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Abstract. A statistical framework for comparing the output 1 Introduction
of ensemble simulations from global climate models with

networks of climate proxy and instrumental records has been

developed, focusing on near-surface temperatures for the lasttudies that compare climate reconstructions for the last mil-
millennium. This framework includes the formulation of a /€NNium with climate model simulations have contributed
joint statistical model for proxy data, instrumental data angSignificantly to our understanding of natural and anthro-
simulation data, which is used to optimize a quadratic dis-P°9enic climate change. Based upon results from such in-
tance measure for ranking climate model simulations. An esYestigations, the Intergovernmental Panel on Climate Change
sential underlying assumption is that the simulations and th«=?onC|UdG(,j in its fourth assessment report that volcanic and
proxy/instrumental series have a shared component of variSC!a’ forcmhgs have VfTIry likely afrf]ected NH rlnle?lln tempera-
ability that is due to temporal changes in external forcing, lUré over the past millennium, that external influences ex-
such as volcanic aerosol load, solar irradiance or greenhou ain a substantial fraction of inter-decadal temperature vari-

gas concentrations. Two statistical tests have been formi2Pility in the past, and that the climate response to green-
lated. Firstly, a preliminary test establishes whether a signifi-"0US€ 9as increases can be detected in a range of multi-proxy
cant temporal correlation exists between instrumental/proxy €constructions during recent decadesgerl et al.2007h.

and simulation data. Secondly, the distance measure is exX¥/0re recently, detection of temperature changes and their at-
pressed in the form of a test statistic of whether a forcedt”b”t'on to external influences, such as the concentration of

simulation is closer to the instrumental/proxy series thanStratospheric aerosols and possibly changes in total solar ir-
unforced simulations. The proposed framework allows anyradlance, has been made at a regional (European) scale for

number of proxy locations to be used jointly, with different € last five centuries{egerl etal. 201.

seasons, record lengths and statistical precision. The goal ish Algr0W|r_1liq size of climate mc|>del S|mu|Iat|on ensembles for
to objectively rank several competing climate model simu- 1€ 1ast millennium (e.glungclaus et 412010 and a con-
lations (e.g. with alternative model parameterizations or al-Stantly increasing number of local/regional climate recon-

ternative forcing histories) by means of their goodness of fitgtructions from proxy datalones et al.2009 will make

to the unobservable true past climate variations, as estimatellj Possible to undertake a more systematic evaluation of

from noisy proxy data and instrumental observations. model simulations against proxy data. However, the grow-
ing amount of information also calls for new statistical tools

for evaluating the models against the reconstructions. Statis-
tical measures of model performance in terms of mean square
errors have long since been used within weather prediction
to compare different forecast systems and to track forecast
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1340 R. Sundberg et al.: Statistical framework for evaluation of climate model simulations — Part 1

improvements over timeMurphy, 1988 Murphy and Ep-  (Murphy et al, 2004, or a combination of alternative forc-
stein 1989 Krishnamurti et al. 1999. These ideas have ings and model parameters is us&bywlands et aJ.2012).
developed into methods for the detection and attribution ofWe also consider the ranking of entire competing ensembles
climate change signals using the instrumental recaAiltig of simulations, where the members of one and the same en-
and Tett 1999 and paleoclimate reconstruction datée@jerl  semble are assumed to differ only in the initial conditions;
et al, 20073, as well as techniques for data assimilation of i.e. their forcings and model physics are the same. Our per-
climate proxy data in model simulationS¢osse et al2006 formance metric will also serve as a test statistic of the null
Widmann et al.2010. Statistical measures of climate model hypothesis that the climate model simulation under consid-
performance can use spatial and temporal correlations foundration is equivalent to an unforced model (control simula-
in internal climate variability Rowlands et a.2012 and  tion). In addition, we will suggest another test statistic to test
also combine information from several climate field variablesthe null hypothesis that a climate model simulation does not
(Mu et al, 2004). However, explicit treatment of the model explain any of the temporal variation in the instrumental or
and observational data error terms in the formulation of per-proxy data. To investigate the performance of our framework,
formance metrics becomes a great challenge when dealingnder conditions where the results can be evaluated against
with climate proxy data, because they are typically asso-a perfectly known climate, we undertake a pseudo-proxy ex-
ciated with substantial uncertainties, including mixed sea-perimentin a companion papétifd et al, 2012 henceforth
sonal signals and time scale-dependent, temporally unstableart 2).
climate-proxy relationships. Moreover, the available proxy We start by formulating a statistical model with near-
data are irregularly distributed in space, vary in seasonaburface temperatures in mind, from which a climate model
representativeness and can reflect different climate variablesvaluation framework is developed. Note that other climate
(Jones et al2009. variables, such as precipitation or a drought index, are proba-
Our aim is to address some of these problems and formubly more difficult to model and may require substantial mod-
late a statistical framework for evaluation of climate model ification of the theory presented below.
simulations against a diverse set of climate proxy series. We
will assume that evaluation of the models against modern
instrumental gridded data sets has already been made ardd A statistical model
that the models to be tested have been judged to simulate ) o )
the current climate conditions reasonably well. For example W& @ssume the climate characteristic of interest, to be called
we assume that previous model evaluations have shown thdt IS @ temperature time series representing a particular re-
the climate models have acceptable biases and that the mo@ion during some time period, d'V'd?d into a number of time
els, when driven by historical external forcings, simulate cli- UNits yielding a sequence of valugsi =1, ...,n, where the
mate trends that are consistent with the instrumental obser2UPSCript represents time. Typically, this region consists of
vations. Hence we focus on problems connected with how? Single model grid box, but averages over several grid boxes
to use climate proxy data for model evaluation back into the€@n @lso be considered. The time unit can be single years or,
pre-instrumental period. We demand that the proxies hav&dy, averages over a 10-yr or 30-yr period. To begin with,
sufficiently high temporal resolution and dating precision to W€ Only consider temperatures for a single region and a par-
allow direct calibration against instrumental climate time se-ticular season, but later (in Se@). we will investigate how
ries. In practice, this requirement excludes many types of® c.ombme <_jata frqm different regions and seasons. The fol-
proxy data and also time periods far beyond the last millen/0Wing notations will be used:
nium. Tree-ring data and historical documentary proxies are
annually resolved and have exact dating, which make them
suitable. Some proxies with lower resolution, but still with a
great deal of precision in their dating, may also be consid-

x — a simulated temperature value for the region and time
period of interest, generated by a climate model.

T — a true temperature, correspondingxt@s a spatial

ered, provided that their sampling resolution is high enough
to allow meaningful calibration against overlapping instru-
mental series.

Our goal here is to develop a method that can be used to
objectively rank several “competing” simulations by means
of their goodness of fit to the unobservable true past climate
variations, as estimated from noisy proxy data and instru-
mental observations. The competing simulations can be, for
example, simulations driven with alternative plausible ampli-
tudes of past radiative forcingdungclaus et 812010, sim-
ulations from models with different climate sensitivities due
to different parametrization of unresolved physical processes
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and temporal average over the same region and time
unit. The true temperature is an unobserved (or latent)
variable, except in those cases where wersey (see
below).

y — a measured temperature, intended to represem-

ing also some average over space and time, and avail-
able for some period of time. This measured vajue
can differ fromt because of measurement errors, but
also becausg andt are somewhat different spatial and
temporal averages (typically,is an average taken over

a finite set of irregularly spread observing stations and
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for a set of possibly time-varying observation hours).
Sometimes we will assume that this observed tempera-
ture well enough approximates the true temperatyre

SO we can neglect measurement type errors in these ob-
servations. However, often in practice, we expect some Yi
non-negligible errors to exist.

Xi

Ti

Zi

z — a surrogate for the true temperaturederived from
climate proxy data. When observed temperatyrese
not available, proxy measurementwill be used. Here
we ignore all practical problems connected with how to
construct temperature proxy series from raw proxy datat
(e.g. tree-ring width or density measurements). Hence
we think of a proxy series as a final product for use
in climate reconstruction (e.g. a tree-ring chronology),
constructed in the best possible way.

The following statistical model explicitly allows climatic
forcing effects jointly in the climate model simulations) (
and in the actual temperature (i.e. allofy andz). This is
crucial, since inclusion of temporally varying external forc-
ings in the climate model simulation is the only reason to
expect any temporal correlation (covariation) between simu-
lations and actual temperature. The forcing effects can, for
example, be the temperature response to radiative forcing
from stratospheric aerosols ejected from large volcanic erup-
tions or the response to variations in solar radiation. Note
that, in general, a particular type of forcing imposed on the
climate model is not a true reflection of reality, because the
forcing history is incompletely known regarding its temporal
evolution, its amplitude and its spatial distribution pattern.
Moreover, it is typically only crudely represented in the sim-
ulations. Its effect on temperature needs not be the same in
reality as in the model, because these worlds may have dif-
ferent sensitivities to the forcing and possibly also different
spatial response patterns.

For simplicity, we will assume that the latent relationship
between the true response to a real forcing and the simulated
response to a reconstructed forcing of the same type, when
imposed upon a climate model, is (approximately) propor-
tional, when measured as deviations from the mean values
of T andx. This does not prevent additional uncorrelated
random forcing effects in the climate model, due to causes
discussed above. Note that we make no assumption about
how the response to the forcing is related to the forcing
itself, but only that the real and simulated responses are
linearly related. This way of thinking about the response
to climate forcings is similar to that used in detection and
attribution studies (e.glDAG, 2005. We will discuss, in
Sect.9, some relationships between our framework and that
used in detection and attribution.

Statistical Model 1: Climate model simulation sequence
{x;}, true climate sequendg;}, instrumental measurement
sequencegy;}, and proxy sequendg;} are mutually related
through the following model, explained below:
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Here, Greek letters are used for latent variables, random vari-
ables, unobserved errors and unknown coefficients, to indi-
cate their unobservability. In contrast,y andz are observed

or measured. Terms,, u. andu, are the mean values over
ime, around which,  (andy), andz naturally vary. Quan-
tities 8, n, 0, ande are regarded as random variables, with
mean values zero and varianegs o2, 67, ands?, whereas

a andpg are unknown coefficients:

& denotes the true effect of a specific type of forcing
that has influenced the true temperatureSince both

the causes behind the forcings and the actual effects
are uncontrolled, we regard this variation as only par-
tially random. The forcing can be either of a single-
type (e.g. only volcanic forcing) or a combination of
several forcings (e.g. volcanic and solar forcing). Note
that& is not the forcing itself, but rather its temperature
response.

a & represents the unknown variability in that can
be linearly explained by the true forcing effect. For
simplicity, we have assumed an (approximately) pro-
portional relationship to the true effect an A cor-
rect representation of the forcing effect in the climate
model corresponds te =1, whereas an unforced cli-
mate model has =0.

n denotes the (residual) variation in true temperature
that cannot be statistically explained by the particular
forcing under consideration. This is then uncorrelated
with €.

3 represents internal noise variability in the simulations
and any variability in the simulations unrelated (uncor-
related) with the true forcing effects. It will thus incor-
porate the uncorrelated part of nonlinear climate model
effects corresponding to true climate forcing effects.

6 denotes the measurement error in the temperature
variable y, making y differ randomly from the true
temperature .

B(t; — ) is the regression of the proxyon the true
temperature . The observed proxy valugwill be cor-
related with the measured temperatyredue to ther
they have in common, and we will use that correlation
to calibrate the proxy variable.

— € represents the residual variation in uncorrelated

with 7.
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1342 R. Sundberg et al.: Statistical framework for evaluation of climate model simulations — Part 1

It is judged reasonable that all random varialies, 0, kind of squared difference measuM( et al, 2004 Goosse
8 ande should be mutually uncorrelated, and this is also as-et al, 2005 2006, and we choose a criterion of this kind.
sumed below. Under this assumption, a positive correlation We postpone the problem with proxy data and assume first
betweenx andz (or y or z) implies that they share the term that we have the true temperatuteavailable. We define the
&. In other words, the effect of the forcing incorresponds  simple distance measure:
positively with that in the true temperaturgor y or z).

Theé& andy (i.e. the components af) sequences will cer- 2 18 2
tainly show autocorrelation on various time scales, and ourD xo) =2 Z(x,- - (1)
theory allows this. Sometimes it could be of interest to con-
sider the more complicated case of multiple forcings (i.e. theA statistical motivation for this criterion is obtained by con-
joint effect of several individual but possibly interacting forc- sideringD? as a mean squared error of prediction (MSEP) of
ings, not equally represented in the simulations), represented.
by a vector¢ instead of a scalag. Although climate model It may be argued that such an MSEP criterion function
simulations driven by multiple forcings are used in the ex- should be formulated as dependent on possible autocorrela-
perimental companion paper (Part 2), the theoretical aspectsion among the simulation erross in x; (Mu et al, 2004).
of multiple forcings will be investigated further in a future If we assume; to be white noise, this argument disappears.
analysis. Even without this assumption, we can choose criterion (1),

The internal variability sequenck (but neitherd nor ¢) primarily for its simplicity. We will return to motivations in
will be assumed to be temporally uncorrelated, i.e. whiteSect5. The requirement o6} to be white noise will reappear
noise, whenever a specification is needed (essentially onlyn the calculation of standard errors for the test statistics, but
for properties of the test statistics of Se@snd8). Thisisa  even there, this assumption is not crucial so long as we use
slight limitation of the present version of the theory, becausethese statistics more as criteria for ranking than for stating
the real simulation processes will certainly show some de-significances.
gree of autocorrelation, at least on rather short time scales. The better the climate model represents the forcing effects
In the pseudo-proxy experiment in Part 2, white naisis that underlie the true temperature, the smaller the expected
assumed, motivated by finding and selecting a time unit fordistance between simulations and true temperatures. How-
which the autocorrelation is negligible. ever, any systematic bias inwill also contribute toD?. If

We cannot expect a forced simulation to explain some ofone has good reason to assume that systematic biases can be
the variability in the real temperature, unless it is statisti- neglected for a particular study, then this can be achieved by
cally correlated. Thus, in practice, if we want to test somesubtracting the mean values.ofandt over a common time
forced simulations of different types, to rank them accordingperiod. Doing so, however, obviously makes the criterion un-
to how well they are able to explain the observed temperasuitable for evaluating systematic model biases; rather, it then
tures, itis natural to first test by correlation tests whether theysolely focuses on comparing the temporal evolution of cli-
can explain any of the observed temperature variations. Onlynate model simulations with the true temperature evolution.
forcings that provide statistically significant correlations be-  Since the true; is not available, we have to replace it by
tween simulated and observed temperatures are worthwhilthe measureg; for the period whery is observed and else by
studying for determination of the optimal forcing magni- a suitable proxy;. For notational convenience, we suppress
tude and for use in calculations of a distance measure. Aly and writeD?(x, z), wherez; is assumed to be replaced by
though a correlation test should therefore be carried out bey; wheny; is available:
fore any distance measure is calculated, we start the descrip- .
tion of our statistical framework by developing a distance- D2(x. 2) = % Z(xz' — 2. @)

1

1

based performance metric (in Se@s7) before we formu-
late a correlation-based test (in Sed)t.

Leaving aside how should be chosen for the moment, it is

enough that satisfies the Statistical Model 1. There is moti-
3 The distance measureP?(x, z) vation to modify D? by giving different weights to different

terms ofD?(x, z), depending on how good the available data
The problem is to identify, among several forced climate are. However, this discussion will be postponed to Sgct.
model simulations, a simulation that is able to predict theWe will first (in Sect.4) compareD?(x, z) with the ideal
actual temperature better than the others — and in particulab?(x, 7). We do not wanD2(x, z) to yield a systematically
better than unforced model simulations. For comparison ofdifferent ranking of a set of different than that given by
different forced simulations, to find out whosesequence D?(x, r) and we will see under what circumstances it does
of temperatures is best at capturing the real variation in temsot. The criterion for this will yield a procedure for the cal-
peratures f), we need a criterion. Performance metrics for ibration of the proxy series, for use in D?(x, z). Later,
climate model simulations are typically expressed as someave will discuss the statistical significance and precision of
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D?(x, z) (Sect.6) and how to combine information from whenzg is regressed om and this relationship is inverted to
several regions or seasons into a unified model performancgield a predictor/estimator foy.

metric for each model simulation (Se&). Next, allow the error iny to be nonnegligible. Then we
have a statistical relationship betwegnandy of the struc-
tural relationship type (an errors-in-variables model). Pro-
vided that we can estimate or otherwise judge the size of the
error variance iry (i.e. 092), we can obtain an approximately
unbiased estimator ¢y by

4  Proxy calibration to avoid ranking bias in D2(x, z)

We assume here that we want to rank different climate
model simulations according to their ideal distance mea-
sureD?(x, T). However, we only have the surrogate measure ~ Syz0

D?(x, z), using the observed temperature variablevhen 0= 2 _52° ©)
available) or a proxy measuremerinstead of the true tem- vl

peraturer, and we do not want this to change the ranking \ypere Syzo and s2 are the empirical covariance and vari-
in any systematic way. More precisely, we demand the MeaRnce, respectively (seuller, 1987 Cheng and van Ness
value of D?(x, 2) — D?(x, 7), givenx andr, to be free of 1999 This is the quantity by which to normalize to ob-

x andz, in particular free ofx — . We first conclude that (i the desired sequencez = + (20 — ltzo)//é\o- Setting

replacement ot by y in D?(x, t) does not introduce any ;;ezzo brings us back to the previous situation.
ranking bias. This is seen from the relation

2 2 2 Conclusion. To avoid systematic ranking error in the squared dis-
x=»"=&-1"=-2(x —1)0 +0°. (3)  tanceD2(x, 7) relative to the ideaD2(x, 7), the proxyz should be

A . h . o f . d mean adjusted and normalized, such that the estimated regression
veraging over the noise terg, for a givenx andr, we coefficient ofz on 7 is 1. This corresponds to use of the so-called

. . — 2
obtain zero for the first term and a (.:Ol’lstalé?t— E(64) for  classical calibration procedure for calibratinggainsty, when er-
the second term on the right-hand side. This means that thgys iny are negligible. To allow errors in, the modified Eq.§)

noise termy of y does not introduce any ranking bias. should be used.
For the proxy data, following the statistical model, the for-
mula corresponding to Eq3)is Note that, in comparison with the observed temperagure
the amplitude of variation in the proxy, Vaj( is exaggerated
x-2-(-12=-20-1)c-1+@—1% @) after classical calibration or when using E6).(The reason

is that the full amplitude of the true temperature signal is
retained and that the proxy noise variance is superimposed
=T =g — e+ B =1 (t — pr) +e. (5) on the temperature signal variance. We will see in the next
section how this is compensated for by an optimal weighting
In the mean value of Eq4j, the contribution of the noise of the different observed values according to their variance
terme will only be the constarrtf, corresponding teré,2 from components.
Eq. ). For the mean value of Eg4), givenx andz, to be
totally free ofx — 7, however, it is seen from Eop)that we ~ Remark. A calibrated proxy., obtained by classical calibration or
must have botfu, = 1, (= 1) andg = 1. This tells how raw by using Eqg. §), may be called an estimator or predictorwofn -
proxy dataz must be calibrated, so that it does not introduce 1€ S€nse that the true temperature component embedded within
. . . . the NOISYy Proxy series I1s estimated with its correct variance. How-
any systematic deviations from the ideal ranking.

h librati fth d h ever, the weaker the correlation is betweemndz (or y), the larger
For the calibration of the proxy datawe assume that we the total variance in because the variance of the noise terive-

have available a period of both proxy and temperature meagomes increasingly dominant. Thealibrated in this way is there-
surements. This allows the estimation of the relationship before not an optimal predictor of the true temperatures at each in-
tweenz andy, and this is the basis for the calibration. The dividual time point. For a single time-point prediction, direct re-
first requirement, thag should have the same mean value asgression ofr (or y) on zg would provide a more appropriate pre-
v, is naturally achieved except for the unavoidable calibra-dictor/estimator, where the prediction error variance is minimized.
tion uncertainty by adjusting by an additive constant, so its This alternative way of calibrating climate proxy data has often been
average valug over the calibration period satisfigs y. used ?n palaeoclimate studig€RC, 2009. For th.e cIimatg recon-
The second requirement is thatshould have a regres- struction problem in general, though, the seemingly desirable prop-

sion on the latent variablewith regression coefficient = 1 erty of (in theory) minimized prediction error is not necessarily an

Thus. diven an uncalibrated proxy with rearession coeffi- advantage, because (in practice) it leads to a systematic bias of the
L 9 Proxy .g. . . mean reconstructed (i.e. predicted) past climate in periods that have
cient 8o on t, zo should be rescaled by division wiy to

j g a mean value that differs from that of the calibration period. As this
form a calibrated asz = 1y + (z0 — 11z5)/ Po, except for cali- s an undesired property, e.g. when judgements are made on how the
bration uncertainty. In the case when the erroy is negligi-  recent climate differs from previous climates, this has led to vigor-
ble, soy =, this corresponds precisely to the so-called clas-ous discussions in the climate literature on how proxy data should
sical calibration proceduredsborne 1991, Brown, 1993, be calibratedvon Storch(1999; Esper et al(20053; Burger et al.

where
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(2006; Hegerl et al(20073; Ammann et al(2010; Christiansen  should introduce this weighting i®?, we first reconsider
(2011); Kutzbach et al(2011); Moberg and Brattstm (2011); Tin- Statistical Model 1, assuming both= 1 (correct amplitude
gley et al.(2012 and several others have recently discussed thegf the forced componerdt) and g =1 (calibratec), so that
importance of retrieving the full variance of the temperature sig- tha forcing effect vanishes fromx — z andx — y. We also
nal, including discussions on the use of errors-in-variables mOdelsassummx =1, =z, SO there is no bias in— y or x — z.

It must be stressed, however, that in the present context, the way If the climate model is perfect in this sense, and if we first

proxy data should be calibrated comes out as a corollary from theassume a Gaussian distribution with constant variance for the
statistical model formulated in combination with the explicit desire

to obtain an unbiased ranking of forced simulations against the trué/arlablllty of x; —z;, the resulting Gaussian probability den-

past temperatures. sity for the whole observed series- z is proportional to
. . . . — 1 D2(x, 2 2 2
If more than one proxy series is available for the regione 2”9/ Tor+o0), (7)

and season of interest, they should be combined to a single > 5 .
20 sequence in order to increase statistical precision and thu¢here o, o, and ¢of are the variances of the cor-
yield the smallest possible randomnessiif(x, z). In the- ~ résponding C(Z)mpgnen;s of the statistical model, and
ory, this is achieved by multiple regression pbn the set  Vari —zi)=og +oy+o2. When y; is available and re-
of available proxy series to obtain. In practice, however, ~placesz;, o2 should be replaced by, but for simplicity
a number of complications must be dealt with, e.g. differ- of notation we leave that alternative aside for the moment. If
ent time periods for different proxies, and there are severathere is a bias i and/or a true forcing effect that does not
reasons (e.g. collinearity among the proxies, or that the rehave a linearly correct representation in the climate model
lationships from the calibration period do not hold outside (i-€.« # 1, including the case = 0), its D2-value will tend to
this period) why another way to combine the proxies maybe higher and the probability) to observe this vector — z
be preferred. We will not attempt to deal with these moreWill tend to be exponentially smaller. Thus, e measure
practical problems here, but primarily conclude that, what-is proportionally equivalent to a Gaussian log-density.
ever method chosen, the goal should be to optimize the cor- The denominatos? +¢2+02 in the exponent of Eq.7j
relation betweeng andr. The preferredy is then rescaled Wwas assumed constant. However, when the variances in this
using classical calibration or Eg)( In cases when different denominator vary withi, in particular the proxy noise term
proxy data are available in different pre-instrumental periods,c2(i), the interpretation ob? as a Gaussian log-density tells
they must be separately calibrated, and when the calibratetls how different terms should be (ideally) weighted/A,
proxy series is known to have different precision in different forming a weighted versiod3;:
time periods, this must be adjusted for in the weighting (see
Sect.5 below). D2(r. oy =t i i (i — 22 = 1 X": (x; — 2i)? .
. . . . . LA - A ! - 2 2 201’

In practice, it is necessary to decide a time unit to use for n e n o5+ o5+ 02()
the calibration. For annually resolved proxy data, the cali- ) L
bration will have its highest precision if calibration is made Anzaltegnatlve formulation is to introduce the constant fac-
using the full annual resolution. However, if the model evalu- {0F o5 +0;;, corresponding to use of the density jor- z in-
ation is made for a lower resolution (e.g. 10- or 30-yr means)Stéad ofx —z in the numerator of the exponent of Eq).(
and if there is reason to assume that the proxy/temperature réVe Will use that version as our definition fas:
gression relationship is time scale-dependent, then it may be
better to use a lower resolution for the calibration. However, . — )
this will of course decrease the statistical precision. The in- of + 02+ 02(i)
strumental noise variance to be used in Bjjcén be difficult ] ) ) . ) _
to estimate in practice, but efforts to estimate errors in grid- _FOr timesi when a precisgy =7 is available (i.e. with
ded temperature data have been matelfan et al.200§.  02() =05 =0), the normalized weight (Ec9) equals 1,
MoreoverMoberg and Brattsim (2011, Sect. 6.1) discussa Whereasy; <1when anoisy proxy is used, or an imprecise
procedure to estimate the error variance in the mean of a sd@strumentaly.

of neighbouring temperature station records. Since the denominator of Ec8)(is the expected value of
the numerator of the same term, an alternative interpretation

of the proposed weights is that they are chosen to make all

5 Weighting in DZ(x, 2) terms ofD\,Zv be of the same magnitude.
The weight factor introduced in EqQ)is an ideal weight

Direct temperature measurementand proxies have dif-  (under the assumptions made), for which we can at best give
ferent precision. Moreover, the precision (particularlyz)n  an estimate. Thus, we must insert estimates for each of the
can vary with time due to the quality and quantity of raw data. three variance componentg, "nz ando-f(i). We assume that
This motivates giving different weights to different terms the first two components are constant over time, but we have
(time points) inD?(x, z). In order to understand how we reason to aIIow;f(i), and thus also the weight;, to vary

2 2
o§ +Gn

©)
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over time depending on the precision of the available instru- 5 201
mental or proxy measurement. w; = tsd- ‘1)_ (11)
To estimate752, we propose to use the (time-)sample vari- 52+ s)z,

ancesaz, pooled from simulations of an unforced model (con-
trol simulation). The more simulations available, the better : i
the estimate will be. The main reason to avoid using forcedP€nding on the size af. , o
models here is that their simulations contain an unknown For the period when the proxyis used, the weighting
forcing effect source of variation, contributing to the sample formula becomes

In this case, the weight is somewhat smaller than 1, de-

variance of ther series. A second reason is that the weights 24521 —q)
should not differ between the climate models to be ranked. w; = — ‘; J > . (12)
The variances?? is arguably more difficult to estimate. sy +sy A=)/, 2)

It represents the unforced real temperature variance, which : . . . I
cannot be estimated directly from instrumental observations eﬁen:;\r;grv(\jéiaml:sa)?k (Iptlt'ar?itslcgc?:fulrzsq V\Stze) |sztha1t|_t m|f%r;t
(y) because they will always include some forced variance. InJ ghtsv; > L. > q

particular, the anthropogenic greenhouse gas forcing is Iikel)} ! .
to be represented as a trend-like component which acts true values). Should that happen, we advise that the estima

. : . tion procedures fog andp are checked, and the assumptions
to increase the estimated varianceyofTherefore, we pro- L
S . 2 of uncorrelated noise in, and betweémande. As a resort,
pose to detrend the observetbefore using it to estimate; . if this does not helpw; could be redefined by using E4.q)
Fortunatelyg 2 (as well asy2) occurs in both the numerator ot helpw; d by using
Yoy 8 77 or (12), bearing in mind that the resulting weights are not
and denominator of Eq9J, so reasonably small errors in its

! o ) optimal.
estimate have little influence on the ratio.
Next, we need an estimate of the (possibly) time-varying
of(i). Although this quantity is needed for time poimntsut- 6 Statistical significance and statistical precision of
side the calibration period, we estimate it by using informa-  D?(x, z)
tion from the calibration period when bothandz are avail-
able. Assume first that=1t, i.e.og =0. We can use the cali- When aD? value is calculated for a forced climate model
bration period to estimate the correlatioty, z). The model ~ simulation, for a region and season corresponding to a true
formulaz =y + e implies p2 = Var(y)/Var(z), from which we  temperature series, it is relevant to first ask whether this
obtain the relationshipf =Var(y) (1—p?)/p? (knowing that D? is better (smaller) than a correspondipg value for an
the regression coefficient efon y is 1). unforced model. To make it possible to answer this question,
Note that this estimate af? is determined by the em- We construct a statistical test of a null hypothesis expressing
pirical correlation between the proxy and the instrumentalthat the forced model is not better than an unforced model:
data and therefore by the estimated statistical precision of
the proxy. In cases when the proxy seress knownto have  Ho: The climate model under consideration is equivalent to
different precision in different time periods (and hence dif- the unforced model.
ferent calibrations have been made), a unique weight should
be used for each such period, where each weight should b&ince the unforced model (control simulation) is im-
determined by using the corresponding Ca|ibraﬁ6n|n this portant here as a reference, it will be given a specification
way, we can allow2(i) in Eq. ) to vary with time. separate from the general Statistical Model 1 in S&ct.
Let s)z, be the empirical variance of (detrendedind fol-
low the procedure described above. This yields the weightsStatistical Model 2The model for data undemforcedcli-
formula: mate model simulations, can be written

s+ 57 Xi = px + 6

W = 5——5——5—— (10)
sZ + s2/p%(y. 2)

T = U+

for i in the proxy period. Note that fop?=1 the formula yi =7+ 6

yields w; =1, as it should do when we use=t. As p? ap-

proaches zero, so does. The higher the ratia/s?, the 2 = e+ BT — o) F e

slower the approach is to zero. ] ] . ]
Let us now allow noise iy, with noise variance2. Ifthe ~ Wheres; (but still neithers;, 6; nor ¢;) is regarded as white

ratiog =oZ/s? > 0 is known, the weighting formula for the noise, for the variance formula below.

period when only instrumental dageare used becomes i ) _
Note that the previous forced componentmfi.e. & in

Statistical Model 1, is now included ipn because there is no
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longer a point in expressing it explicitly. This means thes
temperature can include forcing effects also in Model 2, al- T (xf, xy, z) = w (xf — 1) — w(xy — py)?
beit only implicitly. Except for that change of interpretation — 2w (Xt — xX0) (2 — 1p), (14)
of n, the observed climate part of the model is the same as
in Model 1. For the simulation varianes?, there is no clear  where the overlines in the first two terms represent averag-
general answer. If the incorporation of a forcing effect in the ing over both replicates and time indéxHere the factor
climate model does not increase the overall variance in thgz — ;1,) has the role of a weight factor, multiplying with.
simulations, the residual varianeg” must shrink. Another It is natural to adjust the, andx series additively so that
possibility is that the forcing effect is simply added to the the ; series also has the same mean vafuey,. Then we
variation and thus{s2 is not affected. However, to the extent write z — 7 in the last term.
the forcing effects in the climate model are not precisely pro-  The distribution forT is presumably well approximated
portional to those in the true climate, they will contribute to by a normal distribution, since all terms of the representation
an increased?, so this is also a possible scenario. Eq. (14) are sums of a large number of terms (referring to the

We will not deal further with this problem here, but, when central limit theorem of probability). Undet, the expected
necessary, simply assume thgtis the same both with and  value of 7' (xf, xy, z) is zero, since the forced climate model
without forcings. A somewhat related approach to the prob-is equivalent to the unforced model. Assuming normality not
lem of comparing climate models with the same types ofonly of T but already ofr; andxy, the variance of” can be
forcings, but with different magnitudes, would be to try esti- expressed as
matinga. Again, this will be a topic for future study.

The unforced climate model is assumed to have been run ar(T (x¢, xy, 2)) = i (} + i)
number of times, and for each such “replicate” run (differing n?\k K
in initial conditions, and hence also in the actual trajectories n n
of simulated climate variables), we calculat®avalue. Let {2654 Z w? + 407 Z w?(z; — Mx)Z] . (15)
K denote this number of simulations, and tetlenote the 1 1
number of simulations with a forced model (also differing  Ap, approximatelyN (0, 1)-distributed test statistic is ob-
in initial conditions) where all simulations share the samegineq by normalizing the T-value in question by its standard
forcing history. Before we cal_culate_ the differencel)d be- error, i.e. by the square root of EdL5) after insertion of
tween forced and unforced simulations, we a\(eraﬁec:vgr the average for u, and of the estimate? for 2. It is of
all replicates in each of the two terms, respectively. This Pro-gome importance to make sure that the estim{%\te not too

cedure yields the test statistic: imprecise. As in Secb, we propose to obtain this estimate
by calculating the sample variance from all available control
simulations.
The test should rejedt if the resulting value is too neg-

ative, e.g. to the left of-1.65 at the 5% significance level.
It should be kept in mind that, if many mutually independent
climate models are tested against the unforced model, but
none of them has an (appreciable) correlation with the real
datay andz, we must nevertheless expect 5 % false positives

om tests at the 5% level, and analogously for the 1 % level.

hus, it is not enough to find one or a few models showing
hstatistical significance, but the whole sequence of model tests
must be considered. As a final comment, we note that an al-
ternative way to perform the significance test would be to use
a simulated/randomized resampling procedure to empirically
determine the distribution &f instead of using the analyti-
cal variance formula in Eq16). This is not discussed further
Qere (but see Appendix B for details).

T (xt, xu, 2) = D (xt, 2) — DZ (xu, 2) (13)

where x; and x, represent data from the forced and un-
forced models, respectively. An alternative averaging proce
dure would be to take averages over theeries inside each
D?, i.e. to use the average time serig@ndx, and compute
the differencel (3t, ¥y, z) = D2,(¥t, 2) — D2 (Xu, 2).

This alternative procedure would be even more efficient
but is not used here, because it would also introduce a bia;
in the comparison, unlegs= K. However, we provide de-
tails necessary to use this alternative in Appendix A and bot
variants are used in our experiments in Part 2.

We show below that an approximate distribution undegr
for the test statistic in Eq1@) can be obtained with the help
of an analytical formula for its standard error. In doing this,
we will regard thez (and y) series as fixed and given. It
means that we do not need any distributional assumption
about thez series. This is possible becauses common to
bOth terms of Eq.13). . . . ) 7 Combination of data from different seasons and

Since we are more interested in variation than in mean val- regions
ues, we assume that al}, andx; series are mean value ad-
justed to a common value, which will be denoted. The  Evaluation of palaeo-simulations from climate models
test statistic value can be rewritten as should preferably be made using proxy records from as

many regions as possible. Data from different regions and/or
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seasons could then be combined in a single test, but it is not

obvious how this should be done. Proxy records from dif- Var <Z cj Tj) =c'V(I)e. a7
ferent regions may represent different seasons and may also j

be of different lengths. In this section, we define a unified o .
performance metric for each model, based on a normalized We now have all requisites to calculate a unified

sum of test statistic& for all regions/seasons with available Performance metricUr, for each climate model under
consideration:

proxy data.

This sum of test statistics can be a simple or a weighted S .o T;
one. Weighting could be implemented if we want a balancedUr = = (18)
spatial average but the regions are of different size or have Vaf(Zj ¢ Tj)

a different density of proxy values, or if we want a balanced
annual average for a region with quite different numbers of
summer and winter values. Differequality (statistical pre-
cision) of the proxies doe®t necessitate weighting, because
such effects are treated in the precision of the individual T-
values (through the weights; used inD?).

For simplicity of notation, we first consider only a sim-

Thus, our final model score is a normalized sum of
(possibly weighted) individual T-values for all available re-
gions/seasons with proxy data, normalized by its standard er-
ror. This means that we can interptét as a unified normal-
ized test statistic of the null hypothesigy, in the same way
. . o as for the individual T-values in the previous section. Hence,
p!e sum of T—valuesz T;, where the indey identifies the Ur can have a double usage: (i) to test if a forced climate
different regions and/or seasons used. We need the stand odel is better than unforced models, and (ii) as a rank value
error 01_‘ this sum, and we then use the standard formula fo&O compare different forced models; the more negative the
the variance of a sum of correlated terms: Ur-value is, the better (note that a forced model viith> 0

performs worse than an unforced model).
Var( Y T; ) =) Var(T;)+2 > Cov(Tj,, Tj,). (16) At this point, some practical issues are considered. In re-
J J J1<i2 ality, the different proxy series may be of different lengths.

Thus, what we need, together with the variances dis-1hiS gives us reason to think of whatepresents; recall that

tained for Co¥T},, T},) from Eq. (L5) by the following three of different length? We suggest to let the longest record deter-
operations: minen in all calculations. For a particular shorter proxy se-

ries, we simply letw; =0 for all time points, where we have
— Changes{ to Cou($(j1), 8(j2)), anda;' to the covari-  no measurement. A consequence of this is that more weight
ance squared. will be given to regional/seasonal data with long proxy series
than those with short series, which seems reasonable. Note,

— Changew? to w; (j1) w; (j2).
gew;” to wi(jo) wi(j2) as an example, that a mean valug in Eq. (15) for each

— Change£; — u.)?to region should be interpreted as only representing the time
) ) ) ) period when proxy data are available for that region, so the
@i (1) = 1x (1) @i G2) = 1x(j2)- actualz can be a natural estimate pof .

Note that, in the period when all proxies are available, the

Here Covdi(j), 8i(j2)) =P (L. j2) 95(jp) O5(j2), Wherep is weighting will be made both according to the proxy quality

the correlation poefflmzent. We have he;re assqmed that nO([through their respective;) and according to the variances
only are the variances; constant over time, as in EdLY),

and covariances of the T-values (which include information

but a_lso the corresp(_)ndlng cov_arlances. Note that the f'r_sfrom the behaviour of the simulated climate in the unforced
term in the sum contains a covariance squared, correspondn}godels) If the additional weights; in the sum ofT are
: J

4 - . .
tosas 'r? the vananlce Eq10). We a_ssumz that t_h:' (r:]ovarlgnces used, then this will give further weighting to the data. We
and the mean valugs, (/) are estimated as with the variance \u ‘nowever, not discuss here how to construct such addi-

2 .
o5 ’\?”d tTeﬂx in Eq. (1|5)- ahts be allowed. in the f tional weights, because we think this has to be determined
ow eth nonequaf_ Wzlg tsﬁ_ € a ovr\]/_e ; in (;[ € 10rM niquely for each particular set of available proxy data by
2_ c; Tj, wherec; are fixed coefficients which need not sum g0 1na) considerations, and no simple general rule seems

to 1. To express the corresponding calculations in this Caseplausible. In our pseudo-proxy experiment in Part 2, we wil
we arrange the variances and covariancesTfoin the co- simply use the same weight for all regions

variance matrix/(T') for the vectorT with components’;.
Let ¢ be the corresponding column vector with components

c;j. Then the variance foy_ c; T; is obtained as the scalar:
J
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8 Correlation as test statistic The weight factoiiv;, however, imotthe same weight fac-
tor w; as used withD? and 7', because now only properties

As pointed out in Sec®, before any distance-based perfor- of the ; series influence the weight. The principle is that the

mance metric is computed, one should first test if a forcedstatistics ¢; — 11.) should be weighted such that they get the

climate model simulation is able to explain with statistical sgme variance for all time uniis The Weights should then
significance some part of the variation in instrumental andpe the following:

proxy data. If a forced climate model is unable to explain any
variation in the instrumental and proxy data, then Fifeand 1. If y=1 (in periods where instrumental data with no, or
Ur measures provide little interpretable information. Here negligible, noise are used): w=1.
we suggest a test statistitg, based on the correlation be-
tween a climate model simulation and the observations.
The x and z series are uncorrelated und#g (defined
below), but (positively) correlated when forcing effects ap- 3. If y=t, z=1 +¢ (proxy data are used, no noise yn
pear jointly in model simulations and real climate data. The calibration period yieldp?(y, z)): = p?(y, z).
stronger the forcing effect is in the model, the higher the ex-
pected correlation coefficient. We first consider a local test
for a single grid box (season) and next extend to a combina- ~ ~*7* -
tion of data from several regions (and/or seasons). w=p(y, DI(L ~q).

We will again use notation for the instrumental/proxy short-term autocorrelation being present in unforces-
series, and the number of time units possible will be denotedies is avoided by the use of a sufficiently long time unit, as
n. For a particular grid box (season), data may be availableyefore. Short- or long-term autocorrelation in theeries due
only during a shorter period of time, but with a weight factor 5 modelled forcings will not be present undés and there-
that is zero when data is missing, as before, we can B fore does not affect the validity of the test. On the contrary,
the same for all grid boxes (seasons). we can expect that adequate forcing effects in the simula-

The null hypothesis to be tested is: tions will covary with the actual variation in thesequence

and therefore contribute to a significant test outcome.
Hp: The climate model under consideration does not \with a number of grid boxes (seasons), we assume, as for
explain any of the temporal variation in the actual instru- the test statistic7’, that we formy_ ¢; R; for some suit-
mental/proxy data. able coefficients';. To this end, we need the variance for
Y c¢jR;. The variance for the local statistie; was given

Under Ho, we should of course not expect any signifi- gpove, but we will also need the covariance between two such
cant correlation or covariance betweeandz. However, un- iati i ; . i
2 statistics. Giver, the covariance betweeR; and R, is

forced model simulations are important in providing a check given by the following formula:
that the test works reasonably undéj.
We propose the following regression type statistic: COV(R js R jg) =

Y (6 — ) (2 — 12) 1o (1/k) p (81, iz) 05,05, ) ﬁzli @zi(zu — [hzy) (Zii — z)
R i — ) (19) ¥ (e — 1)’ X (2 — )

Here p is the coefficient of correlation between two joint
sequences from a single simulation, to be estimated from a
set of (unforced) simulations.

2. If y=1 +6 (instrumental data with non-negligible noise
variance, variance proportiap): w=1—gq.

4. If y=1+0, z=1 +€ (proxy data are used, noiseyn
calibration period yield2(y, z)):

. (21)

R(x,z) =

for a givenz series. We allovk replicates of the same type of
forced model, and we use their meamn)(above. If only one

replicate is available (or if only one replicate is tested), then Finally, we arrange the variances and covariancefon

i repr_egents a s_mgle simulation. Whﬁm’ 2) is normal- .._the covariance matri¥ (R) for the corresponding vect@®.

|zec_j (divided) by its standard error, i.e. the square root of 'tSLet ¢ be the corresponding column vector with components

vanance, cj. Then the variance fo¥_; ¢; R; is obtained as the scalar:
Y02 @i — pe)?

Var (Z ¢ Rj> =c'V(R)ec. (22)
we get the correlation coefficient in a semi-empirical form, !
which is our test statistic for a single grid box (season). As Thus, our unified correlation-based test statistic becomes
before,k is the number of replicates used to foin and

(1/k)o?

Var(R(x, 7)) = (20)

the variance factos? is again estimated from all available ;; _ 2,ciR; _ (23)
control runs, which we know satisfy the hypothe&ig The Var (Z R )
mean valueu, is naturally estimated by the weighted aver- J it

age,Z=Z w,'Zj/Z &)’i.
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A significant positive value ol/r implies that the model patterns to each of the individual forcings as determined from
is able to explain some of the observed temperature variaelimate model simulations. Thus, the method relies on the
tion. As with Uy, we can use the normal distribution to test existence of an underlying linear relationship between the
for significance. Thus, for example, &fz > 1.65, thenHp real response to a real forcing and the expected simulated
can be rejected at the one-sided 5% significance level. Theesponse to the same type of forcing within a climate model.
larger the positivéd/g values are, the stronger the correlation Mathematically, but not statistically, the same idea under-
between the model and the observations. A high negétive lies the specification of the simulated) @nd real ¢) temper-
would imply a negative correlation between model and ob-atures in our Statistical Model 1. Here, the real forced tem-
servations. If such values are found, this may be a warningperature response is represented by the teand the cor-
sign of possible erroneous calculations or possible problemsesponding simulated response is representedéhwhere
with the climate model or proxy data. As with tifestatistic, =« can be interpreted as a linear scaling factor, in a theoreti-
one may also consider a randomized-based significance tesal linear regression of the climate model output on the cor-
of R (see Appendix B). responding true climate forcing effect. Thusplays an in-
verse type of role to the regression coefficients used in op-
timal fingerprinting to scale the simulated response patterns
9 Discussion — relationships between our framework (signals) such that they best fit the observed climate. In both
and optimal fingerprinting used in detection and cases, i.e. in our framework and optimal fingerprinting, a
attribution studies perfectly simulated amplitude of the response to a particular
forcing means that the scaling factor should be equal to one.
As pointed out byHegerl (2012, the statistical framework A difference between the two approaches, so far, is that op-
developed here has similarities to the ideas underlying theimal fingerprinting allows a vector of scaling factors to deal
optimal fingerprinting method used in detection and attribu-with jointly linear effects of different forcings, whereas our
tion (DA) studies, which have been important for our under-framework has been deliberately restricted to a single fac-
standing of the relative roles of man-made and natural in-tor and a single type of forcing (although this may consist
fluences on recent climate change (éQAG, 2005 Hegerl  of a combination of several individual forcings). However,
et al, 20070. Given the importance of the optimal finger- as mentioned in Sec?, we intend to investigate the impli-
printing and DA framework, it seems worthwhile discussing cations of an extension of our framework to allow explicit
some differences and similarities to our framework. treatment of several individual forcings. Under additional as-

Our framework is specifically developed to obtain an unbi- sumptions, our framework can in principle be extended to
ased ranking of several competing forced simulations wherénclude a regression-type estimationogfwhich would cor-

a variety of climate proxy data, representing different re-respond to the estimation part of optimal fingerprinting.
gions, covering different time periods and having different The first requirement in any DA study is to determine
precision, are used to represent the real climate. The optimakhether an observed climate change can be detected be-
fingerprinting method, although it has indeed been used foryond the level of internal unforced variabilityOAG, 2005.
comparisons of simulated climate with climate reconstructedThis occurs when the estimated signal pattern scaling fac-
from proxy data (e.gHegerl et al. 20073, has largely been tors are significantly different from zero. In our framework,
designed for DA studies using spatially more complete andthis corresponds to determining whether a forced model is
homogeneous gridded instrumental climate data sets (e.@ble to explain any of the observed temperature variations.
Stott et al, 2003. Initially, in our work, we considered This is achieved by our correlation test statidiig defined

the option of modifying an existing empirical-orthogonal- in Sect.8. The second DA requirement is to assess the consis-
function-based quadratic form type metric of climate modeltency between the observed and simulated response to forc-
performanceNlu et al, 2004 Rowlands et a).2012). This ing (IDAG, 2005. This is the same as evaluating the null hy-
incorporated essential elements from optimal fingerprinting,pothesis that all fingerprint regression coefficients are equal
but it was not clear how to modify it in order to reach our to one. This part of the DA framework has, so far, no counter-
goals, for example allowing noise in simulations, instrumen-part in our framework. However, after a future modification
tal observations, and proxies — in particular allowing proxy to allow an estimation ok (also in vector form), our frame-
series of different length and with temporally variable statis- work could handle this aspect too. Our main test statigtic

tical precision. Therefore, we preferred to start from scratchdefined in Sect7, has no direct counterpart in optimal fin-
and develop a model-based statistical framework specificallygerprinting, but plays a similar role as a performance metric,
designed for our purposes. namely as the “cost function” defined in Eq. (1)Mfi et al.

A central assumption behind the use of optimal finger- (2004, or the goodness-of-fit statistic usedRpwlands et al.
printing in DA studies is that the observed climate record, (2012. OurU7, however, is not merely a distance metric, but
which is influenced by multiple sources of external forcings, is in fact a test statistic derived from a set of distance metrics
can be expressed as the sum of internal unforced climatealculated for different regions and seasons.
variations plus a linear combination of simulated response
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Both our framework and optimal fingerprinting require 10 Conclusions and recommendations
some assumptions about the spatiotemporal character of the
unforced internal climate variability. Optimal fingerprinting We have presented statistical models for observed and latent
typically relies on a spatiotemporal covariance matrix esti-variables that play a role when comparing forced climate
mated from long control simulationg&llen and Tetf 1999. model simulations with climate proxy data or instrumental
This matrix can be very large, which complicates its inver- records. Based on these models, a distance measure between
sion — something that is needed in optimal fingerprinting. simulations and proxies has been developed that ranks the
This inversion may require non-trivial “pre-whitening” op- simulations in the same order as if the distance to the true,
erations Allen and Tett 1999. Our framework does not re- unknown, climate were used — of course with an unavoid-
quire any inversion of covariance matrices and is thereforeable stochasticity due to the noise in the data. This distance
easier to use. The price paid for avoiding the need to allonmmeasure can be used with a set of multiple proxies that repre-
temporal correlation is a simplifying assumption of white sent different regions and seasons, and includes weights that
noise in the specification of the temporal character of the undepend on the statistical precision of these proxies, which
forced simulatedclimate ¢ in Statistical Models 1 and 2). is allowed to vary in time. A significance test is then devel-
This limitation places a restriction on the time unit (time oped, to test if a forced simulation performs better (i.e. has
resolution) that can be used; namely, this unit must be sufa smaller distance to the observations) than unforced simula-
ficiently long such that the unforceximulatedclimate can  tions. Another significance test is formulated for the correla-
be approximated as white noise. Optimal fingerprinting is intion between a forced simulation and the proxies. Although
theory not hampered by such a restriction, but in practice itdistance measures are a standard concept, this is — to our
may not be possible to use a much smaller time unit, becausknowledge — the first time the specific form of the distance
that would significantly increase the size of the covariancemeasure and the calibration of proxies are jointly developed
matrix to be inverted. Moreover, to obtain information about based directly on a statistical model for comparing simulated
the full spatiotemporal covariance on all timescales relevantand observed past climate records, rather than being ad hoc.
for studies of climate of an entire millennium, several very  The new framework may be used to rank a set of alterna-
long control simulations would be needed. Thus, it seemgive simulations, where the models are driven with different
guestionable whether it is possible, in practice, to take fullamplitudes of past external forcings, e.g. solar and volcanic
advantage of the inclusion of the covariance matrix in the op-forcing. This may help to better understand how large these
timal fingerprinting framework for multivariate model evalu- past forcings have been, something that is not yet fully un-
ations that consider the entire last millennium, or longer. It isderstood, by assuming that those reconstructed forcings that
also debatable whether or not the spatial correlation shoulghrovide the best fit of simulated temperatures to the observed
go into the criterion in an automatic way (via EOFs), to be ones are more likely to better represent the true past forc-
used for evaluating climate models. It should, however, cerings. In our companion study (Part 2) we will investigate, in
tainly go into the evaluation of the properties of the criterion. a pseudo-proxy experiment, the possibility to distinguish be-
Note also that — although not being an explicit part of tween multiple-forced simulations that include either a small
our statistical framework — we suggest the white noise as-or a large amplitude of past solar forcing.
sumption fors of the control simulations can be satisfied to  Alternatively, our framework could be used to rank dif-
a sufficient degree (i.e. not severely violated) by a suitableferent simulations that have been driven with the same past
choice of time unit (see Part 2, where this is investigated).forcing history, but where the climate models include differ-
Even better could be to have a physically more realistic charent parametrizations of various non-resolved physical pro-
acter of§ in the model and find the corresponding adjust- cesses, i.e. a perturbed physics ensemble simulation exper-
ments required in the theoretical results. Future work couldment. Different parametrizations may cause the models to
be aimed at this problem. Concerning spatial variation, notehave different climate sensitivities, resulting in different am-
that explicit information from control simulations is already plitudes of the response to external forcings. The models that
included in our framework, for the estimation of variances provide the best fit to the observations would likely include
and covariances needed in the test statigfieandUg. This the more appropriate parametrizations.
part of our framework does not put any theoretical restriction Note that our framework is designed for being applied to
on the character of the spatial covariances. We also reminéully coupled general circulation models (GCMs). Thus, we
the reader that no assumptions at all are needed for the tengdo not advise to rank simulations with a simple energy bal-
poral character of thesal unforced temperature;) or the ance model (EBM), or an Earth system model of intermediate
forced temperature componeigt)(nor of the measurement complexity (EMIC), against simulations with a GCM. Such
error components ande. rankings would be rather meaningless. For example, an EBM
might provide a smaller distance to the observations than a
GCM just because its unforced variability is virtually zero.
Also, note that our correlation-based test statistic shoatd
be used to rank simulations; its sole purpose is to determine
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whether a forced model is able to explain (in a statisticalA2 Precision of the test statisticT
sense) some part of the observed temperature variations. A o _ . _
ranking using the distance-based statistic is meaningful onlyJnder inside averaging, the analytical formula for the vari-

when this occurs.
The framework developed here is not yet fully developed

and several aspects could be improved in future versions.
It would be desirable to have a statistical precision mea/ar (7 (¢

sure attached to th®? differences when comparing differ-
ently forced climate models, not only as now, when forced

simulations are only compared with unforced controls. The
assumption that the simulated unforced variability can be

ance ofT', under assumed normality of — x, and given the
z sequence, is

_ 200 (1 1\ & o
xw»:ﬁ(ﬁ+ﬁﬂgw

462 (1 1\ <&
d <E+E> zl:w,‘z(zi _Mx)z-

n2

modelled as white noise should be replaced by a physically

more realistic representation, making it possible to work with
shorter time units. Also, further modification would be re-

quired for use with climate variables other than temperature
— or a combination of several climate variables. Future devel-
opments should aim at improving some of the aspects men

tioned above, as well as to allow estimation of the forced
amplitude of simulated climate variability.

Appendix A

Averaging inside D?

Appendix B

Alternative reference distributions for D2, T and R

it deserves mention that there are (at least) two possible non-
parametric alternatives to the normality-based testsHgr
defined in Sect6, instead being based on exchangeability,
either between replicated simulationgor different time in-
tervals within simulations:, of the unforced model. First,

if the numberK of available unforced simulations is large,
andk « K, then we could repeatedly take random samples
of sizek out of the K, to let them represeni; under Hg.

Here we provide the necessary formulae for calculating theAlong these lines, a reference distribution for the distance

bias correction and for estimating the varianc& afthen us-
ing the differencel (xt, Xy, z) = D2 (Xt, z) — D2 (Xu, z) as

the distance-based test statistic, i.e. with averaging indfde
Al Bias of the test statisticT

Suppose; includes a forced componest. When

T(-xf7 Xu, Z) = D_\%[(x'h Z) - D_\?\[('xl.h Z) )
i.e. under outside averaging, the expected valuB isf
1 n
E(T) = —(Za - az) - Z w; (& — w2
i=1
Under Hp, @ =0, and the expected valu&T) is zero.
With
T (%1, ¥u, 2) = D§ (%1, 2) — D (%, 2).

i.e. under inside averaging, the expected valu& gbntains
an additional bias term, and is now

The bias term is now zero only whére K. Thus, if inside
averaging is used with - K, the bias must either be judged
negligible, or estimated and corrected for.

n
%Zwi.

i=1

1 1

E(T):—<2a—a2)%;wi(§i—ﬂ)2+‘7§<k K

www.clim-past.net/8/1339/2012/

measureDZ or the D?-differencer could be estimated, valid
underHp. However, to have a large number of unforced sim-
ulations (say 50) using a single climate model does not ap-
pear to be realistic at present. Presumably, a more affordable
alternative is to utilize the stronger property of exchange-
ability within an unforced sequence. This assumes negligible
autocorrelation, to be accomplished by a large enough time
unit. From each sequenag, new sequences can be gener-
ated by randomly permuting the order within the sequence.
For each such new sequence, the corresponD'&;gandT
values can be computed, and this leads to a reference distri-
bution for D2, or T underHp. In the present study, such ran-
dom permutation-based tests have not been applied, but the
aim is to try them in later studies. However, it should not be
forgotten that the primary use a)j\%, is for ranking different
simulations using data from several regions and seasons, and
for that purpose the reference distribution of the test statistics
is of somewhat limited interest, and the more explicit formula
Ur proposed in Sec? appears to be more convenient.

Analogous constructions can be used for the correlation
measureR. A reference distribution could be constructed
by computingR for each of a large number of replicated
simulations. If only one or a few simulations are available,
we are confined to running through random permutations of
their time order before correlating them with the instrumen-
tal/proxy sequence.
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