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Abstract. The statistical framework of Part 1 (Sundberg
et al., 2012), for comparing ensemble simulation surface
temperature output with temperature proxy and instrumental
records, is implemented in a pseudo-proxy experiment. A set
of previously published millennial forced simulations (Max
Planck Institute – COSMOS), including both “low” and
“high” solar radiative forcing histories together with other
important forcings, was used to define “true” target temper-
atures as well as pseudo-proxy and pseudo-instrumental se-
ries. In a global land-only experiment, using annual mean
temperatures at a 30-yr time resolution with realistic proxy
noise levels, it was found that the low and high solar full-
forcing simulations could be distinguished. In an additional
experiment, where pseudo-proxies were created to reflect a
current set of proxy locations and noise levels, the low and
high solar forcing simulations could only be distinguished
when the latter served as targets. To improve detectability
of the low solar simulations, increasing the signal-to-noise
ratio in local temperature proxies was more efficient than in-
creasing the spatial coverage of the proxy network. The ex-
periences gained here will be of guidance when these meth-
ods are applied to real proxy and instrumental data, for ex-
ample when the aim is to distinguish which of the alterna-
tive solar forcing histories is most compatible with the ob-
served/reconstructed climate.

1 Introduction

Variations of solar irradiance on long time scales have a
potential influence on global climate. Instrumental satellite-
based measurements of total solar irradiance (TSI) are, how-
ever, available only back to the mid-1970s. Within this pe-
riod, TSI monitors show an 11-yr cycle with an amplitude
of about 0.07 %, in phase with the sunspot number cycle. To
estimate TSI further back in time, several investigators have
relied on observed correlations between various indices of
solar activity in combination with assumptions of how these
indices are related to variations in TSI (seeGray et al., 2010,
for a thorough review).

One of the most highly debated questions concerns
whether there exists a centennial-scale variation in the back-
ground level of TSI. Different estimates of the background
amplitude of TSI are often characterized by their hypothe-
sized decrease in TSI values within the Maunder Minimum
(MM) period of low solar activity, during 1645–1715 AD,
compared to the recent satellite-based measurements. Esti-
mates made in the 1990s suggested rather large values be-
tween 0.24 % and as much as 1 % (Reid., 1991; Hoyt and
Schatten, 1993; Lean et al., 1995; Zhang et al., 1994; Reid.,
1997; Cliver et al., 1998; Bard et al., 2000). Continued re-
search in the 2000s (Wang et al., 2005; Krivova et al., 2007;
Tapping et al., 2009; Steinhilber et al., 2009; Gray et al.,
2010) did not support these results; the most widely accepted
view now is that the background variations are between
0.04 % and 0.1 %, which is the range adopted by the Pale-
oclimate Model Intercomparison Project Phase III (PMIP3)
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(Schmidt et al., 2011). To put these different estimates into
context, a change in TSI by 0.1 % corresponds to a radiative
forcing that is about one-tenth of the current anthropogenic
forcing from greenhouse gases (Lockwood, 2011). The de-
bate, however, is not yet over. Very recently, two author
teams challenged the currently held view, where one team
(Shapiro et al., 2011) hypothesized that the decrease at MM
could be more than 0.4 %, while the other team (Schrijver
et al., 2011) argued that there could possibly be no change at
all.

One way to attempt constraining the long-term amplitude
of solar forcing is to use alternative TSI histories to drive
climate model simulations, and then see which forcing his-
tory provides simulated temperatures that are most compat-
ible with the observed past temperatures and reconstructed
past temperatures derived from proxy data (Ammann et al.,
2007; Jungclaus et al., 2010; Feulner, 2011; Schmidt et al.,
2011). This approach, however, is associated with difficul-
ties because of the always present noise in the climate proxy
data (Jones et al., 2009) in combination with the stochastic-
ity of the internal (unforced) variability of the climate sys-
tem (Yoshimori et al., 2005). Another complicating factor is
uncertainty regarding the Earth’s climate sensitivity to radi-
ation changes and the varying climate sensitivity among dif-
ferent climate models (Knutti and Hegerl, 2008). These diffi-
culties provide a motivation for the experiment we undertake
here, which is designed such that we define “true” tempera-
tures derived from simulations with a single climate model,
where we know with certainty what the amplitude of solar
forcing has been and that the climate sensitivity issue can
be ignored. Moreover, we know precisely how much noise
there is in our proxy data, because they are constructed from
simulated “true” temperatures but with known noise added.
We then ask the following: Given knowledge of the true so-
lar forcing, the true past temperatures, and the level of proxy
noise, is it possible to determine whether a forced simulation
with a climate model, which includes the correct solar forc-
ing amplitude, gives a smaller distance to the reconstructed
temperatures than expected from a control simulation with
constant forcings? And, if so, can we correctly rank simula-
tions driven by the correct TSI amplitude, such that they are
deemed better than other simulations that include an alterna-
tive incorrect amplitude?

A study of this kind is a variant of a now common ap-
proach in paleoclimatology, known as a pseudo-proxy ex-
periment, where output from climate model simulations is
used to test the performance of different methods to recon-
struct past climates (seeSmerdon, 2012, for a review). In our
pseudo-proxy study, we use the newly developed statistical
framework of our companion paper (Sundberg et al., 2012;
henceforth referred to as Part 1) to rank or distinguish be-
tween model simulations using two different solar forcings,
either as single forcings or in conjunction with other impor-
tant forcings used in tandem. Note that we do not attempt
to address the question of whether a higher or lower solar

variability imposed on simulations is closer to reality. We
merely state that the issue is of great importance and choose
it as a focal subject in the testing of our framework’s sensi-
tivity. Ultimately, this will allow better judgement regarding
how possible it is, in future comparisons, to identify which
simulation is best able to simulate observed temperatures in
real proxy and instrumental data. As our pseudo-proxy exper-
iment test-bed, we use the set of simulations from the Com-
munity Earth System Modeling (COSMOS) Millennium Ac-
tivity of the Max Planck Institute (Jungclaus et al., 2010).

2 The COSMOS Millennium Activity – model
description and experimental design

The COSMOS Millennium Activity simulation experiments
were conducted using the Max Planck Institute Earth Sys-
tem Model (MPI-ESM), which is formed from an atmo-
spheric model ECHAM5 (Roeckner et al., 2003), an ocean
model MPIOM (Marsland et al., 2003) and models for
both land vegetation (JSBACH) and ocean biogeochem-
istry (HAMOCC). The model resolution is T31 (3.75◦) for
ECHAM5, and MPIOM applies a conformal grid with a hor-
izontal resolution ranging from 22 km to 350 km (Jungclaus
et al., 2010). The ocean and atmosphere are coupled daily
without flux correction.

The Millennium Activity involved the creation of a 3000-
yr unforced control (CTRL) simulation, after a multi-century
spin-up phase in which the carbon cycle was brought into
equilibrium. The CTRL model experienced 800 AD orbital
conditions and pre-industrial greenhouse gas concentrations
(Jungclaus et al., 2010). In our experiment, it was separated
into three 1000-yr-long CTRL simulations to be used in the
comparison with the forced simulations. The globally aver-
aged land-only annual temperature anomalies (30-yr means)
of the three CTRL simulations are shown in Fig. 1a. To ac-
count for some of the previously discussed uncertainty in
the magnitude of solar forcing, the Millennium Activity con-
ducted experiments using both “low” and “high” estimated
TSI forcing series. The “low” forcing exhibits a total TSI re-
duction of 0.1 % at the Maunder Minimum compared to the
present (Krivova et al., 2007reconstruction – in agreement
with the largest amplitude used in PMIP3) against a forc-
ing with a “high” reduction of 0.25 % (Bard et al., 2000re-
construction, representative of a common late-1990s view).
Other forcings known to be principal drivers of climate were
also included in the experiments: orbital, volcanic and non-
volcanic aerosols, greenhouse gases (CO2, CH4, N2O), as
well as land-use changes (seeJungclaus et al., 2010, for
details).

Two full-forcing ensembles, representing the last 12 cen-
turies, were generated by starting simulations from differ-
ent ocean initial conditions and are separated by their re-
spective “low” E1 (Fig. 1b, five simulations) and “high” E2
(Fig. 1d, three simulations) solar forcing histories, as well

Clim. Past, 8, 1355–1365, 2012 www.clim-past.net/8/1355/2012/



A. Hind et al.: Statistical framework for evaluation of climate model simulations – Part 2 1357

890 1040 1190 1340 1490 1640 1790 1940

a. CTRL

0.
6

0.
4

0.
2

0
0.

2
0.

4
0.

6

890 1040 1190 1340 1490 1640 1790 1940

b. E1

0.
6

0.
4

0.
2

0
0.

2
0.

4
0.

6
890 1040 1190 1340 1490 1640 1790 1940

c. SINGLE

0.
6

0.
4

0.
2

0
0.

2
0.

4
0.

6

890 1040 1190 1340 1490 1640 1790 1940

d. E2

0.
6

0.
4

0.
2

0
0.

2
0.

4
0.

6

Te
m

pe
ra

tu
re

 a
no

m
al

y 
°C

Year AD

land use low solar high solar volcanoes

Fig. 1.The MPI Millennium Activity COSMOS simulations over the last millennium with 30-yr non-overlapping means of global land-only
annual temperature anomalies (◦C) from the period 850–2000. The simulations are shown as the CTRLs (top-left panel), E1 ensemble (top-
right panel), SINGLE forcing (bottom-left panel) and E2 ensemble (bottom-right panel). The SINGLE forcing simulation series are land-use
changes (green), low solar (light orange), high solar (yellow) and volcanoes (red).

as any solar-induced CO2 concentration changes (which are
possible through the model’s interactive carbon cycle). A
representation of the forcings is shown in Fig. 2. Note that
these single time series representations of the global forcings
are shown in terms of their annual mean radiative forcing at
the top of the atmosphere. In addition to the two full-forcing
simulation ensembles, the model was also driven by each
forcing individually to create several single-forcing simu-
lations (Fig. 1c). There is a pronounced simulated warm-
ing in the 20th century associated with the enhanced green-
house gas radiative forcing in both the full-forcing ensembles
(Fig. 1b and d), whereas the single forcing simulations do
not show this 20th century warming as they do not contain
the greenhouse-gas radiative forcing.

3 Model – (pseudo-proxy) data comparison setup

A pseudo-proxy series can be defined as an instrumental or
climate model data series that has purposefully been distorted
through the addition of noise (Jones et al., 2009; Smerdon,
2012). This is to ensure that the pseudo-proxies account for a
fraction of the variance of a temperature series, as is the case
for a real proxy reconstruction of temperature. A key advan-
tage of this approach is that the distortion and reconstruction
targets are both prescribed and hence fully known. Here, the
pseudo-proxy setup is described in relation to the statistical

framework, upon which further details can be read in Part 1.
In the present pseudo-proxy analysis, the true temperatureτi

is defined explicitly by a particular simulation, chosen either
from the E1 or E2 full-forcing ensembles, where the regions
used in the comparison are specified. Then the proxy series
zi and instrumental seriesyi can be constructed asτi plus
added noise at specified levels.

An additional advantage of the pseudo-proxy approach us-
ing model output is that the number of locations can be varied
from a single grid box to any number of locations. We also
consider an average single time series for the entire globe.
Given a realistic amount of noise in the pseudo-proxies, it is
hoped, first, that the correlation-based test statisticUR will
indicate that a forced simulation from either the E1 or E2 en-
semble is able to explain some of the simulated variability
in another simulation from E1 or E2, when a single mem-
ber of one of those forced ensembles is used as the “truth”.
Then, if this happens, it is hoped that the distance-based per-
formance metricUT will distinguish the E1 and E2 ensemble
simulations from CTRL simulations, and also correctly rank
them against each other, again when a single member of one
of the two forced ensembles is used as the “truth”. If this is
not the case, then the method cannot be expected to help bet-
ter constrain the definition of a suitable past millennial solar
forcing amplitude, if the analysis were applied to real proxy
and instrumental data.
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Fig. 2.Annual mean radiative forcing at the top of the atmosphere (Wm−2) for (a) low solar (light orange), high solar (yellow), CO2 (purple)
and land-cover change (green); and for(b) volcanoes (red).

In our experiment, we also compare simulated tempera-
tures from the single-forcing simulations with pseudo-proxy
temperatures created from either one of the E1 or E2 ensem-
bles, to learn more about the detectability of the effect of
single forcings and their influence on temperatures in a full-
forced “noisy proxy world”. In all cases, the climate model
simulation time sequencesxi are 2-m (surface) temperatures
from the COSMOS simulations (land points only), where the
forced componentαξi is the response to either a single forc-
ing in the case of land-use changes, solar and volcanic, or
to the combined forcings in the E1/E2 ensembles. Note that
α = 0 in the case of the unforced CTRL simulations (see Sta-
tistical Models 1 and 2 in Part 1).

We undertook our analysis using 30-yr non-overlapping
means of simulated temperatures from the COSMOS sim-
ulations. A motivation for this choice is given later in this
section. The instrumental measurementsyi are defined as
the target simulation (i.e. one member from E1 or E2) for a
given location over the period 1850–2000 with added white
noise (θi), defined as representing 10 % of the total variance
of y. Regarding the added noise inyi , this approximately
corresponds to a doubling of recent single-thermometer mea-
surement error estimates (Folland et al., 2001; Brohan et al.,
2006), but is chosen here on an ad hoc basis to provide a
level of noise that is not negligible but yet notably smaller
than in most real proxy data. The proxy serieszi are defined
similarly, though over the period 1000–2000 and feature

added white noise (εi) with two-thirds the total variance of
z. This corresponds to an SNR = 0.71 (signal-to-noise ratio;
seeSmerdon, 2012) and correlationr = 0.58 betweenz and
τ , which is not untypical for high-quality real proxy records
(Christiansen and Ljungqvist, 2011, 2012). To represent both
better and worse real proxies, considerably higher and lower
percentages (always defined for the 30-yr time unit) of noise
levels were also investigated (see Supplement).

The analysis included data for the period 1000–2000 AD,
despite that forced simulations begin at 850 AD. The com-
putation of the test statisticsUT (Eq. 18; Part 1) andUR

(Eq. 23; Part 1), however, was restricted to the period 1000–
1850 to avoid the influence of anthropogenic greenhouse gas
increases. It should also be noted that data after 1850 were
used for the calibration ofzi againstyi and for estimating
the total variance ofy. The statistical framework of Part 1
allows for uncertainty in both the instrumental and proxy se-
ries, which are specified through a time-dependent weight-
ing wi (Eq. 9-12 in Part 1). In our experiment, however,
the precision ofzi does not vary with time. The variance
of the ”true” unforced temperature,s2

η , was estimated using
detrended pseudo-instrumental data, whilst the sample vari-
ance of internal unforced variability,s2

δ , was estimated from
CTRL simulations (see Sect. 5 in Part 1).

As described in Sect. 2 of Part 1, the unforced simulated
temperatureδi is assumed to be white noise. It is of course
quite possible that white noise is not a good representation
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Fig. 3. Box plots forUR correlation (top panel) andUT distance (bottom panel) test statistics for each of the global land-only average
COSMOS simulation temperature series, compared to≈ 100 different pseudo-proxy temperature realizations (iteratively running through
the E1 and E2 ensemble members as targets – see text). The left panels are for E1 (“low” solar) as target, right E2 (“high” solar) as target.
The 5 % two-sided significance levels are shown with dashed lines. Each box covers the 50 % interval between the lower and upper quartiles,
with the median as a thick black line between. The simulations are: 1 = land-use changes, 2 = low solar, 3 = high solar, 4 = volcanoes, 5–
9 = E1, 10–12 = E2, 13 = average E1, 14 = average E2. The CTRL simulation (numbers 15–17) results are shown for theUR analysis but not
for UT , since they are then used as internal references. Note that the y-axis forUT is flipped to simplify any comparisons with theUR box
plots.

of the internal variability of the true climate, and the distance
measureD2 does not require white noise. However, the null
hypothesis of the statistical tests is that forced simulations are
equivalent to CTRL simulations, so for the described tests
to have the prescribed type I error level, the unforced sim-
ulations should be well represented by white noise. We in-
vestigated the seriousness of this problem by calculating the
lag-1 autocorrelation for the full 3000-yr CTRL simulation,
both in terms of the proportion of global area with signifi-
cant autocorrelations for various time resolutions, as well as
the lag-1 autocorrelation for the global land-only series (see
Supplement for further details). It was found that beyond a
20-yr time resolution,δi can be considered as white noise, in
keeping with the statistical assumptions of Sect. 2 of Part 1.
Hence, a non-overlapping 30-yr mean resolution, as used in
the present analysis, should be able to keep the type I error
of the tests under reasonable control in the model.

4 Model – (pseudo-proxy) data comparison

4.1 Global analysis

We first conducted a study on globally averaged (area-
weighted) time series using only land points (i.e. the data
shown in Fig. 1), the results of which are shown in Fig. 3
(Fig. 3a and b show theUR correlation analysis results,
whilst Fig. 3c and d show theUT distance measure results).
To clarify, a positiveUR represents a positive correlation be-
tween a simulation and its target, whilst a negativeUT indi-
cates a better performance of a forced simulation compared
with unforced simulations. The global mean was investigated
first, simply because this series will likely exhibit a stronger
signal-to-noise ratio of the forced component than at the indi-
vidual grid-point scale where internal temperature variability
is more dominant (Servonnat et al., 2010). Hence, we use a
single set ofτi , yi andzi sequences in this globally averaged
analysis (i.e. the summation in the definitions ofUT andUR

is made over a single term, and no covariance computations
are needed). Both the E1 and E2 simulations were used sepa-
rately as targets in this experiment, and to use as many target
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“true” climates or “truths” as possible, each ensemble mem-
ber was used as the target in turn.

For each type of “truth”,≈ 100 noise realizations were
generated to produceyi and zi with a rotation in the five
E1 target simulations (20 noise realizations for each simu-
lation, 5× 20 = 100) (Fig. 3a and c) and in the three E2 tar-
get simulations (33 noise realizations for each simulation,
3× 33 = 99) (Fig. 3b and d). Iteratively treating the E1 or E2
ensemble members as targets could cause the distributions
to be hierarchical, in that the error distribution associated
with different noise realizations could potentially be small
in comparison with the difference between ensemble mem-
bers (internal climate variability in the model). Hence, an
identical analysis to this was conducted but with zero proxy
noise added to the target temperatures, which revealed the E1
and E2 ensemble simulations to give results with little qual-
itative spread (not shown). This satisfied the authors suffi-
ciently that thespreadof the distributions in Fig. 3 predom-
inantly represents the uncertainty due to the pseudo-proxy
noise realizations.

To further explain theUT andUR box plot distributions
shown in Fig. 3, the first four represent the single forc-
ing simulations, namely land-use changes (green), low so-
lar (light orange), high solar (yellow) and volcanoes (red),
where they are compared with either the E1 (left panels) or
the E2 (right panels) simulations as target. Analogously, the
next five box plots (numbers 5–9) represent the E1 simula-
tions, all coloured dark blue with their corresponding ensem-
ble averageUR/UT value in blue (number 13). The three E2
simulations are coloured dark red (numbers 10–12) with their
corresponding ensemble average in red (number 14). Note
that, when an E1 (or E2) simulation is used as the target, this
target simulation is excluded from the E1 (or E2) ensemble
being analysed. Additionally, for comparison, Fig. 3a and b
feature an analysis of the three CTRL simulation segments
(numbers 15–17) as these are not required in the calculation
of UR.

From Fig. 3a and b, theUR correlation analysis, it is clear
that individual E1 and E2 ensemble members are signifi-
cantly correlated withbothE1 and E2 targets. However, the
E2 simulations are the most highly correlated, whichever is
the target. This can be expected in so far as the E2 simula-
tions feature the strongest solar forcing and the largest vari-
ability (Fig. 1). However, the significant correlations between
E1 and E2 ensembles may not be reflected in a distance-
based measure.UT is expected to be more effective in distin-
guishing between the simulations and, in some instances, be-
ing capable of ranking them. The principal reason being that
the correlation analysis does not consider the variance of two
compared series (target and simulation), whereas this is ex-
plicitly considered in the distance measure. This can be seen
by the fact that, when E1 serves as target (Fig. 3c), E1 sim-
ulations are generally significantly closer to the target than
CTRL simulations, whilst the E2 simulations are not. The
E1 and E2 simulations are also correctly distinguished when

Fig. 4.The 27 proxy locations taken fromJuckes et al.(2007) for the
present local-scale comparison. Note that theJuckes et al.(2007)
set consists of 33 proxy locations, but some locations were so close
together that a single representation was chosen for that location.
A higher resolution model would likely have allowed a comparison
using the full set of locations.

E2 serves as target. In this case, however, both are closer to
the target than CTRL simulations (Fig. 3d).

The low solar single-forced simulation (number 2) is not
significantly correlated with, or close to, the E1 targets
(Fig. 3a and c). In contrast, the high solar simulation (num-
ber 3) is significantly correlated with, and close to, the E2
targets (Fig. 3b and d). This implies that the low solar forc-
ing is too weak to produce any detectable effect at the 30-yr
time unit, whilst the high solaris strong enough. A related
conclusion was reached byAmmann et al.(2007): the greater
the solar forcing amplitude applied to their model, the weaker
the detectable response to other natural forcings. In regard to
CTRL simulations, theirUR values are mostly insignificant,
as should be expected given the construction of the experi-
ment and the null hypothesis being tested.

4.2 Local analysis

At global or hemispheric scales, the temperature can be ex-
pected to respond to large-scale external forcings (such as so-
lar or greenhouse gases), whereas at local or regional scales
the internal climate dynamics can account for a larger pro-
portion of the temperature variability (Goosse et al., 2005).
Hence, on small spatial scales, the ability to distinguish be-
tween simulations that use low and high solar forcing, and
consequently rank them, may not be possible. A current set
of proxy locations fromJuckes et al.(2007) was used to gen-
erate pseudo-proxies in order to investigate whether the low
and high solar simulations can still be distinguished (Fig. 4).
Though this set of locations is clearly a sparse representation
of the global surface, 20–40 or so proxy locations is a typ-
ical number of high quality millennial proxy data found in
current analyses (Christiansen and Ljungqvist, 2011).

The same type of experiments conducted in the global
analysis (Fig. 3) was also conducted for the combinedJuckes
et al.(2007) locations (Fig. 5). Specifically, we compute local
correlation and distance measures for each proxy location,
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Fig. 5.As Fig. 3, but using the local proxy locations fromJuckes et al.(2007).

before they are combined to obtain a singleUR and UT

value for each simulation (Sects. 7 and 8; Part 1). The cor-
relation analysisUR for theJuckes et al.(2007) proxy loca-
tions (Fig. 5a and b) gives similar results to the global time-
series analysis, though surprisingly the correlations are not
less significant, rather sometimes even more significant. This
is something that could not have been expected due to the in-
creased influence of internal (unforced) variability at the re-
gional scale in combination with the reduced area coverage.
However, in contrast to the global analysis, when E1 serves
as target,UT is unable to distinguish the E1 simulations from
the CTRL simulations (Fig. 5c), whereas the E2 simulations
are again significantly closer to the target than the CTRL sim-
ulations when E2 serves as target (Fig. 5d). Concerning the
single forcing simulations, only the high solar (number 3) is
significantly closer to the targets than the CTRL simulations
when E2 is the target (Fig. 5d).

Using a realistic set of proxy locations such as theJuckes
et al. (2007) set, it seems difficult to rank simulations, un-
less the forcing is large and multi-decadal in nature (as is the
case for the high solar forcing used here). Note thatUR is
more sensitive thanUT for testing if a model forcing has any
correspondence with the true climate, but it answers a dif-
ferent question thanUT . This higher sensitivity is seen when
we compare subfigures a and b with c and d respectively in
both Figs. 3 or 5. Specifically, ifUR is not significant, nor is
UT . Comparisons between theJuckes et al.(2007) and global
land-only average results naturally lead to the question of

how the possibility to rank simulations depends on the spatial
coverage of the pseudo-proxy data.

5 Varying coverage

There are in practice relatively few locations which have high
quality proxy data available or where there is the potential at
present to acquire more data. A pseudo-proxy experiment,
however, has the advantage of allowing any number of lo-
cations to be used to serve as a proxy series or instrumen-
tal series. Hence, an analysis is conducted on how varying
degrees of % surface area coverage affect the sensitivity of
the correlation and distance measures to distinguish between
simulations with low or high solar forcing.

The various specified global surface area coverages are
for 0.1, 0.25, 0.5, 1, 2, 3, 4, 5 %, using only land grid
points, which is equivalent to 3, 10, 22, 44, 90, 137, 183,
230 proxy locations. Calculation of the covariance matrices
Cov(Tj1, Tj2) (Sect. 7; Part 1) and Cov(Rj1, Rj2) (Sect. 8;
Part 1) becomes computationally intensive for large % cover-
ages; hence, they were only calculated up to 5 %. Note that,
although a principal component truncation could in principle
be considered here to reduce the dimensionality of the cli-
mate variability represented by the proxy series, it was felt
that, due to the heterogeneous coverage distributions and the
arbitrary nature of the choice of retained principal compo-
nents (and also considering the varying seasonal representa-
tion and time periods covered byreal proxies), we would not
conduct such an approach here. The set of proxy locations

www.clim-past.net/8/1355/2012/ Clim. Past, 8, 1355–1365, 2012



1362 A. Hind et al.: Statistical framework for evaluation of climate model simulations – Part 2

a. UR (target = E1)

2
0

2
4

6
8

10
12

14
16

18
20

0.1 0.25 0.5 1 2 3 4 5

a. UR (target = E2)

2
0

2
4

6
8

10
12

14
16

18
20

0.1 0.25 0.5 1 2 3 4 5

c. UT (target = E1)

4
2

0
2

4
6

8
10

0.1 0.25 0.5 1 2 3 4 5

d. UT (target = E2)

4
2

0
2

4
6

8
10

0.1 0.25 0.5 1 2 3 4 5
Percent of global surface area

Te
st

 st
at

is
tic

 v
al

ue

low solar high solar volcanoes

Fig. 6.UR correlation (top panels) andUT distance (bottom panels) measures for volcanic (red), low (light orange) and high (yellow) solar
forcing simulations, against increasing % global surface area coverage. The left panels are for E1 as target, right panels E2 as target. The 5 %
significance level is shown with dashed lines. The filled coloured lines denote the median value, with the dashed coloured lines representing
the upper and lower quartiles.

was selected as a stratified random sample from the avail-
able land points in the COSMOS simulations, with specified
proportions for three strata (the latitudinal bands 0–30◦, 30–
60◦, 60–90◦). The stratification was chosen to better control
the coverage and to account for the changing area of the grid
points with latitude in the simulations.

Figure 6 shows the correlationUR (top panel) and distance
UT (bottom panel) measures for the low (light orange) and
high solar (yellow) single forcing simulations for different
% coverages, again with both E1 and E2 simulations serv-
ing as targets. For each % coverage level, approximately 100
noise realizations were generated, of which the median val-
ues are represented by solid lines and the upper and lower
quartiles are dashed. For comparison, results for the volcanic
(red) forcing simulation are also shown. The target and test
statistics panels are arranged the same as Figs. 3 and 5.

The high solar simulation is significantly correlated even
for the lowest coverages when E2 serves as target (Fig. 6b),
whilst also achieving significantUR values for coverages up-
wards of 1 % when E1 serves as target. Contrastingly, the
high solar simulationUT values are significantly better than
the CTRL simulations for all coverages when E2 serves as
target (Fig. 6d), but not for any coverage when E1 serves as
target (Fig. 6c). The low solar simulation shows no signif-
icant correlations for either target ensemble and can there-
fore be expected to be indistinguishable from the CTRL sim-
ulations using theUT measure. The volcanic simulation is

mostly significantly correlated with both E1 and E2 targets
(Fig. 6a and b), but itsUT values are generally only signif-
icant for coverages upwards of 1 % for both targets (Fig. 6c
and d).

Figure 7 is arranged as Fig. 6 but shows the E1 (blue) and
E2 (red) ensemble average results. Both ensembles are sig-
nificantly correlated with all targets, even for the lowest data
coverages. The results forUT are much the same as for the
global analysis in Sect. 4.1, where the E1 and E2 ensem-
bles can be correctly ranked with their respective targets. For
coverages lower than 1 %, it becomes difficult to distinguish
E1 from the CTRL simulations or separate the E1 and E2
simulations when E1 serves as target (Fig. 7c). Additionally,
the experiments of Figs. 6 and 7 were conducted for cases
with a SNR = 0.25 and also with negligible noise, the results
of which are briefly discussed in the conclusions and shown
in the Supplement. An important feature of note in Figs. 6
and 7 is how flat theUR andUT measures are with chang-
ing % coverage after a certain coverage is reached. In fact,
there is little gain in increasing the sample size from 40 or so
proxy series to several hundred. Above all else, this suggests
a substantial degree of spatial correlation in simulated tem-
peratures, given the 30-yr time resolution used in this analy-
sis (Jones et al., 1997; Franke et al., 2011).

Finally, we should mention that two variants ofUT for
ensemble means were defined in Part 1. In the main vari-
ant, averaging of a distance measureD2 is undertaken for
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Fig. 7.As Fig. 6, but for the E1 (blue) and E2 (red) ensemble averages.

different individual simulations before calculating theT and
UT statistics. This variant has been used in all analyses here.
In the alternative variant, defined in Appendix A of Part 1,
the averaging is instead undertaken on the simulation tem-
perature series before calculating theD2. Results for vary-
ing coverage with this alternative approach are shown in Ap-
pendix A of this paper, where the Fig. A1 should be com-
pared with Fig. 7c and d.

6 Conclusions

We apply a new statistical framework (Sundberg et al., 2012)
designed for comparing ensemble model simulation sur-
face temperature from one or more locations with proxy
and instrumental data. This framework derives a unified
correlation-based statistic (UR) that provides an initial test
of whether a set of simulation time series from different lo-
cations (and/or seasons) correlates with a set of target se-
ries for the corresponding real locations (seasons), and a
distance-based measure (UT ) that can be used to assess the
goodness-of-fit of a given forced simulation in compari-
son with those that are unforced. The ultimate goal was to
rank the simulations according to their closeness to the tar-
get data. A pseudo-proxy experiment was designed for this
task, based on the MPI-COSMOS Earth system model sim-
ulations (Jungclaus et al., 2010). Here, the “true” climate
and the proxy noise are known; hence, if no difference be-
tween two forced simulations containing different solar forc-
ing evolutions can be detected with these methods for realis-
tic proxy noise levels, then no significant conclusions could

be assumed based on comparing the same model output with
real proxy data.

Firstly, an analysis was conducted on globally averaged
land-only data where a single series was calculated for each
simulation and compared with every member of the full-
forced E1 (with low solar) and E2 (with high solar) ensem-
bles in turn plus added noise. Regardless of whether E1 or
E2 simulations are used as a target, it was found that both
simulation types are strongly correlated (significant positive
UR) with each other. Knowing that the shared forcing infor-
mation gives significantly correlated temperature evolutions
between both low and high solar simulations,UT was found
capable of ranking these simulations correctly.

Given that this statistical framework has been developed in
view of using real proxy information to assess the goodness-
of-fit of model simulations, a pseudo-proxy evaluation was
also conducted for a representative set of about 30 proxy
locations (taken fromJuckes et al., 2007). The results of
this multiple-site local comparison were similar to the global
land-only results; however, theUT values of the E1 ensem-
ble could not be said to be significantly different from the
CTRL simulations when E1 serves as target. This motivated
an analysis of how differing % coverage levels change the
significance of theUT andUR statistics (Figs. 6 and 7). The
results suggest that, for a global coverage of say 40 or more
proxy locations, if a high quality of individual proxy series
is obtained with low noise levels (SNR of at least 0.71 for
white noise defined at the analysed 30-yr time unit), it can
be possible to distinguish the E1 and E2 ensembles when
E1 serves as target. If E2 serves as target, very few proxy
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Fig. A1. As Fig. 7, with E1 (blue) and E2 (red) ensemble averages. The thick lines denote the use of inside averaging, whilst the thin lines
denote outside averaging (as presented in Fig. 7). Note that the y-axis is extended here to accommodate the inside averaging lines.

series are needed. Additionally, the same type of analysis
was conducted for a higher noise level (SNR = 0.25), where it
was found that the E1 and E2 simulations are indistinguish-
able even if the global surface area coverage is 5 % (approxi-
mately 230 proxy locations). Although these results, in quan-
titative terms, are conditional upon the actual climate model
simulations used to define the pseudo-proxy world, they have
an important implication: it is more important to improve the
quality of individual local proxy series in terms of SNR than
it is to increase the quantity of available proxy locations.
Even a limited spatial coverage is sufficient to distinguish
forced multi-decadal temperature signals, provided the tem-
perature proxies are of a sufficient quality and represent areas
that can be directly compared with model output.

Appendix A

Averaging insideD2

From Fig. A1, if the alternative “inside” averaging (defined
in Appendix A of Part 1; thick lines) is used instead of “out-
side” averaging (thin lines) in calculating the E1 and E2 en-
semble averages, theUT results appear to change little if E1
serves as target, whereas there is a substantial increase in
the significance ofUT when E2 serves as target. This likely
reflects the fact that, if there is a stronger common signal
amongst the ensemble members (as with the high solar E2
ensemble), then the inside averaging approach will enhance
the SNR of the series, whilst, if the common signal is weaker
(as with the low solar E1 ensemble), there will not be a large
difference between the approaches. Hence, inside averaging
can be more effective than outside averaging.

Supplementary material related to this article is
available online at:http://www.clim-past.net/8/1355/
2012/cp-8-1355-2012-supplement.pdf.
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