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Abstract. We investigate the identifiability of the climate
by limited proxy data. We test a data assimilation approach
through perfect model pseudoproxy experiments, using a
simple likelihood-based weighting based on the particle fil-
tering process. Our experimental set-up enables us to create a
massive 10 000-member ensemble at modest computational
cost, thus enabling us to generate statistically robust results.
We find that the method works well when data are sparse and
imprecise, but in this case the reconstruction has a rather low
accuracy as indicated by residual RMS errors. Conversely,
when data are relatively plentiful and accurate, the estimate
tracks the target closely, at least when considering the hemi-
spheric mean. However, in this case, our prior ensemble size
of 10 000 appears to be inadequate to correctly represent the
true posterior, and the regional performance is poor. Using
correlations to assess performance gives a more encourag-
ing picture, with significant correlations ranging from about
0.3 when data are sparse to values over 0.7 when data are
plentiful, but the residual RMS errors are substantial in all
cases. Our results imply that caution is required in interpret-
ing climate reconstructions, especially when considering the
regional scale, as skill on this basis is markedly lower than
on the large scale of hemispheric mean temperature.

1 Introduction

Reconstructions of climate variation over recent centuries
make an important contribution to our understanding of cli-
mate change, and in particular help us to place the recent
anthropogenically forced changes in the context of natural
variability. Therefore, it is important that we have a sound
understanding of the reliability and precision of these recon-
structions. Prior to the recent instrumentally observed inter-
val (from around 1850 to the present day), direct measure-

ments of climatic variables are not generally available, and
therefore the primary sources of data are a number of proxy
measurements of various types, with tree-rings being one of
the best-known. Compared to the modern observational net-
work, these proxy data are extremely limited, with there be-
ing typically tens to hundreds of observations (each repre-
senting a seasonal or annual average value) available globally
during a single year. Numerous reconstructions have been
presented for the mean temperature of the Northern Hemi-
sphere, where proxies are most numerous (e.g.Jansen et al.,
2007, Fig.6.10), and rather less commonly for global tem-
perature. Most existing reconstructions are based on primar-
ily statistical methods, in which a linear regression is used
to relate the proxy data to the climate variable of interest.
Tingley et al.(2012) provide a comprehensive review of the
wide range of statistical methods in use, which continue to be
the subject of substantial investigation and debate (e.g.Chris-
tiansen et al., 2009; Rutherford et al., 2010; Christiansen
et al., 2010; Smerdon et al., 2011).

More recently, an alternative approach to climate recon-
struction has been developed, in which the proxy data are
assimilated into a climate model, generating what is gener-
ally referred to as a “reanalysis” of the climate state (Goosse
et al., 2006; Widmann et al., 2010). In principle, such an ap-
proach could have several notable advantages over a purely
statistical method. By using a dynamical model, physical re-
lationships between climatic variables, including unobserved
variables, can be directly generated from physical laws,
rather than having to be inferred from limited noisy data or
approximated via statistical relationships. An additional ben-
efit arises from the temporal relationships embodied in the
model: an estimate of the climate state at a given time can be
enhanced by data observed both before the synoptic time (as
in filtering methods) and even from data observed after this
time. Such an approach is known as smoothing, but note that
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Fig. 1. Potential predictability.σ2
v /σ2 for different time scales, whereσ2

v is the variance of the long time scale andσ2 is the total variance.
Also indicated are data locations (blue dots) with the size of the dot proportional to the length of time series available, which ranges between
500 yr (smallest 65 dots) and 2000 yr (largest 6 dots).

this does not refer to a simple smoothing filter such as a mov-
ing average, but rather the transfer of information through
time according to the physical laws embedded in the model.
In practice, however, the temporal influence of data is limited
by the predictability time scale of the system. Regression-
based methods do not usually account for this effect at all,
with the estimate for a particular year relying purely on the
proxy data associated with that time.

However, data assimilation methods also have many prac-
tical limitations. Perhaps most prominently, the computa-
tional costs may be large. Attempts to reduce the compu-
tational load typically require simplifying assumptions and
approximations, which may reduce the accuracy of the re-
sults. Moreover, climate models have significant imperfec-
tions, such that the dynamical relationships that they impose
on the results may not be good representations of the be-
haviour of the real climate system. Another potentially nega-
tive aspect of the data assimilation approach is that its output
is at least in part a model product, and therefore may not be so
useful as an independent test of model performance. Never-
theless, the exciting potential of such methods certainly jus-
tifies investigation into their strengths and weaknesses.

In this paper, we consider the potential of data assim-
ilation methods to generate accurate reconstructions using
limited observations. We use a particle-based approach, al-
though the use of a formally optimal methodology and mas-
sive ensemble means that some of our conclusions must ap-

ply more generally to all Bayesian estimation methods. We
have two main goals. Primarily, we investigate the precision
with which it is possible to estimate the hemispheric cli-
matic state with limited observations. Further, we also con-
sider the viability of particle-based methods (in particular, in
respect of the required ensemble size) to undertake this task.
Our investigations are complementary to those ofDubinkina
et al. (2011) who used a more extensive data set based on
the recent observational period. We adopt an identical twin
paradigm, in which pseudoproxy observations are generated
from a model run (Smerdon, 2012), so as to focus specifically
on the methodological aspects and theoretical performance
limits.

2 Model and data

This work is based on a 101-member, 140-yr integration of
the Earth system model of intermediate complexity, LOVE-
CLIM (Renssen et al., 2005). This model primarily consists
of a 3-level quasi-geostrophic atmosphere at T21 resolution,
coupled to a 3◦, 20 level, sea-ice-ocean general circulation
model. The essential features of this model for our purposes
are that, in contrast to simpler energy-balance models, it
plausibly simulates the chaotic internal variability of coupled
atmosphere/ocean/sea-ice system, while (unlike state-of-the-
art GCMs) remaining computationally efficient enough for
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Fig. 2.Spatial correlations of annual anomalies at specified grid points (corresponding to the locations of the longest data time series).

long-term ensemble integrations to be practical. For the pseu-
doproxy data, we base this on the screened proxy network
assembled byMann et al.(2008), which has been previously
used for data assimilation experiments with the LOVECLIM
model byGoosse et al.(2010). As in that work (and most pre-
vious temperature reconstructions over the past millennium),
we focus on the Northern Hemisphere where the proxy data
are most plentiful. Figure1 shows the locations of data that
we use, illustrating how the density of proxies changes over
time. Note that the proxy locations here are shown after bin-
ning to the model grid. In the original data set, there may
have been multiple records within a single grid cell. Table1
presents the change in data availability over time, which rises
from only 6 locations where data are available for the full
time span years, to 112 for the last 500 yr.

Given the sparse nature of the proxy network, one funda-
mental task of the data assimilation process, which underpins
the generation of a hemispheric or global mean temperature
anomaly, is spatial interpolation. As a first check and demon-
stration of the viability of the process, therefore, we consider
the spatial coherence of temperature anomalies, and explore

how this compares to the sparsity of the data. Figure2 shows
the spatial correlation structure of anomalies at the location
of each of the 6 longest proxy data series in turn. All the
coloured regions are highly statistically significant. In fact,
with our large sample size, the threshold for significance at
the 5 % level is a correlation of magnitude around 0.05, but
such low values are of little practical value and therefore have
been left blank. Around each location there is an approximate
“bullseye” of high correlation, the precise shape and size of
which varies across the globe but which appear roughly com-
patible with the O (1200 km) smoothing radius used in some
observational analyses (Hansen and Lebedeff, 1987).

As a further test of the model, we check its potential pre-
dictability over the multi-annual time scale. To do this we
follow the approach ofBoer and Lambert(2008) and calcu-
late the extent to which the variance ofk-year means con-
tributes to the total variance, in excess of that which would
be expected if the annual temperature anomalies were seri-
ally uncorrelated white noise. Potential predictability in this
sense is therefore not necessarily a direct measure of pre-
dictability of the system, but has been widely studied and
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Table 1. Number of grid points containing observational data, at
100 yr intervals through the last two millennia.

50 6
150 7
250 7
350 7
450 8
550 8
650 9
750 10
850 10
950 10

1050 16
1150 22
1250 24
1350 28
1450 47
1550 112
1650 112
1750 112
1850 112
1950 112

found to correspond well with predictability in the classical
sense, as discussed byBoer and Lambert(2008). Figure1
shows the potential predictability for intervals ranging from
2 to 20 yr. This compares extremely well with Fig. 4 ofBoer
and Lambert(2008), in which several of the CMIP3 models
were analysed. This analysis suggests that there may be some
potential for the estimate of the climate state in a given year
to be improved with observations from adjacent years (as
could be achieved with filtering or smoothing methods from
data assimilation). However, it must be noted that the poten-
tial predictability is highest over the ocean areas, whereas
the data are primarily restricted to the land. This measure of
potential predictability is primarily an indication of the local
thermal inertia. Other aspects of model performance that may
also be relevant to predictability on interannual time scales
(such as modes of variability linked to ENSO and NAO)
are investigated in, for example,Selten et al.(1999); Goosse
et al.(2001); Timmermann et al.(2005).

3 Method

The fundamental basis of almost all data assimilation is the
application of Bayes’ theorem to update a prior estimate in
the light of observational evidence, thereby forming a poste-
rior estimate. The core of our approach is the simple likeli-
hood weighting algorithm which underpins the particle fil-
ter (Arulampalam et al., 2002). In this method, in order
to estimate the climate state for a given year, samples are
drawn from the prior, and then each sample is weighted ac-
cording to a likelihood function, which depends on the fit
of the sample to the specific observations available. In the

common case of Gaussian uncertainties on each observation,
the weight is defined by the familiar exponential exp(−C)

in which C is the quadratic cost functionC(M,O) = 0.5×

(M − O)T 6−1(M − O) whereM is the vector of modelled
outputs corresponding to the observationsO, and6 is the
covariance matrix of observational errors. In this work, we
use the standard assumption that observational errors are in-
dependent, simplifying the cost function to the sum of diago-
nal termsC(M,O) = 0.5×

∑
i((mi −oi)/σi)

2. While some
proxies may relate to seasonal parameters (such as growing
season temperatures), we focus here purely on annual means
for both data and model output.

After normalising the weights so that they sum to unity
over the ensemble, statistics of interest such as posterior
mean and variance are easily calculated from the weighted
ensemble (for example, the posterior mean of a particular
outputx is estimated as the weighted average

∑
i wixi , with

the sum being taken over all ensemble membersxi and their
associated weightswi). In principle, this ensemble can then
be used as the basis for a prior for the subsequent year, and
integrated forwards in time. However, given the limited pre-
dictability of the system, an alternative approach, as used
by Bhend et al.(2012), is to simply revert to the climatologi-
cal prior for each individual year. We initially follow this pro-
cedure, and consider the potential of the more conventional
sequential approach later. One benefit of our approach is that
the entire assimilation can be performed off-line, after the
ensemble integration has been completed. This enables us to
investigate the effects of changing various details of the pro-
cedure (such as observational density and accuracy) at little
additional computational cost. Our approach does, however,
eliminate the temporal consistency of the model simulation,
which would be preserved by using the posterior as the prior
for the subsequent year.

Our method has some similarity to the analogue method in
which a historical database of states is queried to find the best
fit to observations (Barnett and Preisendorfer, 1978). Instead
of choosing the single simulation with the best fit to the data,
however, we calculate a weight for each member of the full
ensemble, which generates a probabilistic posterior distribu-
tion. WhileGoosse et al.(2006, 2010) also used a degenerate
particle filtering approach in which the best simulation was
selected,Dubinkina et al.(2011) implemented a probabilis-
tic approach more similar to ours, but using a far more dense
network of recent observations. In contrast to the latter ex-
periments, we make no allowance for model error, since it is
absent in our identical twin experiments.

All models were initialised by making small perturbations
to a long equilibrium integration, with the first 20 yr dis-
carded as a spin-up phase. External forcing is held constant,
so the ensemble samples the internal variability of the model.
The final 20 yr of each integration were reserved for analy-
sis of the predictive performance of the algorithm. We con-
sider the case of an externally forced response in Sect.4.3.
The use of unforced simulations allows us to treat all model

Clim. Past, 8, 1141–1151, 2012 www.clim-past.net/8/1141/2012/



J. D. Annan and J. C. Hargreaves: Identification of climate state 1145

years exchangeably, and thus the ensemble size for the prior
is 10 000 (albeit the temporal correlation revealed in the po-
tential predictability analysis results in a slightly smaller ef-
fective sample size), which is far greater than would be prac-
tical otherwise.

One model run at a time is used as the truth, with the re-
maining ensemble of 100 integrations of 100 yr used for the
prior. We generate pseudoproxies from the “truth” run, by
adding random noise to the model outputs at the appropri-
ate grid points. For the standard case, we use white noise
with a magnitude of 2.5 times the standard deviation of an-
nual temperatures at that location, which results in a “signal-
to-noise ratio” of 0.4, in line with the bulk of the paleocli-
mate literature (e.g.Mann et al., 2008; Smerdon et al., 2011).
This choice implicitly defines the scaling ratio (or more com-
plex nonlinear operator) which would in practice be required
to convert the units of proxy measurements (e.g. nondimen-
sionalised tree ring widths) into temperature. We do not con-
sider the issue of proxy calibration further in this work. We
note for the avoidance of confusion that the usage of the
phrase “signal-to-noise ratio” in the paleoclimate literature,
also adopted here, differs slightly from the engineering lit-
erature where it originates in that, for the latter, the ratio is
generally defined in terms of power (i.e. variance), and thus
amounts to the square of the paleoclimatic convention.

We emphasise that the likelihood weighting method, al-
though simple, actually provides an exact application of
Bayes’ theorem in the limit of infinite ensemble size (Aru-
lampalam et al., 2002). Its only disadvantage – albeit an
overwhelming one in many cases – is its requirement for a
large ensemble, as its efficiency is rather low. The problem
is that, in many practical applications, the weights will be
concentrated on a small proportion of the ensemble (some-
times vanishingly small), which can lead to large sampling
error or even the phenomenon of “filter collapse”, where the
weight is focussed on a single sample and thus provides no
meaningful probabilistic information (Bengtsson et al., 2008;
Snyder et al., 2008). However, when the ensemble size is
adequate – a point which we investigate in Sect.4 – the
method generates the correct, optimal solution to the esti-
mation problem, which cannot be bettered by a more so-
phisticated algorithm, be it an ensemble-based method such
as the ensemble Kalman filter or other particle filtering,
variational or optimal interpolation-based methods. Simply
put, the likelihood-based weighting correctly generates the
full probabilistic posterior (including its uncertainty) arising
from a given prior and likelihood function.

4 Experiments and results

4.1 Reconstruction of hemispheric mean temperature
and spatial pattern

As mentioned above, we first consider the case of unforced
internal variability. We focus on results from 4 epochs, which
cover a wide range of data densities: 500–599 AD (8 grid
points), 1000–1099 AD (16 grid points), 1400–1499 AD (47
grid points) and 1700–1799 AD (112 grid points). In our
identical twin testing, the only difference between these
epochs is that the data density and location differ between
them. Each panel of Fig.3 shows the 100-yr time series of
the hemispheric mean temperature for one specific choice of
truth run (blue line) and the estimated reconstruction (red
line, with one standard deviation uncertainty bounds). The
truth run is identical for each panel, the only differences be-
tween these experiments being the location and number of
pseudoproxy data points used in the estimation, and the ran-
domly sampled proxy errors. The correlation between pos-
terior mean and target time series for each epoch, averaged
over all experiments, is presented for each panel. All of these
values are highly significant, with the correlation never being
negative in any individual experiment. However, it can also
be seen in the top two panels that for these small numbers
of data points, the posterior is little changed from the cli-
matological prior (which has a spread of about±0.2 around
its mean of zero). As the data volume increases in the lower
two panels, the posterior converges towards the target, but
even with the maximum number of 112 data points, substan-
tial discrepancies can easily be seen. While the correlations
seem high, the RMS difference between posterior mean and
target is only slightly reduced compared to the climatolog-
ical prior, with the reduction in RMS error increasing from
4 % to 23 % as the data density increases. Therefore, it seems
that the use of correlation as compared to residual RMS er-
ror gives a rather different impression of the level of perfor-
mance. There is certainly some measurable skill even with
the smallest number of data points, but there is also substan-
tial discrepancy between the reconstruction and the target for
any given year.

It is also apparent that the temporal variability of the pos-
terior mean is substantially lower than that of the target. Loss
of variance has been widely found in climate reconstruction
methods (e.g.Smerdon et al., 2008), and may be unwelcome
in some contexts, such as when we wish to use climate recon-
structions to estimate the natural variability of the system.
However, we note that it is also an inevitable consequence
of the paradigm of error-minimising Bayesian estimation. At
least within this paradigm, any attempt to preserve the tem-
poral variance of the target in the reconstruction (e.g.Chris-
tiansen and Ljungqvist, 2011) cannot simultaneously gener-
ate annual error-minimising estimates of the climatic state,
since such an estimate will necessarily be shrunk towards the
prior mean. Hence, it is important to be clear about both the
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Fig. 3. Reconstruction of NH annual mean temperature anomaly in the case of internal variability, based on different number of proxy data
points. Blue lines indicate target (identical in each panel). Solid red line indicates reconstruction, with dotted lines showing the±1 standard
deviation uncertainty. Correlations are averages over multiple experiments for each epoch.

goals of such an estimation, and the interpretation of the re-
sults.

The effective posterior ensemble sizes for the four panels
(calculated via the standard formulaNef = 1/

∑
w2

i where
wi are the normalised weights on the ensemble) are around
4100 for the first panel, then 1800, 170 and 18 for the re-
maining panels respectively. The very large effective ensem-
ble sizes for the first two panels, which are a large fraction
of the prior sample size of 10 000, are an indication that the
limited and imprecise proxy data available in these epochs do
not distinguish very clearly between the prior samples, con-
sistent with the relatively poor representation of the target by
the posterior. Conversely, an ensemble as small as 18 mem-
bers implies that in this case the observations are restrict-
ing the posterior to a small subset of the prior. In this case,
however, sampling uncertainty may be becoming a signifi-
cant factor, as 18 samples cannot be expected to accurately
characterise the true posterior. However, the situation is still
far less serious than seems to be the case for modern numeri-
cal weather prediction, where a prior sample size of 10 000 is
argued to be completely inadequate (Bengtsson et al., 2008;
Snyder et al., 2008).

As well as reconstructing the hemispheric mean temper-
ature, we can examine how well the method reconstructs
the spatial field of temperature anomalies. This result is pre-
sented in Fig.4, where the results are presented in terms of
the error on the posterior mean. These results are normalised
relative to the error of the prior mean, meaning that the pos-

terior is more accurate than the prior when the value drops
below unity. There is a widespread reduction in error over
large areas for all epochs. In the first two panels, however,
this reduction in error appears very modest over much of the
Northern Hemisphere, only dropping below the 90 % level in
the immediate neighbourhood of the data points (consistent
with Fig.2). The third panel shows larger areas with substan-
tial error reduction spreading for some distance away from
the observations. Even in this case, there are large areas with
marginal change, but it seems likely that the small regions
where the error is actually greater than 1 are due to noise,
given the finite sample from which these statistics were cal-
culated. The final panel, however, shows a much larger re-
gion over the tropical ocean where the error of the posterior
is consistently greater than that of the prior. This is a clear in-
dication of sampling error due to the posterior ensemble be-
ing too small. It is notable that, even though Fig.3 indicates
that this experiment has skill in reproducing the hemispheric
mean temperature anomaly, there are large regions where the
reconstruction actually has negative skill. These results are in
no way mutually inconsistent, as the local errors in the skill-
free regions will tend to average out in the hemispheric mean,
allowing the skilful area to impart some genuine signal into
the reconstruction. They do, however, suggest that care is re-
quired in interpreting what, if anything, can be learnt about
the climate on a regional basis, especially at some distance
from observations. These results support those ofSmerdon
et al. (2011) who also showed that the skill of a large-scale
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Fig. 4.Maps of normalised RMS reconstruction error for NH annual mean temperature anomalies in the case of internal variability, based on
different number of proxy data points. Errors are normalised to standard deviation of climatology, with green contour indicating a normalised
error of 1 (i.e. that the reconstruction is neither more nor less accurate on average than the prior climatological mean).

mean does not necessarily translate into good performance
on the regional scale.

4.2 Predictive performance

Returning to the potential of data assimilation methods to
improve skill though temporal smoothing, we can also con-
sider the forecast skill arising from the use of the posterior
estimate as initial conditions (prior) for the prediction of the
following year. The skill (not shown here) is essentially zero
for the first three cases. In these cases, the rather uncertain
estimates have basically reverted to the climatological prior.
In the final case, the ensemble has started to collapse, and its
forecast skill is actually negative over almost the entire hemi-
sphere due to sampling noise. While a larger ensemble could
generate more skilful results, this could require a computa-
tionally infeasible ensemble (Bengtsson et al., 2008; Sny-
der et al., 2008). Thus, it does not seem that any sequential
based or smoothing method will generate additional skill in
reconstructions with this data set. This is perhaps not entirely
surprising given that modern interannual prediction systems
show very limited skill unless substantial volumes of ocean
data are assimilated (e.g.Dunstone and Smith, 2010). How-
ever, it remains possible that proxy-based reconstructions,
which use ocean-based data (such as coral records)or other
data that exhibit some clear multi-year predictability, could
benefit from such an approach.

4.3 Forced response

In the experiments described in Sect.4.1, forcing was held
constant and thus the procedure only accounted for the in-
ternal variability of the model. While this allowed us to take
an off-line approach to the calculations, it ignores the exter-
nally forced component, which is of substantial importance
in real applications. Therefore, we now extend the method
to include this aspect, by superimposing an externally forced
response onto the existing ensemble under the assumption
that this can be considered linearly additive to the internally
generated variability of the model. While this is obviously a
simplification of the real system, it is a routine approxima-
tion in (for example) detection and attribution studies. We
consider a single forcing, intended as a generic indication of
the large-scale anomaly that may be seen in response to a
radiative perturbation. As our estimate of the pattern of tran-
sient response to external forcing, we use outputs from the
CMIP3 models, taking the difference between the ensemble
means of 2070–2090 and 2000–2020 in the A1B simulations.
This pattern, which shows the expected large-scale spatially
coherent warming with land-sea contrast and polar amplifi-
cation and which is very similar to those shown in Fig. 10.8
of Meehl et al.(2007), is then scaled to generate the desired
forced hemispheric mean temperature anomaly, and added
onto the existing unforced runs. We add a sinusoidal “forced”
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Fig. 5. Reconstruction of NH annual mean temperature anomaly for the case of externally forced changes, based on different number of
proxy data points. Blue lines indicate target (identical in each panel). Solid red line indicates reconstruction, with dotted lines showing the
±1 standard deviation uncertainty. Correlations are averages over multiple experiments for each epoch.

signal onto our truth run, with a magnitude of±0.2C (rea-
sonably representative of the variation seen in temperature
reconstructions) and a period of 25 yr. Observational errors
are adjusted according to the total variance at each grid point,
to maintain our chosen signal-to-noise ratio of 0.4. We also
add a forced response onto each year of the ensemble, with
random magnitude of the same variance as that of the signal
added to the truth run.

Even though the amplitude of the forced signal was set
equal for all members, its time-varying nature means that
only a small proportion of the ensemble has forcing anomaly
equal to that of any given year in the truth run. Interestingly,
despite this (apparent) extra degree of freedom in the ensem-
ble, the posterior ensemble size is actually fractionally larger
than it was in the unforced case. This may be due to the large-
scale forced response dominating some of the small-scale
variability to the extent that the effective dimensionality of
the problem is if anything decreased a little (Bengtsson et al.,
2008). The results are shown in Figs.5 and6. In Fig. 5, the
NH mean temperature appears to closely track the target run
in the lower two panels, and even shows some hints of this
in the upper two panels where much less skill was shown
in the internal variability case (cf. Fig.3). These results are
reflected both in the reduction of RMS error (which ranges
from 8 to 34 % across the experiments) and the correlation
of reconstruction with target, which varies from 0.40 to an
impressive level of 0.75. Thus, it appears that it is rather eas-
ier to identify the large-scale variation associated with ex-

ternal forcing than the smaller-scale variability. It is notice-
able in Fig.6 that, in all cases, the method has considerable
skill in the tropical region. This may be partly an artefact of
the particular climate model we are using, which has unre-
alistically low variability in this region. Therefore, despite
the polar amplification of the forced response, it still eas-
ily dominates natural variability in the tropical region, and
any skill in reproducing the forced response (which can be
seen in Fig.5) is strongly reflected in this region. Climate
models with more realistic ENSO variability would proba-
bly not generate such strong results in this area.Smerdon
et al. (2011) show how statistical methods, when applied to
pseudoproxy experiments based on different climate mod-
els, can generate a wide range of spatially distinct patterns.
Contrary to the internal variability experiments, the posterior
estimates here do not show much skill in the neighbourhood
of the observations themselves, where the hemispheric tem-
perature signal represents a relatively small proportion of the
total variance.

4.4 Sensitivity to observational uncertainty

We now consider the sensitivity of these results to the proxy
uncertainty. While a signal-to-noise ratio of around 0.4 is
typical, our implicit assumption of a single proxy record in
each grid cell may be pessimistic. TheMann et al.(2008)
proxy network contains over 1200 proxy records, and al-
though fewer than half of these passed screening tests, the
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Fig. 6. Maps of normalised RMS reconstruction error for NH annual mean temperature anomalies for the case of externally forced changes,
based on different number of proxy data points. Errors are normalised to standard deviation of climatology, with green contour indicating a
normalised error of 1 (i.e. that the reconstruction is neither more nor less accurate on average than the prior climatological mean).

number of useful proxies is still rather larger than the number
of grid cells that contain any records. We therefore consider
a larger signal-to-noise ratio, to represent the situation where
proxies with independent errors can be averaged to generate
a more accurate signal. We use a signal-to-noise ratio of 1,
which would be appropriate if each grid cell contained 4 in-
dependent proxy records, each of which had an SNR of about
0.5. We find that the reconstructions have greater skill at ear-
lier times, but the collapse of the ensemble is also apparent
at earlier times and more complete at later times, with an ef-
fective posterior ensemble size of around 2 samples in the
most recent epoch. These results are qualitatively unsurpris-
ing, since greater proxy precision is largely equivalent to a
larger number of proxies. The correlation of reconstruction
and target is also generally higher in these experiments than
for the standard case, saturating at around 0.8 at the point of
ensemble collapse.

5 Conclusions

We have investigated the potential of particle-based data as-
similation methods for the reconstruction of Northern Hemi-
sphere temperatures over the past two millennia, in the con-
text of a perfect model and well-characterised proxy uncer-
tainty. We demonstrate that the method is successful and
achieves significant skill as measured by the correlation be-

tween target and reconstruction. However, when considered
in terms of residual RMS errors, the performance is less
impressive. When few data points are available, the recon-
struction is little changed from the prior, and RMS errors
show negligible reduction. This is due simply to the sparse
data providing very little information, and thus would not be
changed by a different reconstruction method. For a higher
data density, the reconstruction skill is higher, but the poste-
rior ensemble has a tendency to collapse, even when a prior
sample size of 10 000 is used. This is a limitation of particle-
based methods in general. One interesting and encouraging
attribute of our results is that this method can demonstrate
skill in reconstructing the large-scale feature of hemispheric
mean temperature even when most grid-point values have
very little or even negative skill, as averaging out over noisy
areas allows skilful regions to provide some hemispheric sig-
nal. Our results do however imply that caution must be ap-
plied when interpreting regional features of reconstructions,
since smaller-scale spatial patterns and regional features may
be represented with substantially less skill than an assess-
ment of large-scale performance could suggest. We suggest
that the performance of methods that are used for regional
and large-scale reconstructions should be tested and demon-
strated, not only in terms of correlation but also residual RMS
error, in order to give a clear picture of their strengths and
limitations.
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The particle-based approach suffers from the requirement
of a large sample size to work well, although this problem
is far less severe for paleoclimate applications than has been
suggested for modern numerical weather prediction, due to
the relative sparsity and imprecision of proxy data. Encour-
agingly, the method retains substantial skill (at least by some
measures) even when it has technically failed due to ensem-
ble collapse. Alternative data assimilation methods, such as
the ensemble Kalman filter (Bhend et al., 2012) or modi-
fied particle filtering approaches (van Leeuwen, 2010), could
offer a way forward in respect of this problem, but it must
be acknowledged that the nature of the sparse and imprecise
data places fundamental limitations on our ability to recon-
struct past climatic states.
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