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Abstract. A statistical framework for comparing the output
of ensemble simulations from global climate models with
networks of climate proxy and instrumental records has been
developed, focusing on near-surface temperatures for the last
millennium. This framework includes the formulation of a
joint statistical model for proxy data, instrumental data and
simulation data, which is used to optimize a quadratic dis-
tance measure for ranking climate model simulations. An es-
sential underlying assumption is that the simulations and the
proxy/instrumental series have a shared component of vari-
ability that is due to temporal changes in external forcing,
such as volcanic aerosol load, solar irradiance or greenhouse
gas concentrations. Two statistical tests have been formu-
lated. Firstly, a preliminary test establishes whether a signifi-
cant temporal correlation exists between instrumental/proxy
and simulation data. Secondly, the distance measure is ex-
pressed in the form of a test statistic of whether a forced
simulation is closer to the instrumental/proxy series than
unforced simulations. The proposed framework allows any
number of proxy locations to be used jointly, with different
seasons, record lengths and statistical precision. The goal is
to objectively rank several competing climate model simu-
lations (e.g. with alternative model parameterizations or al-
ternative forcing histories) by means of their goodness of fit
to the unobservable true past climate variations, as estimated
from noisy proxy data and instrumental observations.

1 Introduction

Studies that compare climate reconstructions for the last mil-
lennium with climate model simulations have contributed
significantly to our understanding of natural and anthro-
pogenic climate change. Based upon results from such in-
vestigations, the Intergovernmental Panel on Climate Change
concluded in its fourth assessment report that volcanic and
solar forcings have very likely affected NH mean tempera-
ture over the past millennium, that external influences ex-
plain a substantial fraction of inter-decadal temperature vari-
ability in the past, and that the climate response to green-
house gas increases can be detected in a range of multi-proxy
reconstructions during recent decades (Hegerl et al., 2007b).
More recently, detection of temperature changes and their at-
tribution to external influences, such as the concentration of
stratospheric aerosols and possibly changes in total solar ir-
radiance, has been made at a regional (European) scale for
the last five centuries (Hegerl et al., 2011).

A growing size of climate model simulation ensembles for
the last millennium (e.g.Jungclaus et al., 2010) and a con-
stantly increasing number of local/regional climate recon-
structions from proxy data (Jones et al., 2009) will make
it possible to undertake a more systematic evaluation of
model simulations against proxy data. However, the grow-
ing amount of information also calls for new statistical tools
for evaluating the models against the reconstructions. Statis-
tical measures of model performance in terms of mean square
errors have long since been used within weather prediction
to compare different forecast systems and to track forecast
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improvements over time (Murphy, 1988; Murphy and Ep-
stein, 1989; Krishnamurti et al., 1999). These ideas have
developed into methods for the detection and attribution of
climate change signals using the instrumental record (Allen
and Tett, 1999) and paleoclimate reconstruction data (Hegerl
et al., 2007a), as well as techniques for data assimilation of
climate proxy data in model simulations (Goosse et al., 2006;
Widmann et al., 2010). Statistical measures of climate model
performance can use spatial and temporal correlations found
in internal climate variability (Rowlands et al., 2012) and
also combine information from several climate field variables
(Mu et al., 2004). However, explicit treatment of the model
and observational data error terms in the formulation of per-
formance metrics becomes a great challenge when dealing
with climate proxy data, because they are typically asso-
ciated with substantial uncertainties, including mixed sea-
sonal signals and time scale-dependent, temporally unstable
climate-proxy relationships. Moreover, the available proxy
data are irregularly distributed in space, vary in seasonal
representativeness and can reflect different climate variables
(Jones et al., 2009).

Our aim is to address some of these problems and formu-
late a statistical framework for evaluation of climate model
simulations against a diverse set of climate proxy series. We
will assume that evaluation of the models against modern
instrumental gridded data sets has already been made and
that the models to be tested have been judged to simulate
the current climate conditions reasonably well. For example,
we assume that previous model evaluations have shown that
the climate models have acceptable biases and that the mod-
els, when driven by historical external forcings, simulate cli-
mate trends that are consistent with the instrumental obser-
vations. Hence we focus on problems connected with how
to use climate proxy data for model evaluation back into the
pre-instrumental period. We demand that the proxies have
sufficiently high temporal resolution and dating precision to
allow direct calibration against instrumental climate time se-
ries. In practice, this requirement excludes many types of
proxy data and also time periods far beyond the last millen-
nium. Tree-ring data and historical documentary proxies are
annually resolved and have exact dating, which make them
suitable. Some proxies with lower resolution, but still with a
great deal of precision in their dating, may also be consid-
ered, provided that their sampling resolution is high enough
to allow meaningful calibration against overlapping instru-
mental series.

Our goal here is to develop a method that can be used to
objectively rank several “competing” simulations by means
of their goodness of fit to the unobservable true past climate
variations, as estimated from noisy proxy data and instru-
mental observations. The competing simulations can be, for
example, simulations driven with alternative plausible ampli-
tudes of past radiative forcings (Jungclaus et al., 2010), sim-
ulations from models with different climate sensitivities due
to different parametrization of unresolved physical processes

(Murphy et al., 2004), or a combination of alternative forc-
ings and model parameters is used (Rowlands et al., 2012).
We also consider the ranking of entire competing ensembles
of simulations, where the members of one and the same en-
semble are assumed to differ only in the initial conditions;
i.e. their forcings and model physics are the same. Our per-
formance metric will also serve as a test statistic of the null
hypothesis that the climate model simulation under consid-
eration is equivalent to an unforced model (control simula-
tion). In addition, we will suggest another test statistic to test
the null hypothesis that a climate model simulation does not
explain any of the temporal variation in the instrumental or
proxy data. To investigate the performance of our framework,
under conditions where the results can be evaluated against
a perfectly known climate, we undertake a pseudo-proxy ex-
periment in a companion paper (Hind et al., 2012; henceforth
Part 2).

We start by formulating a statistical model with near-
surface temperatures in mind, from which a climate model
evaluation framework is developed. Note that other climate
variables, such as precipitation or a drought index, are proba-
bly more difficult to model and may require substantial mod-
ification of the theory presented below.

2 A statistical model

We assume the climate characteristic of interest, to be called
τ , is a temperature time series representing a particular re-
gion during some time period, divided into a number of time
units yielding a sequence of valuesτi , i = 1, ...,n, where the
subscripti represents time. Typically, this region consists of
a single model grid box, but averages over several grid boxes
can also be considered. The time unit can be single years or,
say, averages over a 10-yr or 30-yr period. To begin with,
we only consider temperatures for a single region and a par-
ticular season, but later (in Sect.7) we will investigate how
to combine data from different regions and seasons. The fol-
lowing notations will be used:

x – a simulated temperature value for the region and time
period of interest, generated by a climate model.

τ – a true temperature, corresponding tox as a spatial
and temporal average over the same region and time
unit. The true temperature is an unobserved (or latent)
variable, except in those cases where we setτ =y (see
below).

y – a measured temperature, intended to representτ , be-
ing also some average over space and time, and avail-
able for some period of time. This measured valuey

can differ fromτ because of measurement errors, but
also becausey andτ are somewhat different spatial and
temporal averages (typically,y is an average taken over
a finite set of irregularly spread observing stations and
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for a set of possibly time-varying observation hours).
Sometimes we will assume that this observed tempera-
ture well enough approximates the true temperatureτ ,
so we can neglect measurement type errors in these ob-
servations. However, often in practice, we expect some
non-negligible errors to exist.

z – a surrogate for the true temperatureτ , derived from
climate proxy data. When observed temperaturesy are
not available, proxy measurementsz will be used. Here
we ignore all practical problems connected with how to
construct temperature proxy series from raw proxy data
(e.g. tree-ring width or density measurements). Hence,
we think of a proxy series as a final product for use
in climate reconstruction (e.g. a tree-ring chronology),
constructed in the best possible way.

The following statistical model explicitly allows climatic
forcing effects jointly in the climate model simulations (x)
and in the actual temperature (i.e. all ofτ , y andz). This is
crucial, since inclusion of temporally varying external forc-
ings in the climate model simulation is the only reason to
expect any temporal correlation (covariation) between simu-
lations and actual temperature. The forcing effects can, for
example, be the temperature response to radiative forcing
from stratospheric aerosols ejected from large volcanic erup-
tions or the response to variations in solar radiation. Note
that, in general, a particular type of forcing imposed on the
climate model is not a true reflection of reality, because the
forcing history is incompletely known regarding its temporal
evolution, its amplitude and its spatial distribution pattern.
Moreover, it is typically only crudely represented in the sim-
ulations. Its effect on temperature needs not be the same in
reality as in the model, because these worlds may have dif-
ferent sensitivities to the forcing and possibly also different
spatial response patterns.

For simplicity, we will assume that the latent relationship
between the true response to a real forcing and the simulated
response to a reconstructed forcing of the same type, when
imposed upon a climate model, is (approximately) propor-
tional, when measured as deviations from the mean values
of τ and x. This does not prevent additional uncorrelated
random forcing effects in the climate model, due to causes
discussed above. Note that we make no assumption about
how the response to the forcing is related to the forcing
itself, but only that the real and simulated responses are
linearly related. This way of thinking about the response
to climate forcings is similar to that used in detection and
attribution studies (e.g.IDAG, 2005). We will discuss, in
Sect.9, some relationships between our framework and that
used in detection and attribution.

Statistical Model 1: Climate model simulation sequence
{xi}, true climate sequence{τi}, instrumental measurement
sequence{yi}, and proxy sequence{zi} are mutually related
through the following model, explained below:

xi = µx + α ξi + δi

τi = µτ + ξi + ηi

yi = τi + θi

zi = µz + β (τi − µτ ) + εi

Here, Greek letters are used for latent variables, random vari-
ables, unobserved errors and unknown coefficients, to indi-
cate their unobservability. In contrast,x, y andz are observed
or measured. Termsµx , µτ andµz are the mean values over
time, around whichx, τ (andy), andz naturally vary. Quan-
tities δ, η, θ , andε are regarded as random variables, with
mean values zero and variancesσ 2

δ , σ 2
η , σ 2

θ , andσ 2
ε , whereas

α andβ are unknown coefficients:

– ξ denotes the true effect of a specific type of forcing
that has influenced the true temperatureτ . Since both
the causes behind the forcings and the actual effects
are uncontrolled, we regard this variation as only par-
tially random. The forcing can be either of a single-
type (e.g. only volcanic forcing) or a combination of
several forcings (e.g. volcanic and solar forcing). Note
thatξ is not the forcing itself, but rather its temperature
response.

– α ξ represents the unknown variability inx that can
be linearly explained by the true forcing effect. For
simplicity, we have assumed an (approximately) pro-
portional relationship to the true effect onτ . A cor-
rect representation of the forcing effect in the climate
model corresponds toα = 1, whereas an unforced cli-
mate model hasα = 0.

– η denotes the (residual) variation in true temperature
that cannot be statistically explained by the particular
forcing under consideration. This is then uncorrelated
with ξ .

– δ represents internal noise variability in the simulations
and any variability in the simulations unrelated (uncor-
related) with the true forcing effects. It will thus incor-
porate the uncorrelated part of nonlinear climate model
effects corresponding to true climate forcing effects.

– θ denotes the measurement error in the temperature
variable y, making y differ randomly from the true
temperatureτ .

– β(τi − µτ ) is the regression of the proxyz on the true
temperatureτ . The observed proxy valuez will be cor-
related with the measured temperaturey, due to theτ
they have in common, and we will use that correlation
to calibrate the proxy variable.

– ε represents the residual variation inz, uncorrelated
with τ .
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It is judged reasonable that all random variablesξ , η, θ ,
δ andε should be mutually uncorrelated, and this is also as-
sumed below. Under this assumption, a positive correlation
betweenx andτ (or y or z) implies that they share the term
ξ . In other words, the effect of the forcing inx corresponds
positively with that in the true temperatureτ (or y or z).

Theξ andη (i.e. the components ofτ ) sequences will cer-
tainly show autocorrelation on various time scales, and our
theory allows this. Sometimes it could be of interest to con-
sider the more complicated case of multiple forcings (i.e. the
joint effect of several individual but possibly interacting forc-
ings, not equally represented in the simulations), represented
by a vectorξ instead of a scalarξ . Although climate model
simulations driven by multiple forcings are used in the ex-
perimental companion paper (Part 2), the theoretical aspects
of multiple forcings will be investigated further in a future
analysis.

The internal variability sequenceδ (but neitherθ nor ε)
will be assumed to be temporally uncorrelated, i.e. white
noise, whenever a specification is needed (essentially only
for properties of the test statistics of Sects.6 and8). This is a
slight limitation of the present version of the theory, because
the real simulation processes will certainly show some de-
gree of autocorrelation, at least on rather short time scales.
In the pseudo-proxy experiment in Part 2, white noiseδ is
assumed, motivated by finding and selecting a time unit for
which the autocorrelation is negligible.

We cannot expect a forced simulation to explain some of
the variability in the real temperature, unless it is statisti-
cally correlated. Thus, in practice, if we want to test some
forced simulations of different types, to rank them according
to how well they are able to explain the observed tempera-
tures, it is natural to first test by correlation tests whether they
can explain any of the observed temperature variations. Only
forcings that provide statistically significant correlations be-
tween simulated and observed temperatures are worthwhile
studying for determination of the optimal forcing magni-
tude and for use in calculations of a distance measure. Al-
though a correlation test should therefore be carried out be-
fore any distance measure is calculated, we start the descrip-
tion of our statistical framework by developing a distance-
based performance metric (in Sects.3–7) before we formu-
late a correlation-based test (in Sect.8).

3 The distance measure,D2(x, z)

The problem is to identify, among several forced climate
model simulations, a simulation that is able to predict the
actual temperature better than the others – and in particular
better than unforced model simulations. For comparison of
different forced simulations, to find out whosex-sequence
of temperatures is best at capturing the real variation in tem-
peratures (τ ), we need a criterion. Performance metrics for
climate model simulations are typically expressed as some

kind of squared difference measure (Mu et al., 2004; Goosse
et al., 2005, 2006), and we choose a criterion of this kind.

We postpone the problem with proxy data and assume first
that we have the true temperaturesτ available. We define the
simple distance measure:

D2(x, τ ) =
1

n

n∑
1

(xi − τi)
2 . (1)

A statistical motivation for this criterion is obtained by con-
sideringD2 as a mean squared error of prediction (MSEP) of
τ .

It may be argued that such an MSEP criterion function
should be formulated as dependent on possible autocorrela-
tion among the simulation errorsδi in xi (Mu et al., 2004).
If we assumeδi to be white noise, this argument disappears.
Even without this assumption, we can choose criterion (1),
primarily for its simplicity. We will return to motivations in
Sect.5. The requirement onδi to be white noise will reappear
in the calculation of standard errors for the test statistics, but
even there, this assumption is not crucial so long as we use
these statistics more as criteria for ranking than for stating
significances.

The better the climate model represents the forcing effects
that underlie the true temperature, the smaller the expected
distance between simulations and true temperatures. How-
ever, any systematic bias inx will also contribute toD2. If
one has good reason to assume that systematic biases can be
neglected for a particular study, then this can be achieved by
subtracting the mean values ofx andτ over a common time
period. Doing so, however, obviously makes the criterion un-
suitable for evaluating systematic model biases; rather, it then
solely focuses on comparing the temporal evolution of cli-
mate model simulations with the true temperature evolution.

Since the trueτi is not available, we have to replace it by
the measuredyi for the period wheny is observed and else by
a suitable proxyzi . For notational convenience, we suppress
y and writeD2(x, z), wherezi is assumed to be replaced by
yi whenyi is available:

D2(x, z) =
1

n

n∑
1

(xi − zi)
2 . (2)

Leaving aside howz should be chosen for the moment, it is
enough thatz satisfies the Statistical Model 1. There is moti-
vation to modifyD2 by giving different weights to different
terms ofD2(x, z), depending on how good the available data
are. However, this discussion will be postponed to Sect.5.
We will first (in Sect.4) compareD2(x, z) with the ideal
D2(x, τ ). We do not wantD2(x, z) to yield a systematically
different ranking of a set of differentx than that given by
D2(x, τ ) and we will see under what circumstances it does
not. The criterion for this will yield a procedure for the cal-
ibration of the proxy seriesz, for use inD2(x, z). Later,
we will discuss the statistical significance and precision of
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D2(x, z) (Sect.6) and how to combine information from
several regions or seasons into a unified model performance
metric for each model simulation (Sect.7).

4 Proxy calibration to avoid ranking bias in D2(x, z)

We assume here that we want to rank different climate
model simulations according to their ideal distance mea-
sureD2(x, τ ). However, we only have the surrogate measure
D2(x, z), using the observed temperature variabley (when
available) or a proxy measurementz instead of the true tem-
peratureτ , and we do not want this to change the ranking
in any systematic way. More precisely, we demand the mean
value ofD2(x, z) − D2(x, τ ), given x andτ , to be free of
x and τ , in particular free ofx − τ . We first conclude that
replacement ofτ by y in D2(x, τ ) does not introduce any
ranking bias. This is seen from the relation

(x − y)2
− (x − τ)2

= −2(x − τ)θ + θ2. (3)

Averaging over the noise termθ , for a givenx and τ , we
obtain zero for the first term and a constantσ 2

θ =E(θ2) for
the second term on the right-hand side. This means that the
noise termθ of y does not introduce any ranking bias.

For the proxy data, following the statistical model, the for-
mula corresponding to Eq. (3) is

(x − z)2
− (x − τ)2

= −2(x − τ)(z − τ) + (z − τ)2, (4)

where

z − τ = µz − µτ + (β − 1) (τ − µτ ) + ε. (5)

In the mean value of Eq. (4), the contribution of the noise
termε will only be the constantσ 2

ε , corresponding toσ 2
θ from

Eq. (3). For the mean value of Eq. (4), givenx andτ , to be
totally free ofx − τ , however, it is seen from Eq. (5) that we
must have bothµz =µτ (= µy) andβ = 1. This tells how raw
proxy dataz must be calibrated, so that it does not introduce
any systematic deviations from the ideal ranking.

For the calibration of the proxy dataz, we assume that we
have available a period of both proxy and temperature mea-
surements. This allows the estimation of the relationship be-
tweenz andy, and this is the basis for the calibration. The
first requirement, thatz should have the same mean value as
y, is naturally achieved except for the unavoidable calibra-
tion uncertainty by adjustingz by an additive constant, so its
average valuez over the calibration period satisfiesz =y.

The second requirement is thatz should have a regres-
sion on the latent variableτ with regression coefficientβ = 1.
Thus, given an uncalibrated proxyz0 with regression coeffi-
cient β0 on τ , z0 should be rescaled by division withβ0 to
form a calibratedz asz =µy + (z0 − µz0)/β0, except for cali-
bration uncertainty. In the case when the error iny is negligi-
ble, soy = τ , this corresponds precisely to the so-called clas-
sical calibration procedure (Osborne, 1991; Brown, 1993),

whenz0 is regressed ony and this relationship is inverted to
yield a predictor/estimator fory.

Next, allow the error iny to be nonnegligible. Then we
have a statistical relationship betweenz0 andy of the struc-
tural relationship type (an errors-in-variables model). Pro-
vided that we can estimate or otherwise judge the size of the
error variance iny (i.e.σ 2

θ ), we can obtain an approximately
unbiased estimator ofβ0 by

β̂0 =
syz0

s2
y − σ̂ 2

θ

, (6)

where syz0 and s2
y are the empirical covariance and vari-

ance, respectively (seeFuller, 1987; Cheng and van Ness,
1999). This is the quantity by which to normalizez0 to ob-
tain the desiredz sequence:z =µy + (z0 − µz0)/β̂0. Setting
σ̂ 2

θ = 0 brings us back to the previous situation.

Conclusion.To avoid systematic ranking error in the squared dis-
tanceD2(x, z) relative to the idealD2(x, τ ), the proxyz should be
mean adjusted and normalized, such that the estimated regression
coefficient ofz on τ is 1. This corresponds to use of the so-called
classical calibration procedure for calibratingz againsty, when er-
rors iny are negligible. To allow errors iny, the modified Eq. (6)
should be used.

Note that, in comparison with the observed temperaturey,
the amplitude of variation in the proxy, Var(z), is exaggerated
after classical calibration or when using Eq. (6). The reason
is that the full amplitude of the true temperature signal is
retained and that the proxy noise variance is superimposed
on the temperature signal variance. We will see in the next
section how this is compensated for by an optimal weighting
of the different observed values according to their variance
components.

Remark.A calibrated proxyz, obtained by classical calibration or
by using Eq. (6), may be called an estimator or predictor ofτ in
the sense that the true temperature component embedded within
the noisy proxy series is estimated with its correct variance. How-
ever, the weaker the correlation is betweenz andτ (or y), the larger
the total variance inz because the variance of the noise termε be-
comes increasingly dominant. Thez calibrated in this way is there-
fore not an optimal predictor of the true temperatures at each in-
dividual time point. For a single time-point prediction, direct re-
gression ofτ (or y) on z0 would provide a more appropriate pre-
dictor/estimator, where the prediction error variance is minimized.
This alternative way of calibrating climate proxy data has often been
used in palaeoclimate studies (NRC, 2006). For the climate recon-
struction problem in general, though, the seemingly desirable prop-
erty of (in theory) minimized prediction error is not necessarily an
advantage, because (in practice) it leads to a systematic bias of the
mean reconstructed (i.e. predicted) past climate in periods that have
a mean value that differs from that of the calibration period. As this
is an undesired property, e.g. when judgements are made on how the
recent climate differs from previous climates, this has led to vigor-
ous discussions in the climate literature on how proxy data should
be calibrated.von Storch(1999); Esper et al.(2005a); Bürger et al.
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(2006); Hegerl et al.(2007a); Ammann et al.(2010); Christiansen
(2011); Kutzbach et al.(2011); Moberg and Brattstr̈om(2011); Tin-
gley et al.(2012) and several others have recently discussed the
importance of retrieving the full variance of the temperature sig-
nal, including discussions on the use of errors-in-variables models.
It must be stressed, however, that in the present context, the way
proxy data should be calibrated comes out as a corollary from the
statistical model formulated in combination with the explicit desire
to obtain an unbiased ranking of forced simulations against the true
past temperatures.

If more than one proxy series is available for the region
and season of interest, they should be combined to a single
z0 sequence in order to increase statistical precision and thus
yield the smallest possible randomness inD2(x, z). In the-
ory, this is achieved by multiple regression ofy on the set
of available proxy series to obtainz0. In practice, however,
a number of complications must be dealt with, e.g. differ-
ent time periods for different proxies, and there are several
reasons (e.g. collinearity among the proxies, or that the re-
lationships from the calibration period do not hold outside
this period) why another way to combine the proxies may
be preferred. We will not attempt to deal with these more
practical problems here, but primarily conclude that, what-
ever method chosen, the goal should be to optimize the cor-
relation betweenz0 andτ . The preferredz0 is then rescaled
using classical calibration or Eq. (6). In cases when different
proxy data are available in different pre-instrumental periods,
they must be separately calibrated, and when the calibrated
proxy series is known to have different precision in different
time periods, this must be adjusted for in the weighting (see
Sect.5 below).

In practice, it is necessary to decide a time unit to use for
the calibration. For annually resolved proxy data, the cali-
bration will have its highest precision if calibration is made
using the full annual resolution. However, if the model evalu-
ation is made for a lower resolution (e.g. 10- or 30-yr means)
and if there is reason to assume that the proxy/temperature re-
gression relationship is time scale-dependent, then it may be
better to use a lower resolution for the calibration. However,
this will of course decrease the statistical precision. The in-
strumental noise variance to be used in Eq. (6) can be difficult
to estimate in practice, but efforts to estimate errors in grid-
ded temperature data have been made (Brohan et al., 2006).
Moreover,Moberg and Brattstr̈om(2011, Sect. 6.1) discuss a
procedure to estimate the error variance in the mean of a set
of neighbouring temperature station records.

5 Weighting in D2(x, z)

Direct temperature measurementsy and proxiesz have dif-
ferent precision. Moreover, the precision (particularly inz)
can vary with time due to the quality and quantity of raw data.
This motivates giving different weights to different terms
(time points) inD2(x, z). In order to understand how we

should introduce this weighting inD2, we first reconsider
Statistical Model 1, assuming bothα = 1 (correct amplitude
of the forced componentξ ) andβ = 1 (calibratedz), so that
the forcing effectξ vanishes fromx − z andx − y. We also
assumeµx =µy =µz, so there is no bias inx − y or x − z.

If the climate model is perfect in this sense, and if we first
assume a Gaussian distribution with constant variance for the
variability of xi − zi , the resulting Gaussian probability den-
sity for the whole observed seriesx − z is proportional to

e−
n
2 D2(x,z)/(σ2

δ +σ2
η +σ2

ε ), (7)

where σ 2
δ , σ 2

η and σ 2
ε are the variances of the cor-

responding components of the statistical model, and
Var(xi − zi) =σ 2

δ +σ 2
η +σ 2

ε . When yi is available and re-

placeszi , σ 2
ε should be replaced byσ 2

θ , but for simplicity
of notation we leave that alternative aside for the moment. If
there is a bias inx and/or a true forcing effect that does not
have a linearly correct representation in the climate model
(i.e.α 6= 1, including the caseα = 0), itsD2-value will tend to
be higher and the probability (7) to observe this vectorx − z

will tend to be exponentially smaller. Thus, theD2 measure
is proportionally equivalent to a Gaussian log-density.

The denominatorσ 2
δ +σ 2

η +σ 2
ε in the exponent of Eq. (7)

was assumed constant. However, when the variances in this
denominator vary withi, in particular the proxy noise term
σ 2

ε (i), the interpretation ofD2 as a Gaussian log-density tells
us how different terms should be (ideally) weighted inD2,
forming a weighted versionD2

w:

D2
w(x, z) =

1

n

n∑
1

wi (xi − zi)
2

=
1

n

n∑
1

(xi − zi)
2

σ 2
δ + σ 2

η + σ 2
ε (i)

. (8)

An alternative formulation is to introduce the constant fac-
tor σ 2

δ +σ 2
η , corresponding to use of the density forx − τ in-

stead ofx − z in the numerator of the exponent of Eq. (7).
We will use that version as our definition forwi :

wi =
σ 2

δ + σ 2
η

σ 2
δ + σ 2

η + σ 2
ε (i)

. (9)

For timesi when a precisey = τ is available (i.e. with
σ 2

ε (i) =σ 2
θ = 0), the normalized weight (Eq.9) equals 1,

whereaswi < 1 when a noisy proxyz is used, or an imprecise
instrumentaly.

Since the denominator of Eq. (8) is the expected value of
the numerator of the same term, an alternative interpretation
of the proposed weights is that they are chosen to make all
terms ofD2

w be of the same magnitude.
The weight factor introduced in Eq. (9) is an ideal weight

(under the assumptions made), for which we can at best give
an estimate. Thus, we must insert estimates for each of the
three variance componentsσ 2

δ , σ 2
η andσ 2

ε (i). We assume that
the first two components are constant over time, but we have
reason to allowσ 2

ε (i), and thus also the weightwi , to vary
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over time depending on the precision of the available instru-
mental or proxy measurement.

To estimateσ 2
δ , we propose to use the (time-)sample vari-

ances2
δ , pooled from simulations of an unforced model (con-

trol simulation). The more simulations available, the better
the estimate will be. The main reason to avoid using forced
models here is that their simulations contain an unknown
forcing effect source of variation, contributing to the sample
variance of thex series. A second reason is that the weights
should not differ between the climate models to be ranked.

The varianceσ 2
η is arguably more difficult to estimate.

It represents the unforced real temperature variance, which
cannot be estimated directly from instrumental observations
(y) because they will always include some forced variance. In
particular, the anthropogenic greenhouse gas forcing is likely
to be represented as a trend-like component iny which acts
to increase the estimated variance ofy. Therefore, we pro-
pose to detrend the observedy before using it to estimateσ 2

η .

Fortunately,σ 2
η (as well asσ 2

δ ) occurs in both the numerator
and denominator of Eq. (9), so reasonably small errors in its
estimate have little influence on the ratio.

Next, we need an estimate of the (possibly) time-varying
σ 2

ε (i). Although this quantity is needed for time pointsi out-
side the calibration period, we estimate it by using informa-
tion from the calibration period when bothy andz are avail-
able. Assume first thaty = τ , i.e.σθ = 0. We can use the cali-
bration period to estimate the correlationρ(y, z). The model
formulaz =y + ε impliesρ2 = Var(y)/Var(z), from which we
obtain the relationshipσ 2

ε = Var(y)(1−ρ2)/ρ2 (knowing that
the regression coefficient ofz ony is 1).

Note that this estimate ofσ 2
ε is determined by the em-

pirical correlation between the proxy and the instrumental
data and therefore by the estimated statistical precision of
the proxy. In cases when the proxy serieszi is known to have
different precision in different time periods (and hence dif-
ferent calibrations have been made), a unique weight should
be used for each such period, where each weight should be
determined by using the corresponding calibrationρ2. In this
way, we can allowσ 2

ε (i) in Eq. (9) to vary with time.
Let s2

y be the empirical variance of (detrended)y and fol-
low the procedure described above. This yields the weights
formula:

wi =
s2
δ + s2

y

s2
δ + s2

y/ρ2(y, z)
(10)

for i in the proxy period. Note that forρ2 = 1 the formula
yieldswi = 1, as it should do when we usey = τ . As ρ2 ap-
proaches zero, so doesw. The higher the ratios2

δ /s2
y , the

slower the approach is to zero.
Let us now allow noise iny, with noise varianceσ 2

θ . If the
ratio q =σ 2

θ /s2
y > 0 is known, the weighting formula for the

period when only instrumental datay are used becomes

wi =
s2
δ + s2

y (1 − q)

s2
δ + s2

y

. (11)

In this case, the weight is somewhat smaller than 1, de-
pending on the size ofq.

For the period when the proxyz is used, the weighting
formula becomes

wi =
s2
δ + s2

y (1 − q)

s2
δ + s2

y (1 − q)2/ρ2(y, z)
. (12)

A minor drawback (inpractice) of Eq. (12) is that it might
generate weightswi > 1. This occurs whenρ2 > 1− q for
the estimated values ofρ andq (not being possible for the
true values). Should that happen, we advise that the estima-
tion procedures forq andρ are checked, and the assumptions
of uncorrelated noise in, and between,θ andε. As a resort,
if this does not help,wi could be redefined by using Eq. (10)
or (11), bearing in mind that the resulting weights are not
optimal.

6 Statistical significance and statistical precision of
D2(x, z)

When aD2 value is calculated for a forced climate model
simulation, for a region and season corresponding to a true
temperature seriesτ , it is relevant to first ask whether this
D2 is better (smaller) than a correspondingD2 value for an
unforced model. To make it possible to answer this question,
we construct a statistical test of a null hypothesis expressing
that the forced model is not better than an unforced model:

H0: The climate model under consideration is equivalent to
the unforced model.

Since the unforced model (control simulation) is im-
portant here as a reference, it will be given a specification
separate from the general Statistical Model 1 in Sect.2.

Statistical Model 2:The model for data underunforcedcli-
mate model simulations, can be written

xi = µx + δi

τi = µτ + ηi

yi = τi + θi

zi = µz + β (τi − µτ ) + εi

whereδi (but still neitherηi , θi nor εi) is regarded as white
noise, for the variance formula below.

Note that the previous forced component ofτ , i.e. ξ in
Statistical Model 1, is now included inη, because there is no
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longer a point in expressing it explicitly. This means thetrue
temperatureτ can include forcing effects also in Model 2, al-
beit only implicitly. Except for that change of interpretation
of η, the observed climate part of the model is the same as
in Model 1. For the simulation varianceσ 2

δ , there is no clear
general answer. If the incorporation of a forcing effect in the
climate model does not increase the overall variance in the
simulations, the residual varianceσ 2

δ must shrink. Another
possibility is that the forcing effect is simply added to the
variation and thusσ 2

δ is not affected. However, to the extent
the forcing effects in the climate model are not precisely pro-
portional to those in the true climate, they will contribute to
an increasedσ 2

δ , so this is also a possible scenario.
We will not deal further with this problem here, but, when

necessary, simply assume thatσ 2
δ is the same both with and

without forcings. A somewhat related approach to the prob-
lem of comparing climate models with the same types of
forcings, but with different magnitudes, would be to try esti-
matingα. Again, this will be a topic for future study.

The unforced climate model is assumed to have been run a
number of times, and for each such “replicate” run (differing
in initial conditions, and hence also in the actual trajectories
of simulated climate variables), we calculate aD2 value. Let
K denote this number of simulations, and letk denote the
number of simulations with a forced model (also differing
in initial conditions) where all simulations share the same
forcing history. Before we calculate the difference inD2 be-
tween forced and unforced simulations, we averageD2 over
all replicates in each of the two terms, respectively. This pro-
cedure yields the test statistic:

T (xf, xu, z) = D2
w (xf, z) − D2

w (xu, z) (13)

where xf and xu represent data from the forced and un-
forced models, respectively. An alternative averaging proce-
dure would be to take averages over thex series inside each
D2, i.e. to use the average time seriesxf andxu and compute
the differenceT (xf, xu, z) =D2

w(xf, z) − D2
w(xu, z).

This alternative procedure would be even more efficient
but is not used here, because it would also introduce a bias
in the comparison, unlessk =K. However, we provide de-
tails necessary to use this alternative in Appendix A and both
variants are used in our experiments in Part 2.

We show below that an approximate distribution underH0
for the test statistic in Eq. (13) can be obtained with the help
of an analytical formula for its standard error. In doing this,
we will regard thez (and y) series as fixed and given. It
means that we do not need any distributional assumptions
about thez series. This is possible becausez is common to
both terms of Eq. (13).

Since we are more interested in variation than in mean val-
ues, we assume that allxu andxf series are mean value ad-
justed to a common value, which will be denotedµx . The
test statistic value can be rewritten as

T (xf, xu, z) = w(xf − µx)
2

− w(xu − µx)
2

−2w(xf − xu)(z − µx), (14)

where the overlines in the first two terms represent averag-
ing over both replicates and time indexi. Here the factor
(z − µx) has the role of a weight factor, multiplying withw.
It is natural to adjust thexu andxf series additively so that
the z series also has the same mean value,z =µx . Then we
write z − z in the last term.

The distribution forT is presumably well approximated
by a normal distribution, since all terms of the representation
Eq. (14) are sums of a large number of terms (referring to the
central limit theorem of probability). UnderH0, the expected
value ofT (xf, xu, z) is zero, since the forced climate model
is equivalent to the unforced model. Assuming normality not
only of T but already ofxf andxu, the variance ofT can be
expressed as

Var(T (xf, xu, z)) =
1

n2

(
1

k
+

1

K

)
{

2σ 4
δ

n∑
1

w2
i + 4σ 2

δ

n∑
1

w2
i (zi − µx)

2

}
. (15)

An approximatelyN (0, 1)-distributed test statistic is ob-
tained by normalizing the T-value in question by its standard
error, i.e. by the square root of Eq. (15) after insertion of
the averagez for µx and of the estimates2

δ for σ 2
δ . It is of

some importance to make sure that the estimates2
δ is not too

imprecise. As in Sect.5, we propose to obtain this estimate
by calculating the sample variance from all available control
simulations.

The test should rejectH0 if the resulting value is too neg-
ative, e.g. to the left of−1.65 at the 5 % significance level.
It should be kept in mind that, if many mutually independent
climate models are tested against the unforced model, but
none of them has an (appreciable) correlation with the real
datay andz, we must nevertheless expect 5 % false positives
from tests at the 5 % level, and analogously for the 1 % level.
Thus, it is not enough to find one or a few models showing
statistical significance, but the whole sequence of model tests
must be considered. As a final comment, we note that an al-
ternative way to perform the significance test would be to use
a simulated/randomized resampling procedure to empirically
determine the distribution ofT instead of using the analyti-
cal variance formula in Eq. (15). This is not discussed further
here (but see Appendix B for details).

7 Combination of data from different seasons and
regions

Evaluation of palaeo-simulations from climate models
should preferably be made using proxy records from as
many regions as possible. Data from different regions and/or
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seasons could then be combined in a single test, but it is not
obvious how this should be done. Proxy records from dif-
ferent regions may represent different seasons and may also
be of different lengths. In this section, we define a unified
performance metric for each model, based on a normalized
sum of test statisticsT for all regions/seasons with available
proxy data.

This sum of test statistics can be a simple or a weighted
one. Weighting could be implemented if we want a balanced
spatial average but the regions are of different size or have
a different density of proxy values, or if we want a balanced
annual average for a region with quite different numbers of
summer and winter values. Differentquality (statistical pre-
cision) of the proxies doesnotnecessitate weighting, because
such effects are treated in the precision of the individual T-
values (through the weightswi used inD2).

For simplicity of notation, we first consider only a sim-
ple sum of T-values,

∑
Tj , where the indexj identifies the

different regions and/or seasons used. We need the standard
error of this sum, and we then use the standard formula for
the variance of a sum of correlated terms:

Var

(∑
j

Tj

)
=

∑
j

Var
(
Tj

)
+ 2

∑
j1<j2

Cov
(
Tj1, Tj2

)
. (16)

Thus, what we need, together with the variances dis-
cussed in the previous section, are the covariances. Con-
sequently, we need to supplement the variance Eq. (15),
by the corresponding formula for covariances. This is ob-
tained for Cov(Tj1, Tj2) from Eq. (15) by the following three
operations:

– Changeσ 2
δ to Cov(δ(j1), δ(j2)), andσ 4

δ to the covari-
ance squared.

– Changew2
i to wi(j1)wi(j2).

– Change (zi − µx)
2 to

(zi(j1) − µx(j1)) (zi(j2) − µx(j2)) .

Here Cov(δi(j1), δi(j2)) =ρ(j1, j2)σδ(j1) σδ(j2), whereρ is
the correlation coefficient. We have here assumed that not
only are the variancesσ 2

δ constant over time, as in Eq. (15),
but also the corresponding covariances. Note that the first
term in the sum contains a covariance squared, corresponding
to s4

δ in the variance Eq. (15). We assume that the covariances
and the mean valuesµx(j) are estimated as with the variance
σ 2

δ and theµx in Eq. (15).
Now let nonequal weights be allowed, in the form∑
cj Tj , wherecj are fixed coefficients which need not sum

to 1. To express the corresponding calculations in this case,
we arrange the variances and covariances forTj in the co-
variance matrixV(T ) for the vectorT with componentsTj .
Let c be the corresponding column vector with components
cj . Then the variance for

∑
j

cj Tj is obtained as the scalar:

Var

(∑
j

cj Tj

)
= cT V(T )c. (17)

We now have all requisites to calculate a unified
performance metric,UT , for each climate model under
consideration:

UT =

∑
j cj Tj√

Var
(∑

j cj Tj

) . (18)

Thus, our final model score is a normalized sum of
(possibly weighted) individual T-values for all available re-
gions/seasons with proxy data, normalized by its standard er-
ror. This means that we can interpretUT as a unified normal-
ized test statistic of the null hypothesis,H0, in the same way
as for the individual T-values in the previous section. Hence,
UT can have a double usage: (i) to test if a forced climate
model is better than unforced models, and (ii) as a rank value
to compare different forced models; the more negative the
UT -value is, the better (note that a forced model withUT > 0
performs worse than an unforced model).

At this point, some practical issues are considered. In re-
ality, the different proxy series may be of different lengths.
This gives us reason to think of whatn represents; recall that
n is used in the calculation of individualD2 values, and in the
Var(T ) and Cov(T ) values. How should we choosen in the
different parts of the calculations when the proxy records are
of different length? We suggest to let the longest record deter-
minen in all calculations. For a particular shorter proxy se-
ries, we simply letwi = 0 for all time pointsi, where we have
no measurement. A consequence of this is that more weight
will be given to regional/seasonal data with long proxy series
than those with short series, which seems reasonable. Note,
as an example, that a mean valueµx in Eq. (15) for each
region should be interpreted as only representing the time
period when proxy data are available for that region, so the
actualz can be a natural estimate ofµx .

Note that, in the period when all proxies are available, the
weighting will be made both according to the proxy quality
(through their respectivewi) and according to the variances
and covariances of the T-values (which include information
from the behaviour of the simulated climate in the unforced
models). If the additional weightscj in the sum ofT are
used, then this will give further weighting to the data. We
will, however, not discuss here how to construct such addi-
tional weights, because we think this has to be determined
uniquely for each particular set of available proxy data by
external considerations, and no simple general rule seems
plausible. In our pseudo-proxy experiment in Part 2, we will
simply use the same weight for all regions.
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8 Correlation as test statistic

As pointed out in Sect.2, before any distance-based perfor-
mance metric is computed, one should first test if a forced
climate model simulation is able to explain with statistical
significance some part of the variation in instrumental and
proxy data. If a forced climate model is unable to explain any
variation in the instrumental and proxy data, then theD2 and
UT measures provide little interpretable information. Here
we suggest a test statistic,UR, based on the correlation be-
tween a climate model simulation and the observations.

The x and z series are uncorrelated underH0 (defined
below), but (positively) correlated when forcing effects ap-
pear jointly in model simulations and real climate data. The
stronger the forcing effect is in the model, the higher the ex-
pected correlation coefficient. We first consider a local test
for a single grid box (season) and next extend to a combina-
tion of data from several regions (and/or seasons).

We will again use notationz for the instrumental/proxy
series, and the number of time units possible will be denoted
n. For a particular grid box (season), data may be available
only during a shorter period of time, but with a weight factor
that is zero when data is missing, as before, we can letn be
the same for all grid boxes (seasons).

The null hypothesis to be tested is:

H0: The climate model under consideration does not
explain any of the temporal variation in the actual instru-
mental/proxy data.

Under H0, we should of course not expect any signifi-
cant correlation or covariance betweenx andz. However, un-
forced model simulations are important in providing a check
that the test works reasonably underH0.

We propose the following regression type statistic:

R(x, z) =

∑
w̃i (xi − µx)(zi − µz)∑

w̃2
i (zi − µz)

2
(19)

for a givenz series. We allowk replicates of the same type of
forced model, and we use their mean (xi) above. If only one
replicate is available (or if only one replicate is tested), then
xi represents a single simulation. WhenR(x, z) is normal-
ized (divided) by its standard error, i.e. the square root of its
variance,

Var(R(x, z)) =
(1/k)σ 2

δ∑
w̃2

i (zi − µz)
2
, (20)

we get the correlation coefficient in a semi-empirical form,
which is our test statistic for a single grid box (season). As
before,k is the number of replicates used to formxi , and
the variance factorσ 2

δ is again estimated from all available
control runs, which we know satisfy the hypothesisH0. The
mean valueµz is naturally estimated by the weighted aver-
age,z =

∑
w̃i zi/

∑
w̃i .

The weight factor̃wi , however, isnot the same weight fac-
tor wi as used withD2 andT , because now only properties
of thez series influence the weight. The principle is that the
statistics (zi − µz) should be weighted such that they get the
same variance for all time unitsi. The weights should then
be the following:

1. If y = τ (in periods where instrumental data with no, or
negligible, noise are used): w̃ = 1.

2. If y = τ + θ (instrumental data with non-negligible noise
variance, variance proportionq): w̃ = 1− q.

3. If y = τ , z = τ + ε (proxy data are used, no noise iny,
calibration period yieldsρ2(y, z)): w̃ =ρ2(y, z).

4. If y = τ + θ , z = τ + ε (proxy data are used, noise iny,
calibration period yieldsρ2(y, z)):
w̃ =ρ2(y, z)/(1 − q).

Short-term autocorrelation being present in unforcedx se-
ries is avoided by the use of a sufficiently long time unit, as
before. Short- or long-term autocorrelation in thex series due
to modelled forcings will not be present underH0 and there-
fore does not affect the validity of the test. On the contrary,
we can expect that adequate forcing effects in the simula-
tions will covary with the actual variation in thez sequence
and therefore contribute to a significant test outcome.

With a number of grid boxes (seasons), we assume, as for
the test statisticT , that we form

∑
j cj Rj for some suit-

able coefficientscj . To this end, we need the variance for∑
j cj Rj . The variance for the local statisticRj was given

above, but we will also need the covariance between two such
statistics. Givenz, the covariance betweenRj1 and Rj2 is
given by the following formula:

Cov
(
Rj1, Rj2

)
=

(1/k)ρ (δ1, δ2) σδ1 σδ2

∑
w̃1i w̃2i

(
z1i − µz1

)(
z2i − µz2

)∑
w̃2

1i

(
z1i − µz1

)2 ∑
w̃2

2i

(
z2i − µz2

)2 . (21)

Hereρ is the coefficient of correlation between two jointx-
sequences from a single simulation, to be estimated from a
set of (unforced) simulations.

Finally, we arrange the variances and covariances forRj in
the covariance matrixV(R) for the corresponding vectorR.
Let c be the corresponding column vector with components
cj . Then the variance for

∑
j cj Rj is obtained as the scalar:

Var

(∑
j

cj Rj

)
= cT V(R)c. (22)

Thus, our unified correlation-based test statistic becomes

UR =

∑
j cj Rj√

Var
(∑

j cj Rj

) . (23)
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A significant positive value ofUR implies that the model
is able to explain some of the observed temperature varia-
tion. As with UT , we can use the normal distribution to test
for significance. Thus, for example, ifUR > 1.65, thenH0
can be rejected at the one-sided 5 % significance level. The
larger the positiveUR values are, the stronger the correlation
between the model and the observations. A high negativeUR

would imply a negative correlation between model and ob-
servations. If such values are found, this may be a warning
sign of possible erroneous calculations or possible problems
with the climate model or proxy data. As with theT statistic,
one may also consider a randomized-based significance test
of R (see Appendix B).

9 Discussion – relationships between our framework
and optimal fingerprinting used in detection and
attribution studies

As pointed out byHegerl (2012), the statistical framework
developed here has similarities to the ideas underlying the
optimal fingerprinting method used in detection and attribu-
tion (DA) studies, which have been important for our under-
standing of the relative roles of man-made and natural in-
fluences on recent climate change (e.g.IDAG, 2005; Hegerl
et al., 2007b). Given the importance of the optimal finger-
printing and DA framework, it seems worthwhile discussing
some differences and similarities to our framework.

Our framework is specifically developed to obtain an unbi-
ased ranking of several competing forced simulations where
a variety of climate proxy data, representing different re-
gions, covering different time periods and having different
precision, are used to represent the real climate. The optimal
fingerprinting method, although it has indeed been used for
comparisons of simulated climate with climate reconstructed
from proxy data (e.g.Hegerl et al., 2007a), has largely been
designed for DA studies using spatially more complete and
homogeneous gridded instrumental climate data sets (e.g.
Stott et al., 2003). Initially, in our work, we considered
the option of modifying an existing empirical-orthogonal-
function-based quadratic form type metric of climate model
performance (Mu et al., 2004; Rowlands et al., 2012). This
incorporated essential elements from optimal fingerprinting,
but it was not clear how to modify it in order to reach our
goals, for example allowing noise in simulations, instrumen-
tal observations, and proxies – in particular allowing proxy
series of different length and with temporally variable statis-
tical precision. Therefore, we preferred to start from scratch
and develop a model-based statistical framework specifically
designed for our purposes.

A central assumption behind the use of optimal finger-
printing in DA studies is that the observed climate record,
which is influenced by multiple sources of external forcings,
can be expressed as the sum of internal unforced climate
variations plus a linear combination of simulated response

patterns to each of the individual forcings as determined from
climate model simulations. Thus, the method relies on the
existence of an underlying linear relationship between the
real response to a real forcing and the expected simulated
response to the same type of forcing within a climate model.

Mathematically, but not statistically, the same idea under-
lies the specification of the simulated (x) and real (τ ) temper-
atures in our Statistical Model 1. Here, the real forced tem-
perature response is represented by the termξ and the cor-
responding simulated response is represented byαξ , where
α can be interpreted as a linear scaling factor, in a theoreti-
cal linear regression of the climate model output on the cor-
responding true climate forcing effect. Thus,α plays an in-
verse type of role to the regression coefficients used in op-
timal fingerprinting to scale the simulated response patterns
(signals) such that they best fit the observed climate. In both
cases, i.e. in our framework and optimal fingerprinting, a
perfectly simulated amplitude of the response to a particular
forcing means that the scaling factor should be equal to one.
A difference between the two approaches, so far, is that op-
timal fingerprinting allows a vector of scaling factors to deal
with jointly linear effects of different forcings, whereas our
framework has been deliberately restricted to a single fac-
tor and a single type of forcing (although this may consist
of a combination of several individual forcings). However,
as mentioned in Sect.2, we intend to investigate the impli-
cations of an extension of our framework to allow explicit
treatment of several individual forcings. Under additional as-
sumptions, our framework can in principle be extended to
include a regression-type estimation ofα, which would cor-
respond to the estimation part of optimal fingerprinting.

The first requirement in any DA study is to determine
whether an observed climate change can be detected be-
yond the level of internal unforced variability (IDAG, 2005).
This occurs when the estimated signal pattern scaling fac-
tors are significantly different from zero. In our framework,
this corresponds to determining whether a forced model is
able to explain any of the observed temperature variations.
This is achieved by our correlation test statisticUR defined
in Sect.8. The second DA requirement is to assess the consis-
tency between the observed and simulated response to forc-
ing (IDAG, 2005). This is the same as evaluating the null hy-
pothesis that all fingerprint regression coefficients are equal
to one. This part of the DA framework has, so far, no counter-
part in our framework. However, after a future modification
to allow an estimation ofα (also in vector form), our frame-
work could handle this aspect too. Our main test statisticUT ,
defined in Sect.7, has no direct counterpart in optimal fin-
gerprinting, but plays a similar role as a performance metric,
namely as the “cost function” defined in Eq. (1) ofMu et al.
(2004), or the goodness-of-fit statistic used inRowlands et al.
(2012). OurUT , however, is not merely a distance metric, but
is in fact a test statistic derived from a set of distance metrics
calculated for different regions and seasons.
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Both our framework and optimal fingerprinting require
some assumptions about the spatiotemporal character of the
unforced internal climate variability. Optimal fingerprinting
typically relies on a spatiotemporal covariance matrix esti-
mated from long control simulations (Allen and Tett, 1999).
This matrix can be very large, which complicates its inver-
sion – something that is needed in optimal fingerprinting.
This inversion may require non-trivial “pre-whitening” op-
erations (Allen and Tett, 1999). Our framework does not re-
quire any inversion of covariance matrices and is therefore
easier to use. The price paid for avoiding the need to allow
temporal correlation is a simplifying assumption of white
noise in the specification of the temporal character of the un-
forcedsimulatedclimate (δ in Statistical Models 1 and 2).
This limitation places a restriction on the time unit (time
resolution) that can be used; namely, this unit must be suf-
ficiently long such that the unforcedsimulatedclimate can
be approximated as white noise. Optimal fingerprinting is in
theory not hampered by such a restriction, but in practice it
may not be possible to use a much smaller time unit, because
that would significantly increase the size of the covariance
matrix to be inverted. Moreover, to obtain information about
the full spatiotemporal covariance on all timescales relevant
for studies of climate of an entire millennium, several very
long control simulations would be needed. Thus, it seems
questionable whether it is possible, in practice, to take full
advantage of the inclusion of the covariance matrix in the op-
timal fingerprinting framework for multivariate model evalu-
ations that consider the entire last millennium, or longer. It is
also debatable whether or not the spatial correlation should
go into the criterion in an automatic way (via EOFs), to be
used for evaluating climate models. It should, however, cer-
tainly go into the evaluation of the properties of the criterion.

Note also that – although not being an explicit part of
our statistical framework – we suggest the white noise as-
sumption forδ of the control simulations can be satisfied to
a sufficient degree (i.e. not severely violated) by a suitable
choice of time unit (see Part 2, where this is investigated).
Even better could be to have a physically more realistic char-
acter ofδ in the model and find the corresponding adjust-
ments required in the theoretical results. Future work could
be aimed at this problem. Concerning spatial variation, note
that explicit information from control simulations is already
included in our framework, for the estimation of variances
and covariances needed in the test statisticsUT andUR. This
part of our framework does not put any theoretical restriction
on the character of the spatial covariances. We also remind
the reader that no assumptions at all are needed for the tem-
poral character of thereal unforced temperature (η) or the
forced temperature component (ξ ), nor of the measurement
error componentsθ andε.

10 Conclusions and recommendations

We have presented statistical models for observed and latent
variables that play a role when comparing forced climate
model simulations with climate proxy data or instrumental
records. Based on these models, a distance measure between
simulations and proxies has been developed that ranks the
simulations in the same order as if the distance to the true,
unknown, climate were used – of course with an unavoid-
able stochasticity due to the noise in the data. This distance
measure can be used with a set of multiple proxies that repre-
sent different regions and seasons, and includes weights that
depend on the statistical precision of these proxies, which
is allowed to vary in time. A significance test is then devel-
oped, to test if a forced simulation performs better (i.e. has
a smaller distance to the observations) than unforced simula-
tions. Another significance test is formulated for the correla-
tion between a forced simulation and the proxies. Although
distance measures are a standard concept, this is – to our
knowledge – the first time the specific form of the distance
measure and the calibration of proxies are jointly developed
based directly on a statistical model for comparing simulated
and observed past climate records, rather than being ad hoc.

The new framework may be used to rank a set of alterna-
tive simulations, where the models are driven with different
amplitudes of past external forcings, e.g. solar and volcanic
forcing. This may help to better understand how large these
past forcings have been, something that is not yet fully un-
derstood, by assuming that those reconstructed forcings that
provide the best fit of simulated temperatures to the observed
ones are more likely to better represent the true past forc-
ings. In our companion study (Part 2) we will investigate, in
a pseudo-proxy experiment, the possibility to distinguish be-
tween multiple-forced simulations that include either a small
or a large amplitude of past solar forcing.

Alternatively, our framework could be used to rank dif-
ferent simulations that have been driven with the same past
forcing history, but where the climate models include differ-
ent parametrizations of various non-resolved physical pro-
cesses, i.e. a perturbed physics ensemble simulation exper-
iment. Different parametrizations may cause the models to
have different climate sensitivities, resulting in different am-
plitudes of the response to external forcings. The models that
provide the best fit to the observations would likely include
the more appropriate parametrizations.

Note that our framework is designed for being applied to
fully coupled general circulation models (GCMs). Thus, we
do not advise to rank simulations with a simple energy bal-
ance model (EBM), or an Earth system model of intermediate
complexity (EMIC), against simulations with a GCM. Such
rankings would be rather meaningless. For example, an EBM
might provide a smaller distance to the observations than a
GCM just because its unforced variability is virtually zero.
Also, note that our correlation-based test statistic shouldnot
be used to rank simulations; its sole purpose is to determine

Clim. Past, 8, 1339–1353, 2012 www.clim-past.net/8/1339/2012/



R. Sundberg et al.: Statistical framework for evaluation of climate model simulations – Part 1 1351

whether a forced model is able to explain (in a statistical
sense) some part of the observed temperature variations. A
ranking using the distance-based statistic is meaningful only
when this occurs.

The framework developed here is not yet fully developed
and several aspects could be improved in future versions.
It would be desirable to have a statistical precision mea-
sure attached to theD2 differences when comparing differ-
ently forced climate models, not only as now, when forced
simulations are only compared with unforced controls. The
assumption that the simulated unforced variability can be
modelled as white noise should be replaced by a physically
more realistic representation, making it possible to work with
shorter time units. Also, further modification would be re-
quired for use with climate variables other than temperature
– or a combination of several climate variables. Future devel-
opments should aim at improving some of the aspects men-
tioned above, as well as to allow estimation of the forced
amplitude of simulated climate variability.

Appendix A

Averaging insideD2

Here we provide the necessary formulae for calculating the
bias correction and for estimating the variance ofT when us-
ing the differenceT (xf, xu, z) =D2

w(xf, z) − D2
w(xu, z) as

the distance-based test statistic, i.e. with averaging insideD2.

A1 Bias of the test statisticT

Supposexf includes a forced componentα ξ . When

T (xf, xu, z) = D2
w (xf, z) − D2

w (xu, z) ,

i.e. under outside averaging, the expected value ofT is

E(T ) = −

(
2α − α2

) 1

n

n∑
i=1

wi (ξi − µ)2 .

UnderH0, α = 0, and the expected valueE(T ) is zero.
With

T (xf, xu, z) = D2
w (xf, z) − D2

w (xu, z) ,

i.e. under inside averaging, the expected value ofT contains
an additional bias term, and is now

E(T ) = −

(
2α − α2

) 1

n

n∑
i=1

wi (ξi − µ)2
+ σ 2

δ

(
1

k
−

1

K

)
1

n

n∑
i=1

wi .

The bias term is now zero only whenk =K. Thus, if inside
averaging is used withk 6= K, the bias must either be judged
negligible, or estimated and corrected for.

A2 Precision of the test statisticT

Under inside averaging, the analytical formula for the vari-
ance ofT , under assumed normality ofxf − xu and given the
z sequence, is

Var(T (xf, xu, z)) =
2σ 4

δ

n2

(
1

k2
+

1

K2

) n∑
1

w2
i

+
4σ 2

δ

n2

(
1

k
+

1

K

) n∑
1

w2
i (zi − µx)

2 .

Appendix B

Alternative reference distributions for D2
w, T and R

It deserves mention that there are (at least) two possible non-
parametric alternatives to the normality-based tests forH0
defined in Sect.6, instead being based on exchangeability,
either between replicated simulationsxu or different time in-
tervals within simulationsxu of the unforced model. First,
if the numberK of available unforced simulations is large,
andk � K, then we could repeatedly take random samples
of size k out of theK, to let them representxf underH0.
Along these lines, a reference distribution for the distance
measureD2

w or theD2-differenceT could be estimated, valid
underH0. However, to have a large number of unforced sim-
ulations (say 50) using a single climate model does not ap-
pear to be realistic at present. Presumably, a more affordable
alternative is to utilize the stronger property of exchange-
ability within an unforced sequence. This assumes negligible
autocorrelation, to be accomplished by a large enough time
unit. From each sequencexu, new sequences can be gener-
ated by randomly permuting the order within the sequence.
For each such new sequence, the correspondingD2

w andT

values can be computed, and this leads to a reference distri-
bution forD2

w or T underH0. In the present study, such ran-
dom permutation-based tests have not been applied, but the
aim is to try them in later studies. However, it should not be
forgotten that the primary use ofD2

w is for ranking different
simulations using data from several regions and seasons, and
for that purpose the reference distribution of the test statistics
is of somewhat limited interest, and the more explicit formula
UT proposed in Sect.7 appears to be more convenient.

Analogous constructions can be used for the correlation
measureR. A reference distribution could be constructed
by computingR for each of a large number of replicated
simulations. If only one or a few simulations are available,
we are confined to running through random permutations of
their time order before correlating them with the instrumen-
tal/proxy sequence.
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