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Supp. Fig. 1. Data reproducibility. (a) Reproducibility between the first and second run 8"C of the same
samples (not necessarily the same foraminifer) on the three inter-calibrated mass spectrometers. (b) As in
panel (a), but then for 8"0. (¢) Reproducibility of 8"°C between measurements done at the University of
Florida (UF) and Utrecht University (UU), on specimens from the same sample. (d) As in panel (c), but
then for 8'°0.
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Supp. Fig. 2. Outlier removal and the splice. (a) Specification in which lab each stable isotope
measurement has been done. Outliers were defined by an upper and lower boundary of 2 standard
deviations (of the entire series) added or subtracted from a 13-point moving average (gray areas). Outliers
defined in 8"°C or in 8'*0 were removed from both records because of the paired analysis. Depth scale is in
meters composite depth (mcd). (b) Splice of Site 1264, showing from which hole the samples were taken.
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Supp. Fig. 3. Cross wavelet transform and wavelet coherence. (a) 8"°C record from Site 1264 of the Walvis
Ridge. (b) 8'°0 record from Site 1264 of the Walvis Ridge. (¢) Cross wavelet transform analysis between
the 8'%0 and 8"C records indicating regions in time frequency space where the time series show high
common power (Grinsted et al., 2004). Phase arrows pointing right means 8'*0 and 8'"°C are in-phase.
Phase arrows pointing left means 8'0 and §'"°C are in anti-phase. Phase arrows pointing up means that
80 is leading 8"°C by 90°. Phase arrows pointing down means that 8"°C is leading 8'°0 by 90°. Black
lines represent >95% significance levels. (d) Wavelet coherence analysis (Grinsted et al., 2004) between
the 80 and 8"°C records indicating regions in time frequency space where the two time series co-vary.
However, they do not necessarily have high power on these frequencies (Grinsted et al., 2004). Phase
arrows representation as in panel (a). Black lines represent > 95% Monte Carlo significance levels. Regions
in the time frequency space where both records show much power (panel (¢)) and where both records are
coherent (panel (d)) represent the coupling between climate states and the changes in the oceanic carbon
reservoir which has also been described at other Sites (e.g. Zachos et al., 1997, 2001;Paul et al., 2000).
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Supp. Fig. 4. 1-D inverse modelling output. The 80 record (as measured), d,, (seawater contribution,
from ice volume, to 6180), ice on Antarctica, eustatic sea level, dt (temperature contribution to 5"%0),
Northern Hemisphere (40-80° Latitude) annual average temperature (relative to present day) and deepwater
temperature (relative to present day) calculated by the 1-D model (De Boer et al., 2010), are depicted. The
Ow, Or, and ATy, values all represent oceans average values, because the model cannot resolve single water
masses and/or oceans. Gray areas indicate cooling periods with reduced ~100 kyr power, gray and striped
areas indicate ~100 kyr worlds, white areas are intermediate phases characterized by greater non-linear
response to eccentricity modulated precession.
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