
Clim. Past, 7, 987–999, 2011
www.clim-past.net/7/987/2011/
doi:10.5194/cp-7-987-2011
© Author(s) 2011. CC Attribution 3.0 License.

Climate
of the Past

Sub-decadal- to decadal-scale climate cyclicity during the
Holsteinian interglacial (MIS 11) evidenced in annually laminated
sediments
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Abstract. To unravel the short-term climate variability dur-
ing Marine Isotope Stage (MIS) 11, which represents a
close analogue to the Holocene with regard to orbital bound-
ary conditions, we performed microfacies and time series
analyses on a∼3200-yr-long record of annually laminated
Holsteinian lake sediments from Dethlingen, northern Ger-
many. These biogenic varves comprise two sub-layers: a
light sub-layer, which is controlled by spring/summer diatom
blooms, and a dark sub-layer consisting mainly of amor-
phous organic matter and fragmented diatom frustules de-
posited during autumn/winter. Time series analyses were
performed on the thickness of the light and dark sub-layers.
Signals exceeding the 95 % and 99 % confidence levels occur
at periods that are near-identical to those known from mod-
ern instrumental data and Holocene palaeoclimatic records.
Spectral peaks at periods of 90, 25, and 10.5 yr are likely
associated with the 88-, 22- and 11-yr solar cycles, respec-
tively. This variability is mainly expressed in the light sub-
layer spectra, suggesting solar influence on the palaeopro-
ductivity of the lake. Significant signals at periods between
3 and 5 yr and at∼6 yr are strongest expressed in the dark
sub-layer spectra and may reflect an influence of the El Niño-
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Southern Oscillation (ENSO) and the North Atlantic Oscil-
lation (NAO) during autumn/winter. Our results suggest that
solar forcing and ENSO/NAO-like variability influenced cen-
tral European climate during MIS 11 similarly to the present
interglacial, thus demonstrating the comparability of the two
interglacial periods at sub-decadal to decadal timescales.

1 Introduction

An understanding of the mechanisms and effects of natural
short-term (i.e. decadal- to sub-decadal-scale) climate vari-
ability is essential for providing projections of possible cli-
mate change for the near future. Short-term climate changes
are linked to shifts in the modes of variability of the cli-
mate system (e.g. the southern and northern annular modes;
Stenseth et al., 2003); therefore, a better representation of
such climate-mode shifts in climate models may improve
simulations of abrupt climate changes (Alley et al., 2003).
Although the instrumental record is becoming more valuable
as it is lengthened, it is still insufficient to cover the full range
of climatic behavior. Specifically, instrumental datasets do
not reach beyond the past∼300 yr (Jones and Mann, 2004),
which precludes deeper insights into the underlying physical
processes and the evolution of decadal- to sub-decadal-scale
climate variability on longer (e.g. interglacial) timescales. In
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this context, high-resolution palaeoclimate records, particu-
larly from past interglacials that, unlike the Holocene, were
unaffected by human interference, can make an important
contribution towards elucidating natural short-term climate
variability and its future evolution during the present inter-
glacial (e.g. Alley et al., 2003; Brauer et al., 2007; Müller
and Pross, 2007; Tzedakis et al., 2009).

Marine Isotope Stage (MIS) 11 is considered one of
the best analogues for present and future climate based on
long-term similarities with regard to orbital climate forcing,
i.e. low eccentricity and dampened influence of precession
(e.g. Berger and Loutre, 2002; Loutre and Berger, 2003;
Ruddiman, 2005). A number of proxy datasets have pro-
vided insights into the long-term comparability between MIS
11 and the present interglacial (e.g. McManus et al., 2003; de
Abreu et al., 2005; Helmke et al., 2008; Rohling et al., 2010;
Tzedakis, 2010), but owing to a lack of data with sufficiently
high temporal resolution, the short-term comparability be-
tween the two interglacials has remained ambiguous.

In contrast to most marine records from MIS 11, which
typically exhibit relatively low sedimentation rates, varved
sequences from lake sediments yield the potential to test
whether MIS 11 and MIS 1 exhibit comparable decadal to
sub-decadal climate variability. The terrestrial analogue to
MIS 11 in Central Europe has long been a matter of heated
debate (e.g. Sarnthein et al., 1986; de Beaulieu et al., 2001;
Geyh and M̈uller, 2005; see also Koutsodendris et al., 2010,
for a discussion). However, based on evidence from long ter-
restrial and marine vegetation records from the Massif Cen-
tral (France; Reille et al., 2000) and off Iberia (Desprat et al.,
2005), there is now a substantial body of research that indi-
cates a land-sea correlation of MIS 11c with the Holsteinian
interglacial (e.g. de Beaulieu et al., 2001; Kukla, 2003; Nity-
choruk et al., 2005, 2006; M̈uller and Pross, 2007; Preece et
al., 2007).

The variations in the composition and thickness of varves
reflect sedimentation processes that are controlled by var-
ious climatic and environmental factors at different times
of the year (e.g. O’Sullivan, 1983; Lotter, 1989; Ander-
son, 1992; Lotter and Birks, 1997; Brauer et al., 1999a;
Brauer, 2004). Deeper insights into these processes have
been gained through the time series analysis of varve thick-
ness datasets; such efforts have successfully linked cyclical
patterns in lake sediments with short-term natural periodic
climate forcing (e.g. Anderson and Koopmans, 1963; Ander-
son, 1992; Zolitschka, 1992; Vos et al., 1997; Rittenour et al.,
2000; Livingstone and Hajdas, 2001). To date, although sev-
eral well-preserved Holsteinian varved archives are known
(e.g. Turner, 1970; M̈uller, 1974; Krupínski, 1995; Nitycho-
ruk et al., 2005), the potential of using varves to better un-
derstand the decadal to sub-decadal-scale climate variabil-
ity during MIS 11 has been poorly explored (Mangili et al.,
2005, 2007; Brauer et al., 2008).

In light of the above, we here analyze a∼3200-yr-long
Holsteinian varve succession from the Dethlingen palaeo-

Dethlingen

Fig. 1. Map indicating the location of the Dethlingen palaeolake.

lake in northern Germany. In particular, we have performed
(i) a detailed microfacies analysis to understand the season-
dependent sedimentological processes controlling varve de-
position, and (ii) time series analyses on the varve sub-
layers thickness in order to investigate the short-term climate
cyclicity during MIS 11 and to compare it with the instru-
mental data and palaeoclimatic records of the Holocene.

2 Material and methods

The Dethlingen palaeolake is located in the Lüneburger
Heide region within the lowlands of northern Germany
(Fig. 1). After the disintegration of the Elsterian (MIS
12) ice sheet, several deep lakes formed in the vicinity
of Dethlingen that were subject to the deposition of di-
atomaceous, partially annually laminated sediments during
the following Holsteinian interglacial (e.g. Benda and Bran-
des, 1974; Ehlers et al., 1984). Based on the spatial ex-
tent and thickness of the Holsteinian diatomite, the size
of the Dethlingen palaeolake is estimated to be∼800 m in
length and 300–500 m in width (Benda et al., 1984). The
deposits cored at Dethlingen (10◦08.367′ E, 52◦57.780′ N,
65 m a.s.l.) that have yielded the material for this study com-
prise organic-rich, predominantly regularly and finely lami-
nated lake sediments (Koutsodendris et al., 2010). Here we
focus on the interval between 27.93 and 33.68 meters below
surface (mbs) that comprises annual laminations spanning
the mesocratic forest phase of the Holsteinian interglacial
in Central Europe (∼411–408 ka BP), including a prominent
centennial-scale climate perturbation, the so-called “Older
Holsteinian Oscillation” (OHO; Koutsodendris et al., 2010;
Koutsodendris, 2011).
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Varve counting and sub-layer-thickness measurements
were carried out at 100x magnification on thin sections
(size: 120× 35 mm) using a petrographic microscope. Thin-
section preparation followed standard techniques comprising
freeze-drying, impregnation with Araldite 2020 epoxy resin
under vacuum, sawing, and grinding of the sediment (Brauer
et al., 1999b; Lotter and Lemcke, 1999). To warrant conti-
nuity of observation, successive thin sections with an overlap
of 2 cm were analyzed.

Geochemical measurements were undertaken with a
micro-X-ray fluorescence (µ-XRF) spectrometer EAGLE III
XL (GFZ Potsdam) using a step size of 100 µm for Al, Ca,
Fe, K, Mn, S, Si, Sr, and Ti (50 s count time, 40 kV tube
voltage and 400 µA tube current). Measurements were car-
ried out on sediment blocks that had been impregnated with
Araldite 2020 epoxy resin.

Time series analyses were carried out on the thickness
measurements of the light and dark sub-layers. Multi-taper
spectral analysis (MTM) was used for spectral estimation
(bandwidth parameterp = 5, and 9 tapers) (e.g. Vautard et
al., 1992). The MTM represents an optimal method for
producing spectral estimates with high frequency resolution
for given degrees of freedom, low bias, and a distribution
amenable to the location of confidence levels (Mann and
Lees, 1996). In addition, wavelet analysis was applied to
identify occurrence intervals and related amplitudes of pe-
riodic components of the non-stationary sub-layer thickness
time series (Torrence and Compo, 1998).

3 Results and discussion

3.1 Structure of varves and depositional processes

The finely laminated sediments from Dethlingen comprise
biogenic varves consisting of two discrete sub-layers, a light
and a dark one. The boundaries between the light and dark
sub-layers are marked by conspicuous changes in their com-
position. In general, the boundaries between the light and
dark sub-layers are somewhat less sharp than the boundaries
between the dark sub-layers and the light sub-layers of the
following varves (Fig. 2a–c). The distinctly differing compo-
sition of the individual sub-layers allows unequivocal defini-
tion of their boundaries under a petrographic microscope and
thus precise measurements of their thicknesses. In the case
of less well-preserved sub-layer boundaries (192 varves), the
midpoints of the unclear transitional zones between the dis-
tinct parts of the sub-layers have been applied for thickness
measurements. The uncertainty range for the thickness mea-
surements of well-preserved varves is∼0.01 mm and up to
0.05 mm for poorly preserved varves.

The composition and thickness of the light sub-layers
are predominantly controlled by the annual cycle of di-
atom blooms, which is dominated by taxa of the genera
Stephanodiscus, Ulnaria, andAulacoseira. In most cases,
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Fig. 2. Thin-section and scanning electron microscope pho-
tographs of varves from the Dethlingen core: light and dark sub-
layers (A) under parallel-polarized light and(B) under cross-
polarized light;(C) close-up photograph of successive dark and
light sub-layers;(D) pyrite framboids;(E) sponge spicule;(F) wind-
transported fine sand grain.

the light sub-layers are dominated by one of these genera, re-
sulting in an almost monospecific diatomaceous layer. How-
ever, a successive deposition of two sub-layers of differ-
ent genera during the growing season can be also observed.
The light sub-layers often contain organic matter that in-
creases in abundance towards the boundary with the dark
sub-layers. Small-sized (<10 µm) pyrite framboids are of-
ten present (Fig. 2d) and occasionally few angular-shaped
grains, ranging in size from coarse silt to fine sand, are scat-
tered within the light sub-layers (Fig. 2f).

The dark sub-layers are composed predominantly of amor-
phous organic matter with fragments of diatom frustules. Re-
worked periphytic diatoms, plant remains, freshwater sponge
spicules from the littoral zone, and chrysophycean cysts are
common (Figs. 2e, 3a–b). The dark sub-layers often contain
low concentrations of clay particles, in contrast to the light
sub-layers where fine-grained minerogenic particles are al-
most absent.

The succession and characteristics of the individual varve
sub-layers as described above suggest that the diatomaceous
light sub-layers were deposited during spring and summer,
whereas the organic-detrital dark sub-layers were formed
during autumn and winter (e.g. O’Sullivan, 1983; Lotter,
1989; Brauer, 2004). In particular, the water circulation and
high nutrient availability in spring and summer promoted di-
atom blooms that led to the deposition of diatoms frustules
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Fig. 3. Thin-section and scanning electron microscope photographs from different varve sub-layers from Dethlingen:(A, B) dark sub-
layer;(C, D) light sub-layer type A;(E, F) light sub-layer type B;(G, H) light sub-layer type C.

at the lake bottom, forming the light sub-layers. Stratifi-
cation of the water column in summer led to anoxic bot-
tom lake conditions facilitating the preservation of varves
(e.g. O’Sullivan, 1983; Brauer, 2004). The deposition of di-
atom frustules, organic matter and other material from the
littoral zone of the lake suggests the re-establishment of the
lake circulation during the deposition of the dark sub-layers.
The mixing of the water column can be attributed predomi-
nantly to an enhancement of wind and wave activity during
autumn and early winter; in addition, the low content of clay
particles in the dark sub-layers points to minor runoff from
the catchment area into the lake during that time. The sharp
boundary between the dark and succeeding light sub-layer
suggests a transient break in sediment accumulation, which
may be attributed to an ice-cover of the lake during winter.
During that time, single wind-transported coarse silt and sand
grains were trapped in the ice and deposited within the lake
sediments after ice melting in spring. These dropstone-like
sand grains additionally confirm the seasonal interpretation

of the sub-layers. The above-mentioned characteristics sug-
gest that the Dethlingen palaeolake was dimictic, ice-covered
and stratified during parts of the year, and experienced peri-
ods of mixing between these two states (e.g. Lewis, 1983).

3.2 Varve counting and thickness measurements

In total, 2864 varves were counted between 27.93 and
33.68 mbs. For small-scale core intervals where varve preser-
vation was poor or sediment had been disturbed during cor-
ing or laboratory processing, interpolations were performed
based on the average thickness of 20 varves deposited di-
rectly below and above the respective interval. Based on
these procedures, the floating chronology for the laminated
diatomite at Dethlingen was calculated to comprise 3255
varve years.

The average varve thickness is 1.74 mm (Fig. 4). The
thickness of the light sub-layers varies between 0.05 and
5 mm (average: 0.68 mm), whereas the thickness of the dark
sub-layers varies between 0.08 and 5 mm (average: 1.06 mm)
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Fig. 4. Varve thickness measurements of dark sub-layers and different types of light sub-layers. Positions of the Older Holsteinian Oscillation
(OHO) and the Low Variability Interval (LVI) are indicated.

(Fig. 4). A qualitative distribution of different types of
light sub-layers in the examined core interval was estab-
lished based on the dominant diatom genera observed in
the thin sections; Type-A is dominated by diatoms of the
generaStephanodiscuswith a size of>10 µm (Fig. 3c, d),
type-B is dominated by elongated diatoms of the genus
Ulnaria (Fig. 3e, f), and type-C mainly comprises small-
sized diatoms (<10 µm) of the generaAulacoseira and
Stephanodiscus(Fig. 3g, h). In general, representatives of
type-A are thicker (average: 0.87 mm) than those of type-
C (0.54 mm) and type-B (0.52 mm) (Fig. 4). The distribu-
tion of these light sub-layer types within the studied core in-
terval documents a clear succession in diatom assemblages
(Fig. 4). The light sub-layers from the lower interval of
the laminated diatomite (33.68–31.22 mbs) are dominated
by largeStephanodiscusspecies (type-A) succeeded byUl-
naria species (type-B) in the middle part (31.22–30.20 mbs),
whereas the upper laminated interval (30.20–27.93 mbs) is
characterised by a prevalence of smallStephanodiscusand
Aulacoseiraspecies (type-C).

3.3 Time series analyses

The power spectra of the datasets for the light and dark
sub-layers exhibit several peaks that exceed the 95 % and
99 % confidence levels (Fig. 5). Significant peaks occur at
decadal-scale periods of 90, 25, 15, and 10.5 yr, but also
at sub-decadal-scale periods of 5.8–6.1, 3–5, and 2–3 yr.

Table 1. Summary of significant spectral peaks of light and dark
sub-layer time series of the Dethlingen varves and their possible
forcing mechanisms.

Light Dark
Period sub-layers sub-layers
(years) spectra spectra Forcing

512 95 % 95 % Solar or ocean circulation
90 99 % 99 % Solar (88-yr Gleissberg cycle)
25 99 % 95 % Solar (22-yr Hale cycle)
15 – 95 % ENSO
10.5 99 % – Solar (11-yr Schwabe cycle)
5.8–6.1 – 99 % NAO
3–5 mainly 95 % mainly 99 % ENSO
2–2.7 99 % mainly 95 % NAO/(QBO)

In addition, the wavelet spectra show a prominent cycle at
∼512 yr for both the light and dark sub-layers (Fig. 6). In
the following, we compare these signals with solar cycles
and spatio-temporal modes of global climate variability, such
as the El Nĩno-Southern Oscillation (ENSO), the North At-
lantic Oscillation (NAO) and the Quasi-Biennial Oscillation
(QBO), which are well known from analyses of modern
instrumental climate data and the Holocene palaeoclimatic
record (e.g. Stuiver and Braziunas, 1993; Mann and Park,
1994; Hoyt and Schatten, 1997; Wanner et al., 2001; Lab-
itzke, 2005; Gray et al., 2010).
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Fig. 5. Power spectra of the light and dark sub-layer thickness
measurements. The red line indicates the median red noise; the
dashed and solid black lines indicate the 95 % and 99 % confidence
levels, respectively. El Niño-Southern Oscillation (ENSO), North
Atlantic Oscillation (NAO), and Quasi-Biennial Oscillation (QBO)
bandwidths are according to Mann and Park (1994).

3.3.1 Solar-cyclicity-like variability

Four peaks from the Dethlingen varve time series spectra
can be correlated to known solar cycles (Fig. 5; Table 1).
The most prominent, at 90 yr, can be attributed to the 88-
yr Gleissberg solar cycle (e.g. Gleissberg, 1944; Stuiver and
Braziunas, 1993; Hoyt and Schatten, 1997) that has previ-
ously been recorded in several glacial (Anderson and Koop-
mans, 1963; Vos et al., 1997; Prasad et al., 2004) and inter-
glacial varve time series (Anderson and Koopmans, 1963;
Vos et al., 1997; Dean et al., 2002; Brauer et al., 2008).
The 25- and 10.5-yr peaks from Dethlingen may correlate to
the 22-yr Hale and 11-yr Schwabe solar cycles, respectively
(e.g. Hoyt and Schatten, 1997) that have also been widely
found in Quaternary varve time series of glacial (Anderson,
1961; Anderson and Koopmans, 1963; Vos et al., 1997; Rit-
tenour et al., 2000) and interglacial origin (Anderson, 1961,

1992; Anderson and Koopmans, 1963; Zolitschka, 1992; Vos
et al., 1997; Livingstone and Hajdas, 2001; Dean et al., 2002;
Theissen et al., 2008). The statistically significant expression
of all three prominent decadal-scale solar cycles makes the
Dethlingen varve record unique because most known varve
records only contain evidence for one or two of these cycles,
probably because of insufficient sensitivity of each individual
lake’s sedimentological properties to record the solar mag-
netic modulation (e.g. Solanki et al., 2004; Muscheler et al.,
2005) over certain time periods (e.g. Anderson, 1992).

In addition to these cycles, our record provides evidence
for a centennial-scale cycle at∼512 yr, which has been rarely
detected in varve time series (Prasad et al., 2004; Brauer et
al., 2008). To date, its origin remains unclear; it is consid-
ered to be related to either solar forcing (Stuiver et al., 1995;
Sarnthein et al., 2003) or changes in the North Atlantic ther-
mohaline circulation (Stuiver and Braziunas, 1993; Chap-
man and Shackleton, 2000; Damon and Peristykh, 2000;
Risebrobakken et al., 2003). No other centennial-scale cy-
cles were identified in the Dethlingen record, e.g. the 207-
yr Suess solar cycle (e.g. Hoyt and Schatten, 1997) that
were previously recorded in varve time series (e.g. Ander-
son, 1992; Vos et al., 1997; O’Sullivan et al., 2002; Prasad et
al., 2004; Brauer et al., 2008).

Because the solar-like cycles are evidenced in both light
and dark sub-layer spectra, we argue that solar forcing in-
fluenced the lake sedimentation throughout the year. The
light sub-layers at Dethlingen, which represent the primary
lake productivity (see Sect. 3.1), are characterized by peaks
of all three decadal-scale solar cycles (i.e. Gleissberg, Hale,
and Schwabe cycles) at the 99 % confidence level (Fig. 5).
This suggests a significant solar influence on the biological
productivity of the lake, most likely by affecting water mix-
ing intensity, temperature, light and UV radiation that exert
a strong control on algal productivity (e.g. Bothwell et al.,
1994; Beer et al., 2000; Graham and Wilcox, 2000; Gray et
al., 2010). The occurrence of solar-like cyclicity in the dark
sub-layers, particularly the Gleissberg cycle (Fig. 5), points
to solar influence on lake circulation during autumn and win-
ter, most likely through atmospheric circulation changes that
modulated wind and wave activity (see Sect. 3.1). Possible
links between solar irradiance and atmospheric circulation
have been attributed to the solar influence on stratospheric
temperature that may modify zonal winds and storm tracks
(e.g. Haigh, 1996; Carslaw et al., 2002; Gray et al., 2010).

Summarizing the above, the time series analysis of the
Dethlingen varve record suggests a strong impact of solar
cyclicity on the processes responsible for the seasonal sedi-
mentation by influencing the lake’s primary productivity and
the atmospheric circulation over the study area.

3.3.2 Variability within the ENSO/NAO band

The Dethlingen varve record reveals significant variability
at sub-decadal time scales, with signals exceeding the 95 %
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or 99 % confidence levels grouped into three distinct bands,
i.e. 2–2.7 yr, 3–5 yr, and 5.8–6.1 yr (Fig. 5; Table 1). Most
of the significant peaks are recorded in the range of 3 to 5 yr
within the conventional ENSO bandwidth (Mann and Park,
1994; D’ Arrigo et al., 2005). Variability within the ENSO
bandwidth has been reported in lateglacial to recent varve
sequences from North and South America (Rittenour et al.,
2000; Nederbragt and Thurow, 2005; Fagel et al., 2008), but
to date has not been clearly witnessed in varves from Eu-
rope. The ENSO is a natural mode of oscillation that re-
sults from unstable interactions between the tropical Pacific
Ocean and the atmosphere, affecting weather and climate
worldwide (e.g. Fedorov and Philander, 2000). A telecon-
nection between the Pacific region and Europe via the strato-
sphere allows the ENSO to influence European climate in
late winter and spring (e.g. Brönnimann, 2007; Br̈onnimann
et al., 2007; Ineson and Scaife, 2009). The signal in Eu-
ropean climate comprises two modes: during El Niño con-
ditions, when a reduction of coastal upwelling and an in-
crease in sea-surface temperature along the western coast of
tropical South America is observed in the equatorial Pacific,

the European continent witnesses very low temperatures in
NE Europe, increased precipitation in the northern Mediter-
ranean region, and decreased precipitation in Norway. Re-
versed conditions are observed in Europe during La Niña
conditions, which comprise the opposite mode of El Niño in
the equatorial Pacific (e.g. Brönnimann, 2007). The cyclicity
observed at Dethlingen is in agreement with modern weather
observations from Europe that suggest an ENSO influence
on climate every 3.5 yr (Rod́o et al., 1997). The ENSO-
like variability is stronger expressed in the spectrum of the
dark sub-layers, pointing to a pronounced ENSO impact on
winter atmospheric circulation during the Holsteinian inter-
glacial (Fig. 5).

The Dethlingen varve time series further shows significant
variability at the margins of the ENSO bandwidth between
5.8 and 6.1 and between 2.4 and 2.6 yr (Fig. 5). Although this
variability may again represent an ENSO impact on varve
formation, modern observational data suggest that these sig-
nals are better attributed to the NAO. The NAO, which rep-
resents a hemispheric meridional oscillation in atmospheric
masses centered near Iceland and the subtropical Atlantic
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Ocean, affects European climate particularly in boreal winter
from December through March (e.g. Hurrell, 1995; Visbeck
et al., 2001; Wanner et al., 2001). The NAO is characterized
by a positive mode related to warmer and wetter than average
conditions in north Europe and colder and drier conditions in
the Mediterranean region, and a negative mode with reversed
characteristics. The NAO variability occurs at bandwidths of
2.5–3 and 6–10 yr (e.g. Appenzeller et al., 1998; Hurrell and
van Loon, 1997; Pozo-V́asquez et al., 2000). Varve time se-
ries from central and western Europe have also reported sig-
nificant peaks at 6.1–6.2 yr during the Holocene (Livingstone
and Hajdas, 2001; O’Sullivan et al., 2002), whereas a similar
period at 6.6 yr has been recorded on oxygen isotope vari-
ations of calcite varves from the southern Alps during MIS
11 (Mangili et al., 2010). It therefore seems that the∼6 yr
signal documented in European varve sequences represents
NAO-like variability rather than ENSO-like variability be-
cause the latter is generally more pronounced in the 3–5 yr
bandwidth (Mann and Park, 1994). Further evidence for a
NAO-like variability in the Holsteinian record from Dethlin-
gen is provided by the fact that the∼6 yr signal is only evi-
dent in the spectrum from the dark sub-layers. It therefore re-
flects sedimentation processes during autumn/winter, which
is in good agreement with the seasonal impact of the NAO
on European climate as known from the Recent (e.g. Hurrell,

1995; Visbeck et al., 2001; Wanner et al., 2001). The vari-
ability between 2 and 2.7 yr may be attributed to either the
NAO or the QBO (Mann and Park, 1994). The QBO is one
of the most commonly recorded circulation patterns in mod-
ern data, comprising a variability of the equatorial strato-
sphere expressed by an alternation in the downward propa-
gation of easterly and westerly wind regimes (e.g. Baldwin
et al., 2001). Although such periodicities commonly occur
in varved sequences, these signals should be interpreted with
caution because of their proximity to the 2-yr Nyquist fre-
quency of annual sampling (e.g. Weedon, 2003).

Finally, the spectrum for the dark sub-layers exhibits a
periodicity of 15 yr exceeding the 95 % confidence level
(Fig. 5). Such a periodicity has been previously noticed in
Central Europe during the Holocene and MIS 11, although
its forcing has remained unclear (Livingstone and Hajdas,
2001; Mangili et al., 2010). We suggest that this 15-yr cy-
cle may be related to the interdecadal ENSO variability at
15–18 yr (Mann and Park, 1994). This interpretation is fur-
ther corroborated by modern observations from Iberia that
demonstrate the existence of an amplified ENSO signal at
14.2 yr, i.e. after every four ENSO events (Rodó et al., 1997).

To summarize, the Dethlingen varve time series indicates
significant sub-decadal climate variability in European cli-
mate during MIS 11, which may be attributed to ENSO-
and NAO-like climate modes. The pronounced signals in
the spectrum of the dark sub-layers point to a strong influ-
ence of the ENSO/NAO-like variability especially on winter
climate, possibly through changes in atmospheric circulation
that influenced lake mixing and the duration of ice cover.

3.4 Variability of varve thickness through time

The sub-decadal- and decadal-scale cyclicity as described in
Sects. 3.3.1 and 3.3.2 is evidenced in most parts of the Deth-
lingen record (Fig. 6). However, a close inspection of the
wavelet spectra for the light and dark sub-layers reveals dis-
tinct intervals where this cyclicity appears only in one of the
two spectra or is discontinuous in both spectra.

An example for the first case is a 430-yr-long interval
between 1320 and 1750 varve years (Fig. 6). This inter-
val, hereafter named low-variability interval (LVI), is marked
by a strong sub-decadal and decadal cyclicity in the dark
sub-layer spectrum and a very weak cyclicity in the light
sub-layer spectrum. We therefore hypothesize that although
the spectrum for the dark sub-layers points to an external
cyclical forcing influencing the Dethlingen palaeolake sys-
tem, changes in the boundary conditions (e.g. nutrients, wa-
ter level) during spring and summer precluded the recording
of this forcing in the light sub-layer spectrum. To test this
hypothesis, we take a closer look at the varve microfacies
during the LVI. The onset of the LVI coincides with a major
change in the spring-blooming diatom assemblages accom-
panied by a thinning of the light sub-layers (Fig. 4). In par-
ticular, the diatoms dominating the light sub-layers change
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from Stephanodiscus(>10 µm) toUlnaria species, the lat-
ter requiring a higher Si:P ratio (e.g. Kilham et al., 1986;
Kirilova et al., 2008). It appears likely that the composi-
tional change in diatom assemblages during this interval was
caused by a weakening of the spring circulation, thereby de-
creasing the phosphorus transport from the hypolimnion to
the photic zone to the benefit of diatoms that require high
Si:P ratio to grow. The lake circulation during this interval
may have been modified by changes in atmospheric circu-
lation. As a result, the boundary conditions of the Deth-
lingen palaeolake were seasonally modified, precluding the
light sub-layers to record external forcing. The sedimenta-
tion processes became susceptible to the recording of exter-
nal forcing again when the lake system returned to condi-
tions that supported a stronger blooming ofStephanodiscus
species (Fig. 4).

A good example of the second case, i.e. when the spec-
tra of both the light and dark sub-layers do not show vari-
ability, is the interval between 2564 and 2782 varve years
(29.15 to 28.73 mbs; Fig. 7) that coincides with the promi-
nent OHO event (e.g. M̈uller, 1974; Kukla, 2003; Koutso-
dendris et al., 2010; Koutsodendris, 2011). Across the OHO,
the wavelet spectra of both the light and dark sub-layers do
not show any statistically significant indication for the 11-
yr Schwabe cycle; moreover, there is a strong weakening
of the 22- and 88-yr solar cycles (Fig. 7). In addition, the
ENSO/NAO-like sub-decadal variability almost ceases with
the onset of the OHO and only recovers again after the end of

the event (Fig. 7). Following a similar concept as for the LVI,
the absence of short-term variability during the OHO may be
explained by seasonal changes in the boundary conditions
of the Dethlingen palaeolake. In particular, the composi-
tion of the light sub-layers shifts fromUlnaria-dominated to
Stephanodiscus-dominated sub-layers with the onset of the
OHO, suggesting changes in lake mixing and productivity
(Fig. 4). However, the observations from thin sections do not
support a scenario of seasonal changes in the dark sub-layers.
On top of that, µ-XRF data spanning∼90 yr before the on-
set and∼150 yr into the OHO (29.33 to 28.87 mbs) do not
yield evidence for significant modifications in the geochemi-
cal signal to support changes in the sedimentation processes
during autumn/winter (Fig. 8). In particular, the intensities
of minerogenic-detrital indicator elements (such as Al, Ca,
K, Ti) and the Si/Al ratio remain rather constant, suggesting
no significant change in terrestrial input. In addition, the con-
stant Fe/Mn ratio does not support any oxygenation changes
at the bottom of the lake. We therefore suggest that the ab-
sence of cyclical signals in the varves during the OHO points
to a weakening of the external forcing. If correct, this implies
that both the solar activity and ENSO/NAO-like variability
were strongly weakened during this period. An alternative
explanation could be a weak sensitivity of the climate sys-
tem to the external forcing during the OHO.

It has been suggested that the triggering mechanism of
the OHO may be similar to the 8.2 ka BP event, with a
cooling caused by a transient slowdown in North Atlantic
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circulation leading to a turnover in central European veg-
etation (Koutsodendris et al., 2010; Koutsodendris, 2011).
Based on the Dethlingen time series analysis, it also appears
possible that this climate oscillation is further related to lower
solar irradiation. This may also have modified sub-decadal
climate variability, as it has been suggested for prominent
climate oscillations of the present interglacial, i.e. the 8.2 ka
event (e.g. Muscheler et al., 2004; Rohling and Pälike, 2005)
and the Little Ice Age (e.g. Shindell et al., 2001).

The two cases of discontinuous short-term climate vari-
ability in certain intervals as evidenced in the Dethlingen
varve record highlight the need to apply time series analysis
to the seasonal sub-layers thickness measurements. When
indications of short-term cyclicities are absent in certain in-
tervals of one of the seasonal sub-layer spectra but present
in the same intervals of the other seasonal spectra, the pro-
cesses involved in varve formation were obviously suscepti-
ble to record agents of external forcing only under specific
boundary conditions. In contrast, when the cyclic signals are
absent from all seasonal spectra, the external climate forc-
ing controlling varve formation was either weakened and/or
ceased completely or, alternatively, the climate system was
not sensitive to the external forcing during these periods.

4 Conclusions

Microfacies and time series analyses from an annually lam-
inated sedimentary archive of the Holsteinian interglacial
(MIS 11) yield a strong signal of natural cyclicity at decadal
and sub-decadal time scales. The decadal-scale cyclicity
is attributed to solar forcing that may have influenced the
sedimentation of the light varve sub-layers (spring/summer)
by driving changes in the productivity of the palaeolake. The
sub-decadal-scale cyclicity is attributed to ENSO and NAO
climate modes, predominantly influencing the dark sub-layer
formation (autumn/winter) through changes in atmospheric
circulation that affected lake mixing. Our analyses clearly
demonstrate that in order to interpret the signals of varve time
series analysis and to correlate them with temporal modifica-
tions of the external climate forcing, it is essential to (a) un-
derstand the sedimentological processes controlling varve
formation and to (b) compare the results of individually ana-
lyzed seasonal sub-layer-thickness datasets.

The solar- and ENSO/NAO-like natural cyclicity during
MIS 11 as recorded in the∼3200-yr-long varve time series
from Dethlingen is closely comparable with the central Eu-
ropean climate variability of the present interglacial. This
suggests that the short-term climate cyclicity during the two
interglacials is controlled by similar forcing. Taking this ob-
servation a step further, we suggest that MIS 11, besides the
well-established long-term astronomical analogy, may be re-
garded as a good analogue for the Holocene with regard to
short-term (sub-decadal- to decadal-) timescales. As a result,
understanding the short-term climate variability during MIS

11 may potentially contribute to simulate future climate evo-
lution of the present interglacial.
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Clim. Past, 7, 987–999, 2011 www.clim-past.net/7/987/2011/

http://dx.doi.org/10.1126/science.1081056
http://dx.doi.org/10.1111/j.1749-6632.1961.tb50048.x
http://dx.doi.org/10.1111/j.1749-6632.1961.tb50048.x
http://dx.doi.org/10.1038/358051a0
http://dx.doi.org/10.1029/JZ068i003p00877
http://dx.doi.org/10.1126/science.282.5388.446
http://dx.doi.org/10.1029/1999RG000073
http://dx.doi.org/10.1016/S0277-3791(99)00072-4
http://dx.doi.org/10.1016/S0277-3791(99)00072-4
http://dx.doi.org/10.1126/science.1076120
http://dx.doi.org/10.1126/science.265.5168.97


A. Koutsodendris et al.: Sub-decadal- to decadal-scale climate cyclicity during the Holsteinian (MIS 11) 997

von Storch, H., and Negendank, J. F. W., Towards a synthesis of
Holocene proxy data and climate models, Springer Verlag, 111–
129, 2004.

Brauer, A., Endres, C., G̈unter, C., Litt, T., Stebich, M., and Ne-
gendank, J. F. W.: High resolution sediment and vegetation re-
sponses to Younger Dryas climate change in varved lake sedi-
ments from Meerfelder Maar, Germany, Quaternary Sci. Rev.,
18, 321–329,doi:10.1016/S0277-3791(98)00084-5, 1999a.

Brauer, A., Endres, C., and Negendank, J. F. W.: Lateglacial cal-
endar year chronology based on annually laminated sediments
from Lake Meerfelder Maar, Germany, Quatern. Int., 61, 17–25,
doi:10.1016/S1040-6182(99)00014-2, 1999b.

Brauer, A., Allen, J. R. M., Mingram, J., Dulski, P., Wulf, S., and
Huntley, B.: Evidence for last interglacial chronology and en-
vironmental change from Southern Europe, P. Natl. Acad. Sci.
USA, 104, 450–455,doi:10.1073/pnas.0603321104, 2007.

Brauer, A., Mangili, C., Moscariello, A., and Witt, A.:
Palaeoclimatic implications from micro-facies data of a 5900
varve time series from the Piànico interglacial sediment
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