloud cover, 2 for
precipitation and 10 for T2M in January and 7 for T2M in
July, depending on their autocorrelation, respectively. The
test results are presented in Tables 1–3, respectively.

3 Results

3.1 Performance of the analog-method in the surrogate
climate

For the evaluation of different reconstruction methods, state-
of-the-art climate simulations provide a very useful surrogate
climate of physically consistent atmospheric fields. Using
model grid points as pseudo-predictors, the optimum recon-
struction skill of a method can be estimated by comparing the
reconstruction with the “truth” known from the model sim-
ulation. As the model presents only an idealized and simpli-
fied estimation of the real world, the idealized testing of the
method might yield somewhat optimistic skills, e.g. because
of a lower spatial variability in the model compared to ob-
servations. Nevertheless, this idealized testing of the method
provides a good benchmark for the AMs potential skill based
on the chosen settings.

In the AM case used for upscaling, three sources of un-
certainties can be considered. The first one relates to the
noise contained in the predictor data. This noise includes er-
ror measurements or local station variability that is not re-
lated to the predictand. A pre-filtering of the predictor dataset
by empirical orthogonal functions (EOF) can be applied to
separate the signal from the noise in the predictor. In the
23 station case providing daily SLP, this approach slightly
decreased the reconstruction skill regarding correlations (not
shown). Even if the predictor data would have been per-
fectly measured, a second source of error stems from solv-
ing Eq. (1) and finding only the most similar analog present
in the archive, but not a completely equal pattern of predic-
tors. As shown in Sect. 3.2.1 below, little improvement is
achieved when increasing the analog-pool. Also, the density
of suitable analogs (Sect. 3.2.2) indicates that the availability
of analogs is saturated for the reference dataset used in this
validation.

The third aspect relates to the linkage of real predictor
data to the simulated predictor data taken from model sim-
ulations. While the relationship between the SLP predic-
tor from grid points and corresponding predictand fields in
the model world is consistent with the model physics, this
cannot be expected when real station SLP is linked to the
model fields (Fig. 3).

In order to estimate the theoretical optimal performance of
the AM, the surrogate approach using grid point SLP from
the model (grid points in the vicinity of real stations used in
HiResAFF) is compared with the reconstruction obtained us-
ing real station SLP (Fig. 3). The correlation in the surrogate
climate approach (case Ref) yields clearly higher correlations

compared to case A using real station data. The difference of
the explained variance between both casesr2(Ref)− r2(A)
for SLP, wind speed and precipitation on daily and monthly
scale is up to 10 % in January. In July, the difference is
25 % (17 %) for daily (monthly) SLP, around 12 % (18 %)
for wind speed and 7 % (13 %) for precipitation, respectively.
The large loss in the explained variance when linking real
station data to model fields need to be kept in mind in the
following evaluation, as it a priori lowers the reconstruction
skill of the AM in this case, dependent on the used model
(see Sect. 4.1).

3.2 Robustness of the analog-method

3.2.1 Dependency on size and period of the analog-pool

For the application of the analog-method, an important ques-
tion is how many analogs are needed for a successful recon-
struction for a given domain (cf. van den Dool, 1994). To
answer this question, sensitivity tests have been conducted in
which the size of the archive has been varied. Changes in the
correlations of reconstructions over the whole reconstruction
period are used as one objective measure of the skill of the
reconstructions.

Figure 3 shows the comparison of the reconstruction skill
when eight different analog pools are used. Obviously, cor-
relations do not considerably change when the analog-pool
consists of only 10 yr (cases C) compared to the full size of
50 yr (HiResAFF, case A). Only the correlation of monthly
means/sums tend to be slightly higher for case A than when
using 10 yr as in cases C. Basically, the same results are
achieved from a cross calibration and validation of 25 yr
vs. 25 yr and 10 yr vs. 10 yr of different sub periods (not
shown).

3.2.2 Density of suitable analogs

Independent from the size of the analog-pool, the availabil-
ity of suitable analogs within a given pool is evaluated by
searching then-th best analog instead of just the best analog.
In this test the archive size was always 4500 days. The de-
cay in the mean field correlation as a function of the analog
rank is shown in Fig. 4. Whereas the decrease in correlation
is rather rapid when going from the 10th to 50th best ana-
log, the slope becomes rather linear for higher ranks. As an
example for reconstructed daily SLP, the explained variance
decreases linearly with a rate of around 6 % per 100 neigh-
bours in January and 3 % for July for neighbours> 100 to the
best analog. For the first ten neighbours, the slope is larger
with already a decrease of 6 % in January and 7 % for July
for 10 neighbours, respectively.
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Table 1. Mean correlation between RCAO (RCAX for T2M) and HiResAFF on daily (left) and monthly (right) scale for January and July.
Additionally shown is the amount of local tests h [%] showing significant correlations withp < 0.05. Field significance withp < 0.05 can
be claimed for all cases according to bootstrapping test.

JAN (daily) JUL (daily) JAN (monthly) JUL (monthly)

cor(d) h [%] cor(d) h [%] cor(m) h [%] cor(m) h [%]

SLP 0.87 100 % 0.71 100 % 0.96 100 % 0.87 100 %
WS10 0.39 100 % 0.21 94.9 % 0.72 97.7 % 0.43 75.1 %
PREC 0.35 100 % 0.19 98.2 % 0.62 97.4 % 0.27 52.2 %
RELHUM 0.23 97.8 % 0.13 81.3 % 0.46 76.2 % 0.24 40.3 %
TCLOUD 0.20 91.7 % 0.13 92.2 % 0.45 75.6 % 0.34 69.0 %
T2M 0.48 100 % 0.39 100 % 0.78 98.5 % 0.65 98.7 %

Table 2.Mean ratio of variance between HiResAFF and RCAO (RCAX for T2M) on daily (left) and monthly (right) scale for January and
July. Additionally shown is the amount of local tests h [%] showing significant deviations ofφ with p < 0.05. Values in italics show no field
significance for the deviation in variance withp < 0.05.

JAN (daily) JUL (daily) JAN (monthly) JUL (monthly)

Rv(d) h [%] Rv(d) h [%] Rv(m) h [%] rv(m) h [%]

SLP 0.98 1.8 % 0.96 11.1 % 0.97 10.1 % 0.70 20.1 %
WS10 0.93 43.5 % 0.99 36.7 % 0.75 13.9 % 0.69 23.0 %
PREC 0.99 19.0 % 0.91 37.1 % 0.87 5.8 % 0.73 28.7 %
RELHUM 1.05 15.2 % 1.20 57.3 % 0.58 54.1 % 0.39 81.2 %
TCLOUD 0.99 11.2 % 1.05 22.5 % 0.62 44.2 % 0.39 92.0 %
T2M 1.07 19.4 % 1.05 24.9 % 0.87 7.0 % 0.83 0.0 %

Table 3.Difference in mean (bias) between HiResAFF and RCAO
(RCAX for T2M) for January (left) and July (right). Additionally
shown is the amount of local tests h [%] showing significant bias
with p < 0.05. Globally non-significant bias withp < 0.05 is indi-
cated by italics.

JAN JUL

1m h [%] 1m h [%]

SLP 0.04hPa 0.0% 0.34 hPa 82.8 %
WS10 −0.20m s−1 0.0% −0.32 m s−1 68.0 %
PREC −2.57mm 1.5% −8.23 mm 44.4 %
RELHUM 0.35 % 29.0 % −0.37 % 49.8 %
TCLOUD −0.30 % 10.3 % −1.20 % 51.5 %
T2M 0.17 K 20.2 % −0.03 K 3.3 %

3.2.3 Dependency on the number of predictors

In order to test the predictive skill when the number of pre-
dictors is reduced, six test cases are shown in Fig. 5. To avoid
the effect of missing values contained in the station data
when using a reduced number of stations, the tests are based
on model grid points of SLP instead of station data. The used
grid points for the different tests are shown in Fig. 5. The cor-
relations of the reconstructions with the reference fields are
shown for daily wind speeds for January and July. Only the

reconstruction skill for daily wind speed is presented here as
an example for a variable with a strong physical link to SLP
but with a high spatial variability.

In Fig. 5c1, the results have been obtained with three
predictors located over the central and southern Baltic Sea.
The correlation of daily wind speed with the reference fields
shows already high values ofr > 0.5 within the triangle
spanned by the location of the three predictors for January
and July. Adding a fourth grid point in the north (Bodø,
67◦25′ N, 14◦25′ E) in Fig. 5c2 largely extends the area
with improved correlations with at leastr > 0.4 in January,
whereas the improvement is low in July. Test cases c4 and c5
show an example where the whole field is reconstructed by
using 5 grid points close to the boundaries in c4 and an addi-
tional grid point in the centre in c5. Test case c5 shows a large
improvement of the median field correlation (r = 0.40) com-
pared to c4 (r = 0.33) in January where only the predictors
are all located at the boundaries of the domain. For July, the
improvement in c5 is reflected in broader areas with corre-
lations exceeding at leastr > 0.2 compared to c4. However,
the very low (c5) to non-significant (c4) correlations at the
eastern boundary in July can even persist at the locations of
the grid points used as predictor.

While the former test cases were rather artificially con-
structed, test case c3 shows the reconstruction skill for six
grid points representing the situation of the available real
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data in 1850. Consequently, low correlations can be expected
on daily scale at the boundaries, with no significant skill
in July for the northern and north-western boundaries. Fi-
nally, test case c6 represents the skill of the reconstruction
in the surrogate climate when all 23 grid cells (surrogate of
the 23 stations) are available (corresponding approx. to the
period 1870–1990). It should be noted that using real SLP
instead of grid point SLP from the model yields generally
lower correlations but similar spatial patterns, as shown in
Fig. 3 for the comparison of case Ref (23 pseudo predictors)
with case A (23 real stations),

3.3 Validation of HiResAFF for the period 1958–2007

The reconstructed fields of HiResAFF using the standard set-
tings described in Sects. 2.3.2 and 2.3.4 are validated with the
reference fields from the RCAO simulation (RCAX for T2M)
on daily and monthly scale. In the following only January
and July are presented, as reconstruction skills are highest in
winter and lowest in summer with other months in between.

3.3.1 Correlation

The temporal correlation between HiResAFF and the refer-
ence fields for different variables on daily and monthly scale
for January and July are shown in Fig. 6. The mean over all
local correlations of the field are given in Table 1 together
with the amount of local testsh [%] showing significant cor-
relations withp < 0.05. All variables are showing significant
field correlations at the 5 % confidence level on daily and
monthly scale, respectively.

Very high correlations are generally achieved for SLP due
to the strong physical link to the predictor and low spatial
degrees of freedom of this large-scale variable. Lowest skills
are evident over the south-eastern domain (Fig. 6a–d). Al-
though less pronounced, the general feature of lowest corre-
lation in this region is also found using model data as surro-
gate predictors in Sect. 2.4, even if an additional predictor is
used in this region (not shown).

Daily correlations of wind speeds in January are all sta-
tistically significant at the 5 % level, with high values in the
windward areas and lower values in the east and over the NW.
In July, daily correlations show a similar dipole pattern, with
high values in the west and low to non-significant correla-
tions in the east. Correlations of monthly mean wind speeds
show comparable spatial distributions in the field correlation
with clearly higher skills on average, although in January the
SE domain and in July also the NE-Atlantic and most parts
of the eastern boundary show non-significant values.

Daily precipitation in January shows generally signifi-
cant correlations with higher values (r > 0.4) for windward
coastal and mountain areas, with decreasing skill towards
the eastern and SE domain. A similar spatial pattern for the
correlation of monthly precipitation amounts in January is
achieved with generally good correlations. Daily precipita-

tion in July is reconstructed with higher correlation over
the western and the central domain, but with low to non-
significant skills in the eastern part. Monthly amounts of
precipitation in July show higher correlations over the west-
ern and partly eastern domain but non-significant values for
northern and south-eastern regions and the Baltic Sea.

Daily correlations of relative humidity in January are
mostly significant with a dipole pattern of high values in the
NW vs. low values in the SE. This is also the case for corre-
lations of the monthly mean in January, with non-significant
correlations in the SE domain and most parts of the Baltic
Sea. Daily correlations of relative humidity in July are gen-
erally very low, with higher values over the western domain
and low to non-significant values over the eastern domain.
Monthly mean humidity in July shows higher correlation
over land and the NE-Atlantic but low and partly negative
correlations over the Baltic Sea, the SE domain and UK.

Reconstructed daily cloudiness in January shows non-
significant correlations over the NE-Atlantic and the SE,
with highest values over the windward coastal areas. A sim-
ilar pattern exists also for the monthly mean cloudiness in
January, with much higher correlations except for the NE-
Atlantic and the SE. Daily correlations of cloudiness are very
low in July, with slightly higher values for windward coastal
areas. The correlations for the monthly mean cloudiness in
July show higher values for the central domain with a general
heterogeneous pattern with non-significant values, i.e. over
the NE-Atlantic and N-Scandinavia and southern regions.

3.3.2 Variance

The ability of the AM to realistically reconstruct the high-
frequency daily to monthly variability is evaluated by calcu-
lating the ratio of variance between HiResAFF and the ref-
erence fields rv =φ =σHiResAFF/σRCAO. Figure 7 shows the
ratio of varianceφ for the different variables for January and
July on both time scales. The field average ofφ and the num-
ber of local 2-sided testsh [%] for which the null-hypothesis
of no significant deviation in variance have to be rejected at
a significance level ofp < 0.05 are given in Table 2.

Daily variance of SLP tends to be slightly underestimated
in the reconstruction, with significant underestimations at
the eastern boundary in January and the central to western
Baltic Sea in July. Variability on monthly scale in January
and July shows a strong underestimation (φ < 0.5), i.e. over
the SE domain.

The variance of daily wind speeds tends to be mostly
underestimated in January, while mostly significant devia-
tions in variance of both signs are reconstructed for July.
On monthly scale, regions with too low reconstructed vari-
ance dominate in January at the southern and eastern bound-
ary, over the North Sea and those parts of the Baltic Sea be-
ing usually covered by sea-ice. Realistic variances are recon-
structed over most areas of the central domain, with slightly
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Fig. 6. Correlation maps on daily (left column) and monthly (right column) scale between HiResAFF and the reference fields of RCAO
(RCAX for T2M) for January and July 1958–2007. White shaded lines indicate areas whereh0 of zero correlation cannot be rejected with
p < 0.05.

overestimated variance over the NE-Atlantic. For July, the
reconstructed variance on monthly scale is underestimated
with heterogeneous spatial distribution.

Variances of daily precipitation are on average realisti-
cally reconstructed for January, with significant underestima-
tion i.e. over the North Sea, and overestimation over conti-
nental regions in the E and SE. For July, variance of daily
precipitation shows regionally very heterogeneous under-
and overestimations. Variances of the monthly precipita-
tion amounts for January tend to be slightly underestimated
in the reconstruction, with higher variance over the SW
and NE and lower variance over the central and S do-
main. In July, variance is underestimated with spatially
heterogeneous deviations.

Variance of daily humidity in January is, on average, re-
alistically reconstructed with exception of significant over-
estimations in the E domain. For July, the daily variance
is overestimated for large areas over the NE-Atlantic and
Fennoscandia, with more realistic values in the central and
southern domain. On monthly scale, variance in January is
strongly underestimated (φ � 50 %), i.e. in the central and E
domain, with more realistic values only over the SW, North
Sea and partly along the Norwegian coast. Monthly vari-
ance of humidity in July shows very strong underestimation
(φ � 50 %), i.e. over the SE of the domain.

Daily variance of cloudiness is reconstructed realistically,
on average, with a slight tendency to underestimation in the
E-NE domain in January. In contrast, the regions in the E-
NE show overestimated variance in addition to large parts
of the NE-Atlantic in July. On monthly scale, variance is
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Fig. 7. Ratio of variance on daily (left column) and monthly (right column) scale between HiResAFF and the reference fields of RCAO
(RCAX for T2M) for January and July 1958–2007. White shaded lines indicate areas where the reconstruction shows significant deviations
in variance withp < 0.05.

clearly underestimated, with exception of the northern and
SW domain in January. For July, variance is strongly under-
estimated (φ � 50 %) for all regions.

The daily variance of the T2M reconstruction of Jan-
uary and July is realistically reconstructed with regional
deviations of both signs. In July, the daily variability is
underestimated i.e. over most parts of the Baltic Sea and
the NE-Atlantic, while overestimated on land. Variances on
monthly scale in January and July are underestimated but
with mostly non-significant deviations. However, for January
the southern boundary shows a significant underestimation in
variance while being too high over the North and Baltic Sea.

3.3.3 Reconstruction bias

The bias in mean (monthly sum in precipitation case)
1m =mHiResAFF− mRCAO of the reconstruction is shown in
Fig. 8. The average bias of the field1m and the number of lo-
cal testsh [%] showing significant deviations withp < 0.05
are summarized in Table 3.

Reconstructed SLP fields show no significant difference
in mean for January. The east–west dipole indicates up
to 0.4 hPa too high mean SLP over the Norwegian Sea
and slightly too low values in the eastern part. In July,
however, SLP in the SW domain is significantly too low
(down to−1.7 hPa) while values in central NE domain are
significantly too high (up to +1.4 hPa).
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Fig. 8.Mean bias of HiResAFF minus the reference fields of RCAO
(RCAX for T2M) for January (left column) and July (right col-
umn) 1958–2007. White shaded lines indicate areas where the re-
construction shows significant bias in mean withp < 0.05.

With exception of the NE domain, wind speeds tend to
be in general significantly underestimated, i.e. over oceanic
regions. Wind speeds are generally underestimated in the
central domain and mostly pronounced over the North
Sea, while the NW and SE domain shows significantly
higher wind speeds.

Reconstructed precipitation amounts show mostly non-
significant deviations in January, with lower values over the
seas and too high precipitation amounts over continental ar-
eas towards the E. In July, precipitation amounts are under-
estimated, i.e. over Fennoscandia, and overestimated over
central Europe.

Relative humidity shows a tendency to overestimation in
January. In July, deviations show a spatially heterogeneous
picture dominated by regions with significant underestima-
tion, i.e. over the seas. Mean total cloud cover is underes-
timated in January over most areas, with exception of the
E-SE domain showing overestimation of 1–2 %. Deviations
in mean in July show a heterogeneous picture with signifi-
cant deviations in both directions and an overall tendency to
underestimate cloudiness.

Mean T2M in January shows a warm bias, i.e. over
land most pronounced in the eastern and southern domain,
while T2M over seas show only small deviations. T2M in
July shows generally small non-significant deviations with a
tendency to a small cold bias.

In addition to the bias in the mean, we calculated also
the deviation of higher percentiles of the reconstruction mi-
nus the reference fields for daily wind speed and precipita-
tion for the 50-yr period. Using the “m out of n” bootstrap
(Sect. 2.5) to estimate significant deviations of higher per-
centiles, we find no significant deviation, withp < 0.05 for
the 90th, 95th or 99th percentile (not shown), while signifi-
cant deviations partly occur around the mean value (Fig. 8).
The realistic reconstruction of extremes can be explained by
the AM’s ability to reproduce the correct frequency distri-
butions of different variables (Zorita and von Storch, 1999;
Ferńandez and Śaenz, 2003), which is demonstrated below.

3.3.4 Frequency distributions

The ability of the AM to reproduce the frequency distribu-
tion of the different meteorological variables of HiResAFF
is shown in Fig. 9 for January and July, respectively. The
“true” reference distributions of RCAO (RCAX for T2M) are
shown as shaded lines compared to the distributions recon-
structed at the same location in HiResAFF (solid lines). In all
cases, the general distribution types are clearly reconstructed
using daily SLP as predictor, including the upper and lower
tails and extremes.

In the SLP case, examples of frequency distributions are
shown for grid points showing the latitudinal changes in
the distribution between de Bilt (52◦ N, 5.25◦ E) vs. Ha-
paranda (65.5◦ N, 24◦ E). The reconstruction clearly repro-
duces the different climate regimes regarding circulation,
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Fig. 9. Comparison of the frequency distributions between reconstruction (HiResAFF, solid lines) and reference fields from RCAO (RCAX
for T2M) (shaded lines) for different variables for January and July. Grid points are chosen in the vicinity of de Bilt and Happaranda in thr
SLP case to highlight latitudinal changes. For other variables, Bergen and Saint Petersburg are chosen to depict differences between more
maritime-advective (Bergen) and continental (Saint Petersburg) climate regimes. Embedded are the scatter plots of the regression between
the reconstructed and simulated distributions. Note different usage of scaling (log, and ln).

with prevailing westerly flow and high occurrence of lows in
high latitudes visible in the broader distribution and the shift
towards lower pressure (Haparanda), compared to de Bilt
showing a more narrow distribution shifted towards higher
pressure, i.e. in July.

For the other variables, distributions at two grid points
are shown as examples focusing on meridional changes be-
tween Bergen (60.25◦ N, 5.25◦ E) – representing maritime-
advective conditions – and St. Petersburg (60◦ N, 30.25◦ E)
– representing more continental conditions. As indicated
by the embedded scatter plots in Fig. 9 for the differ-
ent variables, a linear regression of the frequency distribu-

tions of the reconstruction with those of the RCAO yields
slope parameters very close to 1 with explained variances
r2 > 0.95, with exception of January T2M in St. Petersburg
(r2 = 0.91).

While the reconstructed frequency distributions of wind
speeds do not show systematic deviations, the frequency of
wind directions slightly differs around the main wind direc-
tions. In the example of Bergen, the wind direction in Jan-
uary tends towards more SSE and SSW direction compared
to the reference fields, while SE directions are slightly under-
estimated. Also for the St. Petersburg case, wind directions
from WSW in July are overestimated in the reconstruction
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compared to the reference fields. However, it should be noted
that the large bins of 22.5◦ in the wind rose make the fre-
quency counts sensitive to small directional changes between
neighbouring bins, i.e. around the main wind directions.

The discontinuous distribution of relative humidity partly
shows deviations for high values, e.g. in the case of Bergen
for July. The extremely high frequency of very high total
cloud cover in January for St. Petersburg is fully reproduced
in the reconstruction. The general distribution of daily pre-
cipitation is also reconstructed well. Note that the natural log-
arithm of the total frequencyN is used here to highlight de-
viations of high to extreme precipitation events with low fre-
quencies at the upper tail of the distribution. Due to the large
bin intervals of 5 mm and the logarithmic scale forN , de-
viations between neighbouring bins appear larger, while the
general distribution does not deviate considerably. However,
mismatches in the magnitude of strong precipitation events
should be expected due to the locally very heterogeneous
occurrence of strong rain events.

The frequency distributions for daily temperature based
on the combined approach of multivariate predictors
(Sect. 2.3.4) are in good agreement with the reference fields
for the given examples. Note that small bins of 2 K are used
for the calculation of the frequencies to highlight deviations
around the mean value. The increasing warm bias of HiRe-
sAFF towards the E (Fig. 8) is also visible for the T2M distri-
bution of St. Petersburg in January. While the lower tail of the
distribution of extremely cold to cold (T <−5◦C) tempera-
tures does not deviate considerably, the frequency of temper-
atures between−5◦C and 0◦C are clearly underestimated,
while the right tail of warmer temperatures is overestimated,
leading to the warm bias. As indicated also for the other T2M
distributions including July in Fig. 9, largest deviations occur
around the mean value leading to a broader distribution of the
reconstruction compared to the reference fields.

3.3.5 Auto-correlation

Figure 10a shows the reconstructed auto-correlation of dif-
ferent variables compared to the reference fields for January
and July. As an example, a grid point in the centre of the do-
main in the vicinity to Stockholm (59.25◦ N, 18◦ E) is chosen
although other locations would show little difference. In the
SLP case, the serial correlation is almost realistically recon-
structed with only a slight underestimation. In the daily wind
speeds case, serial correlation is at least partly reconstructed
but clearly lower than in the RCAO simulation. The already
very low persistence in daily precipitation is reconstructed in
January but not in July. For relative humidity and total cloud
cover, the AM fails to reconstruct the considerable persis-
tence in the reference simulation.

For daily T2M, two reconstructions are compared in
Fig. 10a based on different settings used for the AM. In
light blue and orange, the standard-setting T2M reconstruc-
tion is shown (Sect. 2.3.2) without implementation of persis-

tence in the AM. In this case, the high serial-correlation of
the SLP predictor does not carry over to high persistence in
T2M. Hence, the AM is not able to reconstruct the important
memory in daily T2M.

For this reason, the alternative temperature reconstruction
of HiResAFF (Sect. 2.3.4) aims to replicate the observed
persistence of the predictand by choosing the most simi-
lar succession in the previousn-lag = 4 days instead of only
the best analog of the target day. Although it turns out that
this approach still underestimates the persistence, the recon-
structed autocorrelation shows a very clear improvement. Us-
ing n-lag> 4 further improves the daily persistence towards
the simulated values (not shown). However, with increasing
value ofn-lag it also becomes increasingly difficult to find
different analogs for two successions that differ only in one
or two days. The result is that the method tends to identify
the same analog for consecutive days, which is unrealistic.
There is also a price to be paid for improving the time per-
sistence in the reconstructions, since the selected analog se-
quence of days will not in general contain the best analog
for the target day. As a consequence, the mean field correla-
tion of the reconstruction with the reference field decreases
with increasingn-lag value used in the AM reconstruction
(Fig. 10b). The choice of the value ofn-lag thus depends on
a trade-off between achieving a good daily persistence and a
smaller reconstruction error.

In the setting just described, all days in the sequences lead-
ing to the target day are weighted equally in the search for
an analogue sequence. A compromise between the standard
setting and the one just described is to weight the days in
the sequence unequally, with diminishing weights applied
to days farther apart from the target day. Here, a weighting
scheme that is proportional to the observed serial correlation
in the predictand has been applied. An example is the model
grid point close to Stockholm. The autocorrelation over four
days, normalized to yield a sum of 1, yields 0.45, 0.27, 0.17
and 0.11, respectively. A reconstruction with weightedn-
lag = 4 yields an autocorrelation of the reconstruction of 0.63,
0.31 and 0 for the example of a grid point close to Stock-
holm in January. Although the autocorrelation strongly im-
proves for lag 1 day, it strongly decays to 0.3 for lag 2 days
and disappears for a lag of 3 days. In contrast, when using
equal weights for alln days in the sequence, the autocorre-
lation improves with a much slower decay. For the example
in Fig. 10a for January, equally weightedn-lag = 4 yields an
autocorrelation for T2M of 0.70, 0.48, 0.34 and 0.21.

4 Discussion

4.1 Analog-upscaling in the surrogate climate vs.
observations

The comparison of the optimal performance of the AM in
the surrogate climate of RCAO (case Ref.) with the recon-
struction (case A) using real station data as predictor shows
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Fig. 10.Effect of implementing persistence in the analog-reconstruction.(A) Reconstructed daily auto-correlations of HiResAFF (solid lines)
dependent on the used n-lag in the AM with RCAO and RCAX (shaded lines) for January and July at a grid point close to Stockholm. The
test cases (light blue, orange) for T2M show the daily serial-correlation if T2M is reconstructed using the standard settings from Sect. 2.3.2.
(B) Changes of daily (top) and monthly (bottom) mean field correlation between reconstruction and RCAO (RCAX) for different variables
for January und July dependent on the used n-lag for the AM.

a clear loss in the explained variance when linking real data
to model fields (Fig. 3). In Sect. 3.1 we separated three dif-
ferent sources of errors which might affect our reconstruc-
tion. As a first aspect, the data quality of the station read-
ings does not seem to explain the large discrepancies to
the surrogate climate approach. When the station data are
pre-filtered by an EOF analysis, truncating the data by retain-
ing only the leading EOFs, the reconstruction skills do not
change much. Also, the second aspect of having not enough
suitable analogs seems to be not relevant given that the re-
construction skills obtained with much smaller archives are
also very similar (Fig. 3 and Sect. 3.2.1). The reason for
the loss in the explained variance of the reconstruction com-
pared to the optimal skill of the AM in the surrogate climate
lies, therefore, in the third aspect of linking observations to
model fields.

Since RCAO and RCA3 are driven only at their lateral and
lower domain boundary by ERA40 and SST (in the case of
RCA3), the model develops its own solution in the interior
domain which may lead to differences compared to obser-
vations. The deviations will be generally larger in summer
than in winter due to the reduced boundary forcing of the
large-scale in the summer season (Déqúe et al., 2007). Con-
sequently, the discrepancy is larger in July than in January
(Fig. 3) when temperatures at mid and high latitudes are
known to be less connected to the large-scale atmospheric
circulation. Precipitation and cloudiness in summer are also
strongly determined by small scale processes related to con-
vection. As RCMs are designed to parameterize those pro-
cesses, the simulation has more degrees of freedom on the

local scale, possibly leading to deviations from observations
in the interior of the model domain. In addition, one might
speculate that these processes cannot be fully captured by
the predictor field with a density of only 23 stations. How-
ever, as indicated by the surrogate approach using SLP data
from 23 model grid points in the vicinity to the real stations
as predictors, the skill of the AM is comparably high.

One possibility to reduce the gap between the model sim-
ulation and observations – and at the same time improve the
correlation of the reconstruction, i.e. on daily scale – is the
application of spectral nudging when numerically downscal-
ing reanalysis data (e.g. von Storch et al., 2000, Yoshimura
and Kanamitsu, 2008). This approach has been shown to
bring the model closer to observations also in the inte-
rior of the model domain. However, like in the case of the
used RCAO and RCA3 models, many regional models are
not using spectral nudging so far. Our analysis can there-
fore be considered as a realistic application of the AM with
the potential of considerable improvement through usage of
spectral nudging for the regional climate simulation.

4.2 Robustness of the analog-method

The results in Sect. 3.2.1 and Fig. 3 show that the AM, and
hence the reconstruction of HiResAFF, is very robust con-
cerning the size of the analog-pool. The relatively small dif-
ference in the level of correlations achieved for a reconstruc-
tion when selecting the analog from 50 or only 10 yr demon-
strates that the amount of analogs is more than sufficient, at
least for the period 1958–2007. Similarly, the results suggest
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that further expanding the analog-pool will not considerably
improve the reconstruction in this case. The similar level
of correlations when using different sub-periods in Fig. 3
demonstrates that the reconstruction skill of the AM is in-
dependent from the choice of the calibration and validation
period. The AM will remain stationary also on longer time
scales as long as the climate (in absolute values or spatial
patterns) does not evolve outside the range of observations in
the analog-pool.

Testing the density of suitable analogs contained in the
analog-pool (Sect. 3.2.2, Fig. 4) additionally confirms that
the availability of suitable analogs is high for HiResAFF.
Omitting always the best analog, which is already a dras-
tic artificial deterioration when being used for every analog,
would still lead to a relatively good level of correlation. In
the same time, the steep slope in the correlations obtained
with the first 10 to 50 neighbours indicates that the AM will
to some extent depend on the analog-pool. This slope gives
only a relative measure about the density of the analogs de-
pendent on the current dataset. Comparing the slope with
those achieved from a reconstruction of another region could
be used to estimate whether different regions need larger
analog-pools than other regions (e.g. dependent on the large-
scale flow or topography etc.). The density might, therefore,
be not only dependent on the size of the analog-pool but also
on the size of the domain, the complexity and hence the geo-
graphical region.

The third test deals with the question of which effect
the number of used predictors and their geographical dis-
tribution has on the reconstruction skill, namely correlation
(Sect. 3.2.3, Fig. 5). For the presented example of daily wind
speed in January und July, the results indicate that in winter a
relatively small number of predictors of three to six yields al-
ready promising skills due to the dominating large-scale forc-
ing. While even regions not covered by the predictor show
significant correlations in January, meso- to local scale vari-
ations in summer yield considerable lower skills with mostly
non-significant correlations in remote parts of the domain if
only a reduced number of predictors is used. As the analog-
upscaling always involves atmospheric fields from a regional
climate model, testing of different numbers and locations of
predictors provides a very helpful meta-test to find a suitable
size and location of a domain. In addition, these test cases al-
low the estimation of uncertainties of a reconstruction related
to, e.g. a decreased number of predictors such as missing val-
ues or less data back in time. As in the example c3 in Fig. 5
representing data availability in 1850, relatively high corre-
lations can still be expected over the Baltic Sea region while
little skill can be expected for remote regions, i.e. in summer.

4.3 Validation of HiResAFF

4.3.1 Correlation

The reconstruction skill of the AM regarding correlations on
daily scale in January and July clearly shows a dependency
from the westerly flow for all variables with exception of
cloudiness. This can be explained by using SLP as predic-
tor. Hence, correlations show a dipole pattern with higher
values towards the W and lower values towards the E and
SE. It should be noted that the higher correlations in W are
achieved with a low station density in the western domain
(Fig. 2) while the high station density in the central domain
does not considerably improve the skill towards the eastern
domain. Cloudiness is in contrast more dependent on the area
covered by a higher density of stations. The temperature re-
construction yields relatively good correlation skills on daily
scale although daily anomalies are only predicted by daily
SLP with implemented persistence of 4 days (Sect. 2.3.4).

On monthly scale, the E–W dipole pattern displayed by the
correlations is also visible for SLP, wind speed, precipitation
and partly relative humidity in January. In July, small-scale
convective processes lead to spatially more heterogeneous
skills for precipitation and humidity with no skill over the
Baltic Sea for humidity. Reconstructed monthly mean T2M
shows very high (January) to high (July) correlations over
land with low skill over the NE-Atlantic in January and ad-
ditionally the North Sea in July. This can be explained by
the chosen predictor data of monthly mean T2m that re-
flects the temperature on land apart from rather slow and
therefore differing changes in sea-surface temperatures of the
North Atlantic or the North Sea. The correlations obtained
for monthly cloudiness are satisfactory given that no suitable
predictor is available for the reconstruction.

4.3.2 Variance

Based on the results in Sect. 3.3.2, it can be concluded that
the AM yields on average realistic values of reconstructed
high-frequency variability on daily scale. Hence, the advan-
tage of the AM of no loss in variance in the reconstruc-
tion for downscaling precipitation (Zorita and von Storch,
1999; Ferńandez and Śaenz, 2003) is valid also for upscaling
on daily scale for different variables. However, on monthly
scale, the variance is on average underestimated for all vari-
ables, indicating that daily SLP cannot fully predict lower
frequency variations. This is related to a shorter time per-
sistence of the reconstructed fields, which leads to a lower
variance when the fields are time filtered. Regarding the loss
of variance on monthly scale, the variables form three groups
with SLP, wind speed and precipitation showing an underes-
timation of not more than 30 %, humidity and cloud cover
with 40 % (January) to 60 % (July) and T2M with only 10 %
(January) to 20 % (July).
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The relatively good performance of the T2M reconstruc-
tion based on the combination of monthly means recon-
structed separated from daily anomalies (Sect. 2.3.4) indi-
cates that a further improvement might be possible also for
other variables if different scales are reconstructed sepa-
rately. This seems to be important for, e.g. monthly mean
humidity and cloudiness, where daily SLP is not very well
suited to predict their variations on longer time-scales. The
disadvantage of reconstructing low-frequency variations sep-
arately, e.g. using also different variables (proxies) for differ-
ent scales as predictor (Moberg et al., 2005), is that many
more analogs are needed than are usually present in a 50 yr
period in contrast to daily analogs.

4.3.3 Bias

Regarding the deviation in mean (monthly sum for precipita-
tion) of HiResAFF for the different variables (Sect. 3.3.3), an
E–W dipole pattern can be seen in January for variables with
a strong physical link to SLP− SLP, wind speeds and precip-
itation. This is also the case for cloudiness and temperature.
In January, wind speed, precipitation and also cloudiness
show negative bias for the western and central domain largely
affected by the westerly flow while overestimation towards
the E coincides with the transition to continental conditions.

The remarkable bias of both signs for SLP in July leads to
a different latitudinal gradient in the pressure fields of the re-
construction compared to the model simulation. The reason
for this large deviation in the reconstruction is unclear. Obvi-
ously, pressure fields in July are not adequately reconstructed
according to the RCAO simulation driven by ERA40, al-
though SLP is used as predictor. Together with the large gap
regarding correlations in the surrogate approach compared to
those of HiResAFF for July (Fig. 3), the hypothesis that dis-
crepancies between observed SLP and simulated SLP seem
to be model dependent, is further supported. A further inves-
tigation of this feature would however require a inter-model-
comparison which is beyond the scope of this paper.

In the case of winter T2M, a clear warm bias domi-
nates over land whereas the Baltic Sea shows only a small
bias compared to a cold bias over the North Sea and the
NE-Atlantic. In summer, partly significant cold bias is re-
constructed for continental regions in the SE but also N-
Scandinavia. Humidity and cloud cover show spatially het-
erogeneous bias of both signs in July due to dominating
small- to meso-scale processes. Precipitation shows mostly
significantly too low precipitation amounts in July.

4.3.4 Reconstruction of frequency distributions and
autocorrelation

From the results shown in Fig. 9, the ability of the AM to re-
construct realistic probability distribution of all variables is
evident as a typical property of the AM method in general
(Zorita and von Storch, 1999; Fernández and Śaenz, 2003).
In principle, the AM would also be able to reconstruct the

observed probability distributions even if the predictor had
no predictive skill at all, since the AM just re-orders the pre-
dictand data in time. Hence, the challenge for the analog-
upscaling (or downscaling) is to achieve good temporal cor-
relations between the reference and reconstructed variables
and a realistic persistence in the reconstructed fields.

Owing to the memory/persistence in the climate system,
a typical property of daily time series of atmospheric vari-
ables is their non-zero serial-correlation. While – depen-
dent on the variable – consecutive days are not indepen-
dent from each other, the AM used in the standard approach
(Sect. 2.3.2) does not take this persistence explicitly into ac-
count, since the analogs for two consecutive days are inde-
pendently searched. Whether serial-correlation is still recon-
structed by the AM fully depends on whether or to which ex-
tent the memory contained in the SLP predictor data is also
related to the memory of the predictands like humidity or
temperature, etc. As shown in Fig. 10a, realistic persistence
is therefore only partly reconstructed by the AM for variables
with a close link to daily SLP as predictor.

For T2M, the alternative approach of explicitly introduc-
ing persistence over four days (n-lag = 4, Sect. 2.3.3) when
searching for analogs shows a clear improvement in the
reconstructed autocorrelation. In this case, SLP is used to
search for the best block ofn-lag days, while the persistence
of T2M stems from the memory contained in the block of
consecutive days with lengthn. The disadvantage here is that
the best analog for a given day is not necessarily contained
in the best block ofn days. As a consequence, the usage of
n-lags> 4 would lead to a decrease in the field correlation
(Fig. 10b). Which approach is used depends in the end on the
purpose of the study and the question of whether persistence
of different variables is more important than to find the best
analogs for single days.

4.4 Added-value vs. bias when using model fields as
analogs

For the evaluation of the AM and the validation of HiRe-
sAFF, we chose the fields from the regional climate model
RCAO (RCAX in T2M case) as reference. Using a leave-
one-out approach for the reconstruction, skipping always
the actual year from the analog pool, the fields are tempo-
rally independent but share the same physics/properties and
model bias for the different variables. The principal added-
value of using fields from state-of-the-art RCMs as anal-
ogous fields relates to their physical consistency and the
highly resolved regional to local features. Using the AM for
upscaling, this study shows that a relatively sparse density
of stations (proxies) can be used to predict corresponding
atmospheric fields. The advantage of the AM compared to
interpolation or regression techniques is that the fields them-
selves do not need to be reconstructed from the data – which
would be impossible regarding physical consistency based
on statistical methods.
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However, as already mentioned, comparing the recon-
struction with different observations, potential users of HiRe-
sAFF or similar reconstructions should be aware of the addi-
tional bias contained in the forcing fields, which stem from
the used atmospheric fields of the ERA40 driven RCAO
(Meier et al., 2011b) or RCA3 (Christensen et al., 2010) sim-
ulation. This model bias is principally independent from the
bias caused by the AM shown in this study but will affect
the reconstruction e.g. when being used as forcing data. As
shown in Fig. 3 comparing the reconstruction in a surrogate
climate (case Ref) with HiResAFF (case A), considerable de-
viations also in time are possible when linking observations
to models driven by reanalysis data only at their boundaries
and without spectral nudging (Sect. 4.1).

The chosen RCAO is a state-of-the-art RCM specially de-
signed to interactively couple the air–sea–ice fluxes with the
Baltic Sea ocean model. As shown by Meier et al. (2011b),
the coupled ocean leads to a significant improvement
of simulated winds over the Baltic Sea compared to an
atmosphere-only version (RCA3). However, besides typical
deviations in temperature and precipitation, etc., also the
treatment of wind in different RCMs is important when using
the reconstruction as forcing fields. As shown by Rockel and
Woth (2007), RCMs tend to simulate generally too low wind
speeds for higher percentiles when no gustiness correction is
applied to the model output. As the used RCAO currently do
not provide this correction, high wind speeds tend to be sys-
tematically underestimated already by the used fields, regard-
less of the AM’s skill to reconstruct extreme wind speeds.

Based on the results shown in Fig. 3 and the discussion
in Sect. 4.1, the analog-upscaling is always to some extent
model dependent. In general, different models and settings
from those used for HiResAFF can be used and the choice
depends in the end on the users preferences. One aspect re-
garding the reconstruction of forcing fields, e.g. for ocean
and ecosystem models, is related to the possibility of us-
ing the same RCM for the reconstructed fields and scenario
runs for future climates (Meier et al., 2011a, 2012). In this
case, the atmospheric forcing remains consistent regarding
the properties of the model (e.g. model bias etc.) throughout
the whole time period. This might be an important advan-
tage for detection and attribution studies related to ecosystem
modelling.

5 Summary and conclusion

The AM used as nonlinear upscaling tool has been evalu-
ated to reconstruct high-frequency variability of multivari-
ate atmospheric fields on daily and monthly scale for a 50-
yr period. Based on up to 23 stations providing daily SLP
as predictor, the AM is suitable to successfully reconstruct
variables with a strong physical link to SLP, i.e. atmospheric
fields of SLP and wind. For the wind reconstructions, the
temporal correlations between HiResAFF and the reference

simulation indicate a dependency on the intensity of the
westerly flow. This means that the dominating large-scale
circulation over the western domain yields higher reconstruc-
tion skills towards the NE-Atlantic and decreasing skill over
the eastern and southern parts of the domain. The decrease
in skill towards the east is most likely caused by the transi-
tion to more continental climate conditions with less influ-
ence of intense westerly winds and in contrast higher spatial
variability. In order to successfully reconstruct atmospheric
conditions off the coast and/or over complex topography, the
AM needs more local predictors than for regions being better
described by the large-scale circulation only.

This is also partly the case for precipitation. Reconstructed
precipitation fields show a clear seasonal difference in cor-
relations with very high skill during winter related to the
dominating large-scale advective processes. The regionally
lower skill during summertime may be attributed to local
small scale convective processes which cannot or can only
barely be captured by the large-scale SLP predictor field.
Limitations within the RCAO simulation are a possible ex-
planation for additional deviations due to not adequately re-
solved small-scale processes in the simulation, e.g. related to
convection. The reader should be reminded here that Mat-
ulla et al. (2008) suggested different settings for the AM
when reconstructing precipitation for downscaling. No such
optimization is evaluated here to keep the different fields
physically consistent.

For the reconstruction of cloudiness and relative humid-
ity, daily SLP was also used as predictor. Due to the com-
plex nature controlling the temporal and spatial variability
of these two variables, only weak but still significant corre-
lations between HiResAFF and the reference simulation are
achieved over many regions. It should be noted that low re-
construction skills for these variables might also be caused by
a different physical link in the model and in reality between
SLP and these variables. The marked regional differences be-
tween land and ocean regarding correlation skills likely indi-
cate that SLP is not simultaneously suitable to predict other
variables for both surface types. The strong underestimation
of variance in cloudiness and humidity on monthly scale in-
dicates that daily SLP is not a suitable predictor in this case
on longer time scales. The advantage of the AM is here re-
stricted to the physical consistency of the fields, providing
mostly satisfying correlations for both variables on monthly
scale together with a realistic reproduction of probability dis-
tributions and their regional modifications represented in the
regional climate simulation.

Due to the weak physical link between SLP and air
temperature, monthly mean temperature fields were recon-
structed using additionally 22 stations providing monthly
mean temperatures as predictor. The idea of separating the
reconstruction of different time scales using different predic-
tors as in the case of T2M (Sect. 2.3.4) is similar to the ap-
proaches of Moberg et al. (2005) and Guiot et al. (2010) and
might be used also for other variables or multi-proxies when
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applying the AM. In this case, however, two aspects need to
be considered. First, a meaningful variable for the predictor
is required e.g. to capture precipitation changes that are re-
lated to thermodynamic (in contrast to simply dynamic) pro-
cesses (Matulla et al., 2008). Second, the strongly reduced
number of available analogs should be kept in mind when
searching for monthly or even seasonal patterns instead of
daily analogs.

In the case of T2M reconstruction in this study, the size
of the analog pool of monthly data is considerably reduced
compared to the daily data. However, a first evaluation of
the long-term trends and low-frequency variability shows a
good agreement with long historical observations over the
Baltic Sea region (Gustafsson et al., 2012) when searching
for monthly analogs also in neighbouring months (M3 pool,
Sect. 2.3.4). The high-frequency temperature anomalies re-
constructed by daily SLP, which are added onto the time-
interpolated monthly mean T2M, show seasonally different
skill for correlation and variance. Introducing persistence
over four days (n-lag = 4) in the analog search considerably
improves the replication of serial correlation in daily temper-
atures, which is important for, e.g. the forcing of ecosystem
(biochemical) models. Using daily near-surface temperature
from model grid points as pseudo-predictors, the AM also
yields very high reconstruction skills for near-surface tem-
perature fields (not shown). Hence, digitized and homoge-
nized daily historical near-surface temperature observations
will be needed as predictor in subsequent studies to further
improve the daily temperature reconstruction.

From the evaluation of the 50 yr presented in this study,
it can be concluded that the reconstructed dataset of HiRe-
sAFF and the AM used as nonlinear upscaling tool is able to
realistically replicate the high-frequency variability on daily
and, with the exception of humidity and cloudiness, also on
monthly scale. The frequency distributions and temporal cor-
relations of multiple meteorological variables are well recon-
structed. On daily scale, SLP and wind provide high con-
fidence in a realistic reconstruction of extreme values with
a high temporal and spatial co-variability consistent to the
reference fields. This is important, for example, for ocean
and ecosystem models and regions with complex topography
like the Baltic Sea. The reconstructed fields of near-surface
temperature, relative humidity, cloudiness and precipitation
show realistic statistical properties and physical consistency
on a daily scale with increasing confidence in the monthly to
seasonal correlations compared to the reference fields. The
monthly and seasonal resolution provides reasonably high
quality when used as meteorological forcing fields.

Based on the successful validation of the analog-upscaling
for the 50-yr period in this study, the evaluation of the re-
construction will be extended back to 1850 in a following
study in order to estimate the AM’s ability to also recon-
struct low-frequency multi-decadal variations predicted by
daily SLP and monthly air temperature. As the number of
stations has been already limited in this study, similar recon-

struction skills are expected at least back to 1870, with in-
creasing uncertainties till 1850 due to the reduced availabil-
ity of daily SLP. First results for the Baltic Sea (Gustafsson et
al., 2012; Meier et al., 2012) indicate that the AM also real-
istically reconstructs long-term changes when HiResAFF is
used to drive ecosystem models for the Baltic Sea extending
back to 1850.
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