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Abstract. Substantial evidence exists for wetter-than-
modern continental conditions in North America during the
pre-Quaternary warm climate intervals. This is in apparent
conflict with the robust global prediction for future climate
change of a northward expansion of the subtropical dry zones
that should drive aridification of many semiarid regions. In-
deed, areas of expected future aridification include much of
western North America, where extensive paleoenvironmental
records are documented to have been much wetter before the
onset of Quaternary ice ages. It has also been proposed that
climates previous to the Quaternary may have been charac-
terized as being in a state with warmer-than-modern eastern
equatorial sea surface temperatures (SSTs). Because equa-
torial Pacific SSTs exert strong controls on midlatitude at-
mospheric circulation and the global hydrologic cycle, the
teleconnected response from this permanent El Niño-like
mean state has been proposed as a useful analogue model, or
“blueprint”, for understanding global climatological anoma-
lies in the past. The present study quantitatively explores the
implications of this blueprint for past climates with a spe-
cific focus on the Miocene and Pliocene, using a global cli-
mate model (CAM3.0) and a nested high-resolution climate
model (RegCM3) to study the hydrologic impacts on global
and North American climate of a change in mean SSTs re-
sembling that which occurs during modern El Niño events.
We find that the global circulation response to a permanent
El Niño resembles a large, long El Niño event. This state
also exhibits equatorial super-rotation, which would repre-
sent a fundamental change to the tropical circulations. We
also find a southward shift in winter storm tracks in the Pa-
cific and Atlantic, which affects precipitation and tempera-
ture over the mid-latitudes. In addition, summertime precipi-
tation increases over the majority of the continental United

Correspondence to:A. Goldner
(agoldner@purdue.edu)

States. These increases in precipitation are controlled by
shifts in the subtropical jet and secondary atmospheric feed-
backs. Based on these results and the data proxy comparison,
we conclude that a permanent El Niño like state is one poten-
tial explanation of wetter-than-modern conditions observed
in paleoclimate-proxy records, particularly over the western
United States.

1 Introduction

It is well established that pre-Quaternary global climates
were warmer than modern and had smaller equator-to-pole
temperature gradients (Zachos et al., 2001). These climates
are also characterized as being wetter (Wolfe, 1994; Retal-
lack, 2007). This should be surprising given that our best
current understanding of global hydrology suggests an in-
crease in the size of arid-to-semi-arid zones in a warmer
world (Held and Soden, 2006). Here we demonstrate that
in warm climates of the Neogene ~23–2.58 million years
ago (m.a.), paleoclimate proxy evidence does indeed sup-
port wetter than modern conditions, including in the modern
semi-arid regions. Changes in tropical Pacific sea surface
temperatures (SSTs) provide one possible explanation of this
enigmatic feature.

Within the Neogene, the early and middle Miocene tropi-
cal SST regions were warmer than modern by 1–2◦C (Stew-
art et. al., 2004; You et al., 2009) and close to modern val-
ues in the late Miocene (Steppuhn et al., 2007), but spatial
coverage is lacking especially in the eastern equatorial Pa-
cific (EEP). Also, terrestrial temperatures in the mid-latitudes
are recorded as warmer than modern in the early and mid-
dle Miocene (Wolfe, 1994; Uhl et al., 2006; Micheels et al.,
2007). In the early Pliocene, the tropical SSTs are recorded
as up to 8◦C (Dekens et al., 2007; Brierley et al., 2009; Brier-
ley and Fedorov, 2010) warmer than modern, with contin-
ued warmth in the middle to late Pliocene (Dowsett, 1996).

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


724 A. Goldner et al.: Permanent El Niño teleconnections

Global temperatures during the middle Pliocene are recon-
structed as 2–3◦C warmer globally compared with modern
(Raymo et al., 1996), with warmer than modern mid-latitude
regions (Thompson and Fleming, 1996).

These warmer periods are reconstructed as having wetter
mid-latitude regions over North America (Thompson, 1991,
1996; Smith and Patterson, 1993; Smith, 1994; Wolfe, 1994,
1997; Axelrod, 1997), Europe (Jimenez-Moreno et al., 2010;
Boyd, 2009), and South America (Zarate and Fasana, 1989).
This includes many regions which are currently semiarid de-
spite the fact that continental configurations were similar
to modern values (Lyle et al., 2008; Haywood et al., 2004;
Herold et al., 2008; You et al., 2009). Global climate models
simulating future global warming show a poleward expan-
sion of the margin of the Hadley cell and associated storm
track moisture flux divergence, resulting in increased aridity
near subtropical margins such as southwestern North Amer-
ica (Held and Soden, 2006; Seager et al., 2007; Seager and
Vecchi, 2010; O’Gorman and Schneider, 2009). This re-
sponse to elevated greenhouse forcing appears at odds with
widespread evidence for wetter-than-modern and cooler con-
ditions over North America (Smith, 1994; Thompson, 1991;
Axelrod, 1997; Wolfe, 1997; Cronin and Dowsett, 1991), and
wetter conditions over Europe (Jimenez-Moreno et al., 2010;
Boyd, 2009) and Central South America (Zarate and Fasana,
1989) in the Neogene warm periods.

It is potentially informative to investigate climate in these
pre-Quaternary warm intervals, as they may hold clues to the
climate dynamics that will shape the response to elevated
greenhouse forcing in the coming decades (Crowley, 1996;
Raymo et al., 1996; Ravelo et al., 2004). There is a gen-
eral scientific consensus that a warmer world is associated
with a wider Hadley cell and displaced jet; data, theory, and
models show a variable response of zonal sea level pressure
and SST gradients in the Pacific, implying that the future
state of the equatorial Pacific is uncertain (Karnauskas et al.,
2008; Sang-Wook et al., 2009). Current teleconnection pat-
terns suggest that the response of the tropical Pacific to global
warming is likely critical in determining mid-latitude climate
change. But there is currently no consensus from observa-
tions, theory, or models about whether a globally warmer
world requires – or results in – a tropical Pacific mean state
that is closer to a La Niña- or El Nĩno-like configuration.

One potential resolution to this regional aridity paradox
is that these reconstructed wet regions in North America,
Europe, and South America were under the influence of re-
mote impacts from the equatorial Pacific (Molnar and Cane,
2002). Atmospheric teleconnections associated with tropi-
cal SST anomalies influence the hydrologic cycle over the
western United States (US) on interannual-to-millennial time
scales (Cook et al., 2004; Cole et al., 2002; Held and Soden,
2006; Fedorov et al., 2000; Chiang, 2009; Seager and Vec-
chi, 2010). Paleoclimate reconstructions and proxies for the
Pliocene and Miocene indicate that the tropical Pacific during
these periods may have been characterized as in a permanent

El Niño-like state (Philander and Fedorov, 2003; Ravelo et
al., 2004; Brierley et al., 2009; Wara et al., 2005; Fedorov
et al., 2006; Dekens et al., 2007, 2008; Molnar and Cane,
2002; Lyle et al., 2008) in which the EEP, as well as diverse
upwelling zones like the Californian and Peru margin, were
much warmer than modern and thermocline tilt and/or struc-
ture was much different than today. Various mechanisms
have been invoked to explain these changes (Fedorov et al.,
2010; Sriver and Huber, 2010) and we do not explore that
issue here. Instead we investigate the potential hydrologi-
cal cycle responses as a sensitivity study, assuming the exis-
tence of a permanent shift in SSTs of the form evidenced by
long, observed El Nĩno events. The definition of permanent
El Niño used in this study reflects changes in EEP interannual
variability. Furthermore, we used fixed SSTs because current
coupled models have not been able to reproduce a permanent
El Niño (Haywood et al., 2007), except when forced with
tropical cyclone winds which are currently not resolved in
global climate models (Fedorov et al., 2010; Sriver and Hu-
ber, 2010).

Molnar and Cane (2002) argued that a permanent El Niño-
like SST distribution might have had global, teleconnected
effects on temperature and effective moisture that resemble
those noted from proxy records in the Pliocene, thus provid-
ing a “blueprint” to explain many of the observed features
of past climates. In Fig.1 we have compiled Miocene and
Pliocene proxy records which highlight the regions that are
reconstructed as wetter or drier than modern. We note that
the pattern in Fig.1 does not closely resemble the ”robust”
pattern projected by models for the future, and part of our
motivation is trying to explain this discrepancy.

In this study, we will investigate how a permanent El Niño
affects the hydroclimate of western North America using
both a global climate model and a nested high-resolution cli-
mate. To our knowledge, no climate modeling study has yet
investigated how a permanent El Niño affects the hydrocli-
mate of western North America using a high-resolution cli-
mate modeling system. Indeed, many of hydroclimatic fea-
tures important for cold-season climate in North America can
be understood by analyzing large-scale circulation features
(Horel and Wallace, 1981; Trenberth et al., 1998). Alter-
natively, the warm-season atmospheric circulation is sensi-
tive to regional- and local-scale processes that are not well
resolved in global climate models (e.g.,Castro et al., 2001;
Diffenbaugh et al., 2005; Diffenbaugh and Ashfaq, 2010).

The inclusion of RegCM3 is especially motivated by pre-
vious research which has linked the gradual aridification
over the western US in the Miocene to the uplift of moun-
tain chains (Lyle et al., 2008). This result been called
into question by new research which has shown that moun-
tain uplift in the western US may have completed by the
early Miocene (Clark et al., 2005; Chamberlain and Poage,
2000). To resolve dynamics over these topographically com-
plex rain shadow regions and to understand their importance,
RegCM3 will be used to explain summertime precipitation
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Fig. 1. (a)Summary of the modeled permanent El Niño annual precipitation anomaly (NINO minus MODERN) compared with Pliocene
to Miocene proxy data estimates for suggested wet and dry regions, where green squares indicate wetter-than-modern and orange triangles
indicate drier-than-modern.(b) RegCM3 modeled precipitation anomaly over US with a proxy compilation for the Pliocene and Miocene.
The green dots represents proxy records which indicate wetter-than-modern and the orange dots indicate drier-than-modern during these
Neogene warm climate intervals. The sites used in this compilation are found in the reference index and are cited with the appropriate
numbering on the climate map. The green circles (wetter-Pliocene), green stars (wetter-Miocene), orange circles (drier-Pliocene), and
orange stars (drier-Miocene).

over the United States. A detailed motivation for why we
used RegCM3 in our analysis is described in Sect. 2.2.

A number of permanent El Niño simulations have been
conducted in order to better understand ocean-atmosphere
interactions, including those operating during past warm pe-
riods in Earth’s history. Barreiro et al. (2006) removed the
east-west SST gradient in the tropical Pacific and extended
the tropical Pacific SSTs meridionally to understand the
high-and mid-latitude temperature changes resulting from
El Niño teleconnections. Vizcaino et al. (2010) altered the
ocean heat transport in a slab ocean simulation, producing
an El Niño-like state to explore El Niño teleconnections over

the Northern Hemisphere. Shukla et al. (2009) imposed the
large 1997/98 El Nĩno with Pliocene boundary conditions to
explore global teleconnections within the Pliocene interval.
Bonham et al. (2009) explored Pliocene mid-latitude telecon-
nections that developed due to altering the boundary condi-
tions and found that altering vegetation induces precipitation
feedbacks which match some of the Pliocene proxy record.

To further explore the hypothesis suggested by Molnar
and Cane (2002), Huybers and Molnar (2007) used modern
empirical estimates of high latitude temperature driven by
El Niño events to understand the teleconnected response the
Equatorial Pacific SSTs may have had on the gradual cooling
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in the high latitudes over the late Pliocene. Molnar and Cane
(2007) used large modern El Niño events and associated
teleconnections to compare with the Miocene and Pliocene
proxy record. We are going to compliment and extend pre-
vious permanent El Niño simulations by focusing on the hy-
droclimatological aspects of the permanent El Niño blueprint
and the degree to which past SST changes may have sub-
stantially perturbed global and regional effective moisture
regimes.

This study is broken down into 5 sections: Section 2 de-
scribes model and methodology; Sect. 3 describes the global
and regional temperature and precipitation patterns driven by
a permanent El Niño, and how a permanent El Niño affects
seasonal circulation patterns; Sect. 4 includes the discussion,
and Sect. 5 presents the conclusions.

2 Methods

2.1 High-resolution global climate model simulations

We perform a series of prescribed-SST simulations using the
National Center for Atmospheric Research (NCAR) Com-
munity Atmosphere Model (CAM3.0). CAM3.0 serves
as the atmospheric component of the NCAR CCSM3
atmosphere-ocean general circulation model (AOGCM)
(Collins et al., 2006). CAM3.0 employs the Hack convection
scheme and spectral Eulerian dynamical core (Hack et al.,
2006). We run CAM3.0 at T85 spectral truncation, which is
approximately 1.2◦ resolution in the horizontal. When cou-
pled to the ocean model, CAM3.0 captures the observed at-
mosphere response to ENSO forcing during the wintertime,
even though the fully coupled model has problems repro-
ducing the temporal variability of El Niño events (Joseph
and Nigam, 2006). CAM3.0 also represents major features
of the global hydrological cycle, even when responding to
low frequency ENSO forcing (Hurrell et al., 2006; Hack et
al., 2006). When run at T85 resolution, CAM3.0 shows
significant improvements over the lower resolution version
of CAM3.0, including improved representation of the mon-
soon circulation associated with improved resolution of to-
pographic features (Meehl et al., 2006).

We create a permanent El Niño-like SST boundary con-
dition by low-pass filtering the historical observed SST field
and adding this anomaly to the 12 month climatology derived
from Hurrell and Trenberth (1999). Observed SSTs taken
from ERA-40 data set were linearly detrended and then low
pass filtered to remove variability shorter than three years.
A cross-correlation analysis with SST variations in the Niño
3.4 region was carried out and the resulting correlation field
was the basis for the imposed SST anomalies. The cross-
correlation field was scaled by the local standard deviation of
SST (i.e., regressed), and then the entire field was scaled by
an arbitrary and globally constant coefficient designed to en-

sure that the imposed SST anomaly in the EEP is comparable
to the values reconstructed by Dekens et al. (2008). A thresh-
old of 1/10 of this constant coefficient was imposed to mask
out small SST anomalies which are not likely to represent the
core forcing of the permanent El Niño response. We then add
the resulting constant SST anomaly to the NCAR 12 month
climatological SST from Hurrell and Trenberth (1999). The
permanent El Nĩno absolute SST distribution and anomaly
can be seen in Fig.2. This is a highly idealized permanent
El Niño in which the anomaly is constant in all months in the
repeating 12 month SST specified field.

The resulting SST patterns are broadly consistent with
proxy based SST reconstructed for the equatorial Pacific in
the Pliocene (Wara et al., 2005; Dekens et al., 2008) and are
comparable in magnitude to those in Vizcaino et al. (2010).
The low pass filtered SST anomaly was chosen to focus on
SST configurations that are potentially long lived, i.e., not
strongly damped on 1–2 yr time scales by ocean-atmosphere
interaction. Because the anomaly was derived from the Niño
3.4 region, it projects both the “Modoki-type” (Fig.2a) as
described in Ashok et al. (2007) and “canonical” ENSO vari-
ability. The resulting SST field has peak SSTs along the date-
line comparable with the 20th century SST trends (Collins et
al., 2010; Sang-Wook et al., 2009). Futhermore, because our
El Niño anomaly exhibits the “Modoki-type” and “canoni-
cal” ENSO variability, it induces both these dominant modes
of El Niño induced circulation and precipitation anomalies
as described in Trenberth and Smith (2009).

To enable a clean, single parameter sensitivity study we
use modern sea ice distribution, land-sea orography, con-
tinental topography, orbital configuration, and land cover
boundary conditions. Sea ice properties (fraction and thick-
ness) in the specified SST version of CAM3 are normally
derived from SST, but are unchanged in our simulations. We
use modern day continents because El Niño teleconnections
do not seem to be drastically effected by the movement of the
continents (Huber and Caballero, 2003; Galeotti et al., 2010)
and also to simplify the study. The point is to isolate the
dominant patterns induced by a persistent El Niño. Non-SST
influences were undoubtedly important in shaping features of
the climate in past time periods (e.g.,Haywood et al., 2004;
Herold et al., 2008; You et al., 2009; Bonham et al., 2009).
Nevertheless, the goal in the current study is to isolate the
dominant patterns forced by a permanent shift in mean sur-
face ocean conditions analogous to those seen during long El
Niño events, with a specific focus of matching precipitation
patterns over the continental United States.

The GCM simulations were run for 50 yr, with the last 20
used for the climatologies. All differences discussed are sig-
nificant at the greater than 95 % confidence interval based on
a Student’s t-test. In our simulations, the El Niño test case
will be called NINO and the control case will be referred to
as MODERN.
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Fig. 2. (a) Specified mean annual SST distribution for the NINO case. The remaining fields are the mean annual anomalies between the
NINO and MODERN case for basic atmospheric variables.(b) Surface temperature anomalies in◦C. (c) Cumulative precipitation anomaly in
cm year−1. (d) Zonal wind anomaly (m s−1) interpolated to the 200 mb pressure level.(e)Sea level pressure anomaly in mb.(f) Geopotential
height anomaly in meters.

2.2 High-resolution nested climate model simulations

In addition to the GCM experiments, we also nest the ICTP
RegCM3 climate model (Pal et al., 2007) within the CAM3.0
global climate model. RegCM3 is a hydrostatic, sigma co-
ordinate, primitive equation nested climate model. We em-
ploy the grid and parameterization options of Diffenbaugh
et al. (2006) and Pal et al. (2000). In this configuration, the
equal-area (horizontal) grid encompasses the continental US,
with 55 km resolution in the horizontal and 18 levels in the
vertical. We generate two RegCM3 simulations, one nested
in the CAM3.0 modern control simulation, and one in the
CAM3.0 NINO simulation. We integrate the RegCM3 simu-
lations for 40 model years, with the last 20 used for analysis.

RegCM3 is able to capture the seasonal patterns of tem-
perature and precipitation seen in observational data (Diffen-
baugh et al., 2006; Walker and Diffenbaugh, 2009; Diffen-
baugh and Ashfaq, 2010; Ashfaq et al., 2010), as well as the
patterns of the hot, cold, and wet tails of the daily tempera-
ture and precipitation distributions (Walker and Diffenbaugh,
2009) and the pattern and magnitude of the historical hottest-
season (Diffenbaugh and Ashfaq, 2010). RegCM3 also ac-
curately simulates the mean and trends in peak snowmelt-
runoff timing in the western US (Rauscher et al., 2008), as
well as the pattern of Convective Available Potential En-
ergy (CAPE) in the US (Trapp et al., 2007). Previous re-
search using RegCM3 has been focused on the response of
regional climate in North America to elevated greenhouse
forcing and late-Quaternary orbital forcing, and suggests that

fine-scale processes can regulate the response of a number of
important regional climate features, including seasonal tem-
perature (Diffenbaugh et al., 2006; Rauscher et al., 2008),
extreme temperature and precipitation events (Diffenbaugh
et al., 2005; White et al., 2006; Diffenbaugh et al., 2008),
snow-melt runoff (Rauscher et al., 2008; Ashfaq et al., 2010),
and atmosphere/soil-moisture coupling (Diffenbaugh et al.,
2005; Ashfaq et al., 2010).

Given the previous work suggesting the importance of
fine-scale processes in shaping the regional-scale climate re-
sponse to changes in greenhouse and orbital forcing, we
nest the RegCM3 high-resolution model within the CAM3.0
global model in order to test the role of fine-scale climate
processes in shaping the regional hydroclimatic response to
permanent El Nĩno-like SSTs. Our primary motivation for
high-resolution nesting is to better resolve fine-scale pro-
cesses that can be important for the response of regional cli-
mate to changes in global-scale forcing or changes in large-
scale climate dynamics.

Because of its higher resolution representation of the at-
mosphere and land surface, RegCM3 is able to better re-
solve fine-scale atmospheric features and climate system
feedbacks than the lower resolution GCM (Diffenbaugh et
al., 2005; Rauscher et al., 2008; Ashfaq et al., 2009). Of par-
ticular relevance for this study, RegCM3 is better able to re-
solve the regional precipitation features seen in the US when
compared to CAM3.0 (Diffenbaugh et al., 2006) (Fig. 3).
The differences in the simulation of baseline precipitation
between the low- and high-resolution models are particularly
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Fig. 3. Precipitation over North America in the T85 MODERN case and RegCM3 case in (mm day−1) and anomalies thereof.(a) Boreal
winter precipitation anomaly,(b) CAM3.0 boreal winter precipitation,(c) RegCM3 boreal winter precipitation,(d) CAM3.0 boreal summer
precipitation anomaly,(e)CAM3.0 boreal summer precipitation,(f) RegCM3 boreal summer precipitation.

evident over areas for which proxy records of Pliocene and
Miocene precipitation exist, including the topographically
complex western US in winter and coastal areas of the east-
ern US in summer (Figs. 1 and 3). Given the geographic
correspondence of the model differences with the locations
of proxy observations, and the documented importance of
fine-scale climate processes for the regional climate response
in North America to changes in global radiative forcing and
large-scale climate dynamics, we are motivated to use a high-
resolution climate modeling system to test the role of fine-
scale climate processes in regulating the regional hydrocli-
mate response to permanent El Niño-like SST conditions.

3 Permanent El Niño results

3.1 Changes in global and annual means

The permanent El Niño conditions increase simulated global
mean temperature by 0.27◦C. This global temperature
anomaly is similar to the approximately 0.2◦C anomaly seen
in the strong El Nĩno of 1997/1998 (Hansen et al., 2006). By

design, the permanent El Niño SST pattern is consistent with
a typical large El Nĩno event, as seen in the simulated NINO
minus MODERN surface temperature anomaly (Fig.2b).

As expected, the teleconnected terrestrial temperature re-
sponse to the imposed El Niño SST anomaly closely resem-
bles the pattern found in reanalysis products such as ERA-
40 during large El Nĩno events (Diaz et al., 2001). In addi-
tion, the high-latitude warmth seen over Canada and Alaska
agrees with the results presented in the past permanent El
Niño simulations (Barreiro et al., 2006; Shukla et al., 2009).
Anomalies between the NINO and MODERN cases result
in meridional stationary heat and water transport anomalies
over the Pacific Northwest and Canada that transport more
heat and water poleward (Figure not shown). These results
agree with the meridional temperature and moisture advec-
tion anomalies presented in the permanent El Niño experi-
ment of Vizcaino et al. (2010).

Global mean precipitation for the MODERN case is
103.76 cm year−1, which is in close agreement with the
recorded global precipitation mean of 102.2 cm year−1

(Huffman et al., 1997; Xie et al., 1997). Globally averaged
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a) b)

c) d)

e) f)

Fig. 4. Annual-mean climatological NINO−MODERN anomalies in the tropical region.(a) Zonally asymmetric component of the stream-
function (shading, units of 107 m2 s−1) and wind (arrows, longest about 30 m s−1) averaged over 100–200 mb. Green contours show con-
vective precipitation rate at intervals of 10 mm day−1, negative dashed.(b) Zonal-mean zonal wind (m s−1). (c) Stationary wave activity
flux (arrows, longest about 100 m2 s−2) and its convergence (shading, units of m s−1 day−1), averaged over 100–200 mb.(d) Zonal-mean
zonal momentum tendency (units of m s−1 day−1). (e)Horizontal wind in the lowest model layer (arrows, longest about 8 m s−1) and zonal
surface wind stress over ocean (shading, units of 0.1 N m2). (f) Zonally asymmetric component of the zonal-vertical wind in the equatorial
region, averaged 5◦ S–5◦ N. Longest arrows indicate a horizontal component of about 20 m s−1; vertical (pressure) velocity component has
been multiplied by−100 for display purposes.

precipitation increases by 2.7 % in the NINO case (relative to
the MODERN case), as compared to 0.2 % change for typical
El Niño events (Dai and Wigley, 2000).

This large response is due to small differences between
the surface energy budget of the two cases, which must be
accounted for by enhanced evaporation and hence enhanced
precipitation. Tests with a different control case with identi-
cal surface energy budget reveal that all the results discussed
in this paper are, however robust and not affected by this im-
balance.

Annual precipitation increases in central South America,
Eastern Australia, Southern Africa, and over Europe in the
NINO case (relative to MODERN) (Fig.2b). Annual pre-
cipitation decreases are seen in northern South America, the
Central East African coast, and Southern India. The spatial
pattern of the precipitation anomalies (Fig.2c) is consistent
with previous research analyzing satellite and rain gauge data
(Dai and Wigley, 2000), and is consistent with the blueprint
argument (Molnar and Cane, 2002).

3.2 Annual-mean planetary-scale circulation and
superrotation

Annual-mean sea level pressure (SLP) decreases in the
NINO case (relative to the MODERN case) by 10–15 mb
in the North Pacific, and by 2–4 mb in the North Atlantic

(Fig. 2e). Deepening of the Aleutian low in the North Pacific
is typical for El Niño events, and has been linked to shifts in
storm tracks during El Niño winters (Bjerknes, 1969; Namias
and Cayan, 1984). This change in atmospheric circulation
is also apparent in the 500 mb geopotential height anoma-
lies (Fig.2f) and in the subtropical jet at 200 mb, which in-
tensifies over the central subtropical Pacific by 10–20 m s−1,
while relaxing over the northern North Pacific (Fig.2d). Per-
haps the most striking feature of Fig.2d is the strong west-
erly acceleration of winds along the equator, which result in
an increase of the zonal-mean zonal wind of over 20 m s−1 in
the region around the equatorial tropopause (Fig.4b). Since
zonal-mean zonal winds around the equatorial tropopause are
close to zero in the MODERN simulation, this means that the
NINO simulation has westerlies on the equator, i.e., is in a
state of superrotation (Pierrehumbert, 2000).

These changes in the planetary-scale circulation can be in-
terpreted as a response to the imposed shift of warm SSTs
into the central and EEP, resulting in a strong increase in
convective precipitation there (Fig. 1a, b, c). The conse-
quent increase in tropospheric heating drives a response sim-
ilar to the classical Matsuno-Gill solution (Fig.4a) featuring
planetary-scale Rossby gyres straddling the equator, which
is known to produce superrotation (Showman and Polvani,
2010). However, the NINO minus MODERN response dif-
fers from the linear Matsuno-Gill solution in that the gyres
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are shifted east by approximately 1/4 wavelength, so that the
upper-level equatorial easterly anomaly coincides with the
heating maximum. A similar shift was seen in a simpler
model by Kraucunas and Hartmann (2005), who attributed
the shift to eastward advection by the strong superrotating
mean flow.

The superrotation is attributable to momentum conver-
gence onto the equator by the Rossby gyres themselves, par-
ticularly the strong, meridionally phase-tilted Pacific gyres.
This can be seen by examining the wave activity flux,
a standard diagnostic of stationary Rossby wave propaga-
tion (Plumb, 1985). Figure4c shows prominent wave activ-
ity flux anomalies emanating from the region of anomalous
heating and propagating poleward in both hemispheres, im-
plying a convergence of zonal momentum onto the central
equatorial Pacific. In the zonal mean (Fig.4d), this results in
an anomalous acceleration of around 4 m s−1 day−1, leading
to superrotation. This value is averaged over 100–200 mb
due to mean vorticity flux(f + ζ )v, wheref is the Corio-
lis parameter,ζ is the zonal-mean relative vorticity, andv is
the zonal-mean meridional velocity, stationary eddy momen-
tum flux convergence, and transient eddy momentum flux
convergence.

In the modern climate, zonally-concentrated heating in the
western equatorial warm pool drives a Matsuno-Gill type re-
sponse which is observed to converge momentum onto the
equator, though too weakly to produce true superrotation
(Dima et al., 2005). Past modeling studies of the perma-
nent El Nĩno state (Barreiro et al., 2006; Shukla et al., 2009;
Vizcaino et al., 2010) used equatorial SST anomalies which
effectively removed the zonal SST gradient in the equato-
rial Pacific and did not show superrotation. In our case, the
imposed SST anomaly is strong enough to create an SST
maximum in the central Pacific (Fig.2a), whose concen-
trated heating is strong enough to drive superrotation. Past
work using GCMs with zonally-localized equatorial heating
anomalies (Hoskins et al., 1999; Inatsu et al., 2002) has also
shown equatorial superrotation. Recently, Caballero and Hu-
ber (2010) also found a transition to superrotation in warm
climate simulations due to equatorial Rossby wave momen-
tum convergence; however, in that case the waves were tran-
sient waves reminiscent of the modern Madden-Julian Oscil-
lation, and thus quite different from the imposed, stationary
anomaly of the present study.

The presence of strong, anticyclonic phase-shifted gyres
in the subtropical central Pacific has several consequences;
one is the jet anomalies noted in Fig.2c that affect the cli-
mate of North America (see below). Another consequence is
that because the Matsuno-Gill response corresponds to the
first baroclinic mode, the central Pacific equatorial upper-
level easterlies are mirrored by near-surface equatorial west-
erlies (Fig.4e). Overall, the equatorial Pacific response to the
permanent El Nĩno forcing is a reversed Walker cell, with as-
cent east of the dateline and descent to its west (Fig.4f). The
presence of strong westerly surface wind stress on the equa-

tor is consistent with expectations of a permanent El Niño
state, and could help stabilize this state in the presence of
atmosphere-ocean coupling.

3.3 Regional seasonal temperature and precipitation
patterns

Annual mean surface air temperature decreases over most of
the continental US in the NINO case in the high-resolution
RegCM3 simulations (Fig.5a). Temperature decreases
over the southeastern and southwestern US in September-
October-November (SON), while warming occurs over the
Pacific Northwest (Fig.5b). In addition, negative surface
pressure anomalies occur over the east and west coasts, in-
dicating changes in stormtrack direction and intensity in re-
sponse to the permanent El Niño forcing. Surface air tem-
perature decreases are isolated to the southeast and south-
west in December-January-February (DJF), with tempera-
tures increasing over the Pacific Northwest (Fig.5c) and into
Canada, which can be seen clearer in the global tempera-
ture plots. This response is induced by increased meridional
heat transport (Figure not shown). The warming over Canada
and Alaska during El Nĩno events is important for North-
ern Hemisphere glaciation and has been the focus of previ-
ous permanent El Niño research (Huybers and Molnar, 2007;
Brierley and Fedorov, 2010). Further, large surface pres-
sure anomalies occur over the west and east coasts in DJF
which affect intensity and direction of stormtracks. (Fig.5c).
Cooling occurs over the southern US in March-April-May
(MAM) (Fig. 5d), and over most of the continental United
States in June-July-August (JJA), along with small positive
surface pressure anomalies over the eastern US (Fig.5e).

Positive anomalies (NINO minus MODERN) in mean an-
nual precipitation occur over the southeastern, western, and
northcentral US in the high-resolution RegCM3 simulations
(Fig. 6a). Precipitation increases over the east coast, the
southeast, and California in SON (Fig.6b), while precip-
itation increases are isolated to the east coast, California
and parts of the southwest in DJF. Wind anomalies in DJF
suggest increased moisture transport from the sub-tropical
Pacific in the NINO case (relative to the MODERN case)
(Fig. 6c). Precipitation anomalies are similar in MAM and
DJF over most of the US (Fig.6d), with the exception of
positive anomalies over the central United States in April,
which coincides with the onset of springtime convective pre-
cipitation (Castro et al., 2001; Barlow, 2000). Precipitation
increases over the southeast, the central US, and the Pacific
Northwest in JJA (Fig.6e). Cyclonic circulation anoma-
lies occur off of the south Atlantic coast in JJA, indicating
a change in the summer monsoon circulation in response to
the permanent El Niño forcing (see discussion in Sect. 4.2).
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Fig. 5. Temperature anomalies (◦C) for NINO minus MODERN from RegCM3 results.(a) Mean annual anomaly,(b) September, October,
November (SON) anomaly,(c) December, January, February (DJF) anomaly,(d) March, April, May anomaly,(e)June, July, August anomaly.
Contour lines represent pressure anomalies in mb, where negative values are dashed, positive values are constant, and thick black line is the
zero contour.

3.4 Global and regional seasonal circulation changes

We focus on shifts in boreal winter, spring, and summer cir-
culation emphasizing the CAM3 GCM results during DJF
(when large-scale features dominate the hydroclimatic re-
sponse to permanent El Niño-like forcing in the US), and the
RegCM3 nested climate model results during MAM and JJA
(when regional-scale features influence the hydroclimatic re-
sponse).

3.4.1 Large-scale circulation changes

The jet stream steers synoptic storms into western North
America during El Nĩno events (Diaz et al., 2001). To de-
scribe the changes in atmospheric circulation during boreal
winter, we quantify changes in the atmospheric jet and the
subsequent changes in moisture transport into North Amer-
ica. The southward shift in the Pacific and Atlantic storm-
track is evident in the 200 mb mean zonal wind for the NINO
case (Fig.7a) relative to the MODERN case (Fig.7b). Bo-

real winter mean zonal wind increases over the west and east
coast of the US, resulting in a displaced jet that should advect
more moisture into the continental United States.

To quantify the changes in moisture transport we decom-
pose the moisture flux into the mean component (ŪQ̄) and
(V̄ Q̄) and transient eddy response (U ′Q′) and (V ′Q′) over
North America, utilizing standard meteorological definitions
of the reynolds decomposition for scalar and vector fields.
We then calculate the vertically integrated moisture flux con-
vergence by the time mean and transient eddy component
(Fig. 8). The integrated moisture flux for the time mean cir-
culation is calculated by integrating the convergence of the
time mean quantities for (̄UQ̄) and (V̄ Q̄) over the entire at-
mospheric column. The transient eddy integrated moisture
flux is calculated by subtracting the time averaged fields from
instantaneous fields, and then doing the integration of the
transient eddy convergence over the entire atmospheric col-
umn (Higgins et al., 1997; Castro et al., 2001).
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Fig. 6. Precipitation anomalies (mm day−1) for NINO minus MODERN from RegCM3.(a) Mean annual anomaly,(b) SON precipitation
anomalies,(c) DJF precipitation anomalies,(d) MAM precipitation anomalies, and(e) JJA precipitation anomalies. Vectors are placed over
the precipitation contours and represent mean wind (m s−1) at lowest model level. The data is plotted to show only the statistically significant
anomalies at the 95 % confidence interval.

Results show that the integrated moisture flux by the mean
flow increases over the western US, but not over the east
coast of the United States in the NINO case (Fig. 8a) relative
to MODERN (Fig. 8b). When taking the anomaly between
the NINO and MODERN case, this results in an anomalous
increase in the integrated moisture flux convergence over the
western US and an increase in moisture flux by the mean
wind directed toward the western United States (Fig. 8c).

The transient eddy integrated moisture flux in the NINO
case exhibits a southward shift in the integrated moisture flux
over the east and west coasts of the United States (Fig. 8d, e).
The NINO case has increases in the integrated moisture flux
in the east coast of the United States, and the transient eddy
moisture flux is directed from the central Atlantic toward the
east coast of the United States (Fig. 8e). The transient eddy

integrated moisture flux does not increase over the west coast
of the United States, indicating that the increases in precip-
itation over the western US are not induced by the transient
eddies.

In summary, the precipitation over the west and east coasts
of the US are controlled by different mechanisms. The mean
integrated moisture flux is responsible for the increases in
precipitation over the western US (Fig. 8c) as the mean zonal
wind shifts southward, altering the amount of moisture en-
tering the western United States. On the east coast, the
transient eddies direct moisture onshore, increasing the in-
tegrated moisture flux (Fig. 8f) and precipitation (Fig.6c).
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Fig. 7. Boreal winter average of mean wind (m s−1) interpolated to
the 200 mb pressure level.(a) The NINO case,(b) MODERN case,
and(c) difference between NINO and MODERN.

3.4.2 Regional-scale circulation and precipitation
variability

Motivated by previous work suggesting the importance of
fine-scale processes in shaping the regional-scale climate re-
sponse to changes in global radiative forcing (Diffenbaugh et
al., 2006, 2005; Rauscher et al., 2008; Ashfaq et al., 2010),
we use the high-resolution RegCM3 model to test the role
of fine-scale climate processes in shaping the regional hy-
droclimatic response to permanent El Niño-like SSTs. Here
we analyze the RegCM3 results to explore the regional pre-
cipitation and circulation anomalies that develop in the bo-
real spring and boreal summer due to a permanent El Niño.
Analysis will aim to explain the seasonality of precipitation
anomalies, the lower level circulation, and moisture avail-
ability over the United States.

We present the month by month precipitation anomalies
because the spring precipitation is linked to increases in soil
moisture values and summertime precipitation. The March
precipitation anomalies (NINO minus MODERN) have a
similar spatial pattern to the DJF precipitation anomalies,
with the largest anomalies occurring over the east and west
coasts of the US and indicating an active stormtrack through-
out the boreal springtime (Fig.9a). The magnitude of the
positive precipitation anomalies over the central US persists
through August, while the magnitude of the anomalies over
the coasts progressively decay each month through the spring
and summer (Fig.9).

To isolate changes in available water vapor, we exam-
ine the vertically integrated moisture (Q) in the upper at-
mosphere∼850 mb and above and the lower atmosphere
∼850 mb and below. The upper atmospheric moisture is de-
creased in the NINO case over the midwestern and southeast
US in JJA (Fig.10a). The upper-level (200 mb) circulation
indicates that the sub-tropical jet is intensified as the mean
wind increases over the Rocky Mountains (Fig.10a). The
integrated moisture content between∼850 mb and the sur-
face results in increased moisture availability in the NINO
case compared with the MODERN case, indicating enhanced
moisture availability in the lower atmosphere in the NINO
case. In addition, cyclonic circulation anomalies develop
over the central US in JJA (Fig.10b), which induces in-
creases in summertime precipitation due to enhanced atmo-
spheric instability. The increases in lower level integrated
moisture, enhanced cyclonic flow over the eastern half of the
US, and increased sub-tropical jet over the central US explain
why precipitation is increased over central US in response to
permanent El Nĩno forcing.

In summary, winter-like dynamics persist in the Pacific
sector until late spring, causing a southward shift in storm-
tracks which induces precipitation increases over the east and
west coast of the United States. During boreal summer, in-
creases in moisture availability in the lower atmosphere and
a shift in lower level mean wind allow convective precipita-
tion to entrain deep into the continental United States. These
mechanisms are integral in increasing precipitation in the US
in boreal spring and summer.

3.4.3 Secondary soil moisture feedbacks

Previous research has shown that wet springtime months can
lead to an enhanced summertime precipitation (Eltahir, 1998;
Findell and Eltahir, 1997, 2003; Pal and Eltahir, 2002), and
regional climate modeling experiments have been run which
explore these types of feedbacks. Fischer et al. (2007) ex-
plored the feedbacks of soil moisture on the large European
drought of 2003 and found that by decreasing the soil mois-
ture quantities, this increased the strength of the European
drought and induced secondary atmospheric circulation feed-
backs. Seneviratne et al. (2006) used a regional model where
they turned off the land-atmosphere interactions and found
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Fig. 8. Boreal winter mean vertically integrated moisture flux convergence (mm day−1) with moisture transport (̄UQ̄) and (V̄ Q̄) by mean
winds (g kg−1 mm day−1) overlain as vectors on the 850 mb pressure surface.(a) Mean vertically integrated moisture flux convergence for
NINO case,(b) Mean integrated moisture flux convergence for MODERN case, and(c) Mean vertically integrated moisture flux convergence
anomaly for NINO minus MODERN. Boreal winter transient eddy vertically integrated moisture flux convergence (mm day−1) with moisture
flux by transient eddies (U ′Q′) and (V ′Q′) (g kg−1 mm day−1) overlain as vectors on the 850 mb pressure surface.(d) Transient eddy
vertically integrated moisture flux convergence for NINO case,(e)Transient eddy integrated moisture flux convergence for MODERN case,
and(f) Transient eddy vertically integrated moisture flux convergence anomaly for NINO minus MODERN.

that this feedback is extremely important in understanding
climate change in a world with increased atmospheric car-
bon dioxide. These studies illustrate that the land surface
feedbacks resolved in regional models are important in con-
trolling precipitation and atmospheric circulation. Also as
described above in the seasonality of precipitation, the longer
memory introduced into the regional climate system by the
winter precipitation anomalies causes spring and summer to
be moister. These results motivate why we show the season-
ality of precipitation and its relationship with soil soil mois-
ture feedbacks.

In our experiments, the NINO case relative to the MOD-
ERN case has increased surface soil moisture in the Pacific
Northwest and midwestern US starting in April and stays el-
evated throughout JJA. To explore the connection between
soil moisture and precipitation, we lag correlated soil mois-
ture and different atmospheric variables by averaging May
through August and lagging precipitation and relative humid-
ity against the May through August average of soil moisture
contents (Fig.11). We show correlations for the NINO test
case only because in the MODERN simulation none of the
lag correlations were statistically significant.
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Fig. 9. RegCM3 precipitation anomalies decomposed into single months (mm day−1) for boreal spring and and boreal summer for NINO
minus MODERN. Plots are(a) March,(b) April, (c) May, (d) June,(e)July, and(g) August.

We correlate soil moisture to precipitation to see if in-
creases in soil moisture may be causing increases in rain-
fall during boreal summer. Figure11 shows the correlations
between soil moisture (mm) and precipitation and plots the
correlations at lag 0,1,2 where precipitation lags soil mois-
ture in Fig.11b, c. Lag 0 shows a large correlation between
soil moisture and precipitation across the entire contiguous
US, with largest correlations of 0.8 occurring south of 30◦ N
(Fig. 11a). This pattern is especially seen over the South-
east where soil moisture and precipitation both increase in
the NINO case, but not in the MODERN case.

Lag correlations are calculated with soil moisture lagging
by 1 and 2 months and plotted between (−0.3 and 0.3).
At a lag 1 month, soil moisture and precipitation are posi-
tively correlated in the Pacific Northwest and the southeast
(Fig. 11b). The correlation of 0.2–0.3 indicates a relation-
ship between soil moisture values in May with increases in
precipitation seen in June. When precipitation is lagging by 2
months, a positive correlation exists in the Pacific Northwest
and the southeast (Fig.11c), but the correlation begins to di-
minish and is gone at lag of 3 months. These positive corre-
lations seen in the Pacific Northwest and in the southeast do
not show up in the MODERN simulation. Results show that
at a lag of 1 and 2 months, soil moisture values in the Pacific
Northwest and southeast may be related to precipitation val-
ues in June. Both of these regions see statistically significant
increases in precipitation during JJA, and this indicates that
the soil moisture feedback may be a secondary feedback in
the system, but most likely is not a dominant driver in in-
creasing precipitation due to a permanent El Niño.

The correlation analysis was also calculated between soil
moisture and relative humidity for the NINO simulation. The
geographic areas of statistically significant results remain the
same as the results presented above, but the magnitude is in-
creased in the relative humidity and soil moisture correla-
tions.

3.5 Model proxy comparison

A compilation of proxy records for the Miocene and Pliocene
were gathered and compared with the permanent El Niño
induced precipitation anomalies at the global and regional
scale (Fig.1). This analysis is an extension to the proxy
comparison completed in Molnar and Cane (2007). In
this compilation we have increased the amount of proxy
records for the eastern United States and added additional
sources in the western United States compared to previ-
ous compilations. In broad strokes, the proxy records
match the permanent El Niño driven precipitation values
very well over North America, South America, Northeast
Africa (Bonnefille, 2010), Mediterranean regions (Jimenez-
Moreno et al., 2010), Canada (White et al., 1997), and In-
donesia (Amijaya and Littke, 2005). The model precipita-
tion does not match records as well over Central Africa (de-
Menocal, 1995), parts of Asia (Sun et al., 2010), and Japan
(Heusser and Morley, 1996) (Fig.1a). When comparing with
the schematic of Molnar and Cane (2002), the model data
comparison matches, with the exception of Central Africa
where our model results are drier than the proxy record (de-
Menocal, 1995). Wetter conditions are seen in North Amer-
ica, Europe, northwestern and southeastern South America,

www.clim-past.net/7/723/2011/ Clim. Past, 7, 723–743, 2011



736 A. Goldner et al.: Permanent El Niño teleconnections

Fig. 10. NINO minus MODERN total column integrated moisture
content subtracted from lower (∼850 to surface) integrated moisture
isolating moisture content in the upper atmosphere (g kg−1). (a)
Upper integrated moisture for boreal summer, with the vectors rep-
resenting mean wind (m s−1) anomaly between NINO and MOD-
ERN plotted at model level 3 (∼200 mb). (b) Lower integrated
moisture content (∼850 to surface) for boreal summer. Mean wind
is plotted at model level 16 (∼850 mb). The plots are statistically
significant data at the 95 % confidence interval.

and drier conditions are seen in northeastern South America
(Fig.1a). In addition, Australia has contradictory reconstruc-
tions for precipitation, but our results do match the areas of
drying seen inMetzger and Retallack(2010) and mentioned
in Molnar and Cane (2002).

In order to develop a more detailed knowledge of the past
pattern of hydrological change, we perform a higher reso-
lution model-data comparison. A regional scale precipita-
tion and proxy comparison was completed over the US us-
ing RegCM3 (Fig.1b). While preparing the comparison
significant effort was devoted to locating inferred precipi-
tation records over the eastern United States. To date, pre-
vious studies focused on temperature differences (Cronin
and Dowsett, 1991) between the Neogene warm periods
and modern (Molnar and Cane, 2002, 2007; Bonham et al.,
2009). Using proxies and vegetation cover described in
Braun (1950), Martin and Harrell (1957), and Litwin and An-
drle (1992), results show expansive deciduous and temperate
forests in the eastern United States. It was inferred by those

authors that this climate and vegetation cover could only be
sustained by increased modern rainfall in the Miocene and
early Pliocene (Fig.1b). Increased precipitation along the
eastern US is also suggested by Willard et al. (1993), but this
study also indicates little change of precipitation in Florida.
The modeled permanent El Niño precipitation over the east-
ern US is able to capture this wetter pattern seen in the proxy
records.

The western US has received substantial attention by cli-
mate scientists and geologists because of its susceptibility to
large-scale droughts (Cook et al., 2004; Cole et al., 2002).
Most proxy records in the western US for the Neogene warm
periods indicate wetter than modern with the exception of
Thompson (1991) and Retallack (2004), which suggest drier
conditions in the Pacific Northwest in the late Pliocene. The
simulated response of precipitation to permanent El Niño-
like SSTs captures the wetter-than-present conditions in-
ferred from the proxy data. The regional model simulates
more wide-spread moistening in the western and central US
than the global model, and the drier conditions over the Pa-
cific Northwest indicated by Thompson (1991) and Retal-
lack (2004) are resolved in the regional model, but not in the
global model (Fig.1). In addition, comparison of the high-
resolution regional model and the lower-resolution global
model suggests that topographic complexity influences not
only the baseline precipitation of the western US but also the
regional response of precipitation to the El Niño SST forcing,
with reduced moistening on the lee side of the Pacific-coast
high elevations. However, the spatial contrasts in magnitude
of moistening are not testable with the proxy reconstruction
shown here.

4 Discussion

4.1 Boreal winter storm track changes

We find that permanent El Niño-like forcing depresses bo-
real winter SLP in the North Pacific and shifts southward the
jet stream in both the Pacific and the Atlantic. This type of
atmospheric response during an El Niño event is very simi-
lar to past teleconnection research (Horel and Wallace, 1981;
Held et al., 1989; Straus and Shukla, 1997). With this be-
ing said, precipitation anomalies induced by El Niño in the
boreal winter depend heavily on the type of SST forcing in
the EEP (Trenberth and Smith, 2009). Because our imposed
El Niño SST pattern resembles the “Modoki” (dateline cen-
tered) and “canonical” (more EEP centered), our precipita-
tion and temperature results end up looking like a combina-
tion of El Niño modes as described in Trenberth and Smith
(2009).

Furthermore, the decreases in EKE in the North Pacific
indicate less storm activity, but the increases in the mean in-
tegrated moisture flux convergence and southward shift in
mean zonal wind off the west coast of the US allow moisture
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Fig. 11. Plots(a–c)show the correlation between soil moisture for the topmost layer in (mm) and precipitation (mm day−1) for the NINO
simulation only. Correlations are calculated with lag of zero(a) which represents the climatological average for May–August (soil moisture)
versus May–August (precipitation). Plot(b) is precipitation lagging by one month, May–August (soil moisture) versus June–September
(precipitation). Plot(c) is precipitation lagging by 2 months, May–August (soil moisture) versus July–November (precipitation). The data is
plotted to incorporate only the statistically significant data at the 95 % confidence interval.

advection to penetrate deeper into western North America.
The deepened low pressure in the Atlantic stormtrack in-
duces increases in the transient moisture flux from the At-
lantic, ultimately leading to increases in rainfall over the east
coast of the United States.

The shifts in atmospheric circulation seen during the bo-
real winter persists into the boreal spring. As a result, the
permanent El Nĩno forcing produces large increases in pre-
cipitation off the west and east coasts of the US during boreal
spring into early summer. This response leads to increases in
soil moisture values that induce secondary land surface feed-
backs, discussed in further detail below.

4.2 Permanent El Nĩno and summertime precipitation
patterns

The permanent El Niño-like forcing increases summertime
precipitation in the US through a number of mechanisms.
These mechanisms include: (1) shifts in regional circula-
tion that increase moisture availability in the southeast US,
(2) strengthening of the sub-tropical jet that can control the
northward extent of summertime precipitation, and (3) wetter
conditions during the springtime that can lead to feedbacks
which help to enhance summertime precipitation.

Specifically, summertime precipitation is enhanced due to
availability of water vapor that is transported into the south-
east and midwestern US due to shifts in regional-scale atmo-
spheric circulation and increases in lower-atmospheric mois-
ture. Over the eastern US, 500 mb geopotential height de-
creases along with an increase in the subtropical jet over the
Rocky Mountains (Fig. 11a). Increased moisture availabil-
ity is seen as far north as 45◦ N, indicating that moisture is
able to penetrate deep into the continental interior because
of the movement of the jet stream. In addition, the anoma-
lous precipitation during the spring helps to create a more
efficient environment for summertime precipitation over the

southeast and Pacific Northwest via persistence introduced
by soil moisture.

Previous research has shown that the summertime precip-
itation can shift due to negative geopotential height fluctua-
tions and the development of cyclonic flow over the midwest-
ern US (Mechoso et al., 2005). Other studies have shown that
summertime precipitation is enhanced due to increased mois-
ture flux from the Gulf of Mexico caused by a displaced in-
tertropical convergence zone (ITCZ) (Mechoso et al., 2005;
Higgins and Shi, 2001), or by changes in the subtropical jet,
which can effectively pull moisture out of the Gulf of Mex-
ico (Trenberth and Guillemot, 1996). Our results are con-
sistent with studies describing mechanisms that cause sum-
mertime precipitation anomalies due to El Niño (Trenberth
and Guillemot, 1996; Pal et al., 2000; Pal and Eltahir, 2002;
Mechoso et al., 2005).

Summertime precipitation patterns associated with the
North American Monsoon (NAM) have been linked to El
Niño events (Castro et al., 2001). A constant ENSO forcing
could create a more efficient transfer of heat from the trop-
ics to the mid latitudes due to the development of eddies and
movement of Rossby waves affecting stormtracks that can
drive the advection of warm moist air from the Gulf of Mex-
ico during boreal summer (Trenberth et al., 1998; Oort et al.,
1996). Our simulations indicate a weaker NAM controlled
by the development of northeasterly winds over the Great
Plains controlled by the low pressure system which develops
over the east coast.

In boreal summer, our NINO induced temperature and pre-
cipitation anomalies over North America result in a cooler
and wetter southeastern US when compared to modern obser-
vations (Barlow et al., 2000). Interestingly, when the NINO
anomalies are compared against some CMIP3 El Niño mod-
eling studies, the temperature and precipitation patterns seen
over North America are spatially similar, but our anomalies
are intensified especially for precipitation and temperature
(Mo, 2010).
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4.3 Permanent El Nĩno and a connection to past and
future climate

As described in Sect. 2.1, differences in topography and veg-
etation are important in shaping these Neogene climate pe-
riods (e.g.,Haywood et al., 2004; Herold et al., 2008; You
et al., 2009; Bonham et al., 2009). Research has shown that
altering vegetation cover in Pliocene climate simulations re-
sults in model precipitation matching most of the proxy re-
constructions (Bonham et al., 2009). Still, this study had a
hard time matching the wetter conditions indicated by the
proxy record over the east coast of the US. The perma-
nent El Nĩno induced precipitation anomalies presented in
our results match the pattern seen in the majority of global
records and more specifically over the west and the east
coast of the US. In future work, proper Neogene vegetation
needs to be prescribed in the US in a RegCM3 permanent
El Niño simulation to fully understand the hydrologic cycle
feedbacks. Prescribing vegetation like the inferred temper-
ate forests on the east coast (Pound et al., 2011) and tropi-
cal forests on the west coast (Salzmann et al., 2009) should
induce positive feedbacks and will help in describing why
conditions were wetter than modern over North America
throughout the Neogene (Thompson, 1991, 1996; Smith and
Patterson, 1993; Smith, 1994; Wolfe, 1994, 1997; Axelrod,
1997; Braun, 1950; Willard et al., 1993; Litwin and Andrle,
1992).

One motivation for using RegCM3 is to illustrate how
precipitation changes over topography in comparison to the
coarser global model because resolving precipitation over
uplift regions is important in characterizing Neogene hy-
drologic cycles. Moving forward, the inclusion of realistic
paleo-topography in Neogene climate simulations is neces-
sary. Here we conducted a sensitivity experiment that posed
to address how a permanent El Niño affects hydroclimatol-
ogy, leaving the inclusion of correct paleo-topography for fu-
ture work. An important conclusion from RegCM3 results is
that precipitation patterns are sensitive to topography, ergo
the development of paleo-topography over North America
for the Neogene time periods is important.

Coupled global climate models generally do not show a
transition into a permanent El Niño SST pattern in warmer
climates (Haywood et al., 2007; Huber and Caballero, 2003;
Galeotti et al., 2010). This motivated us to prescribe SSTs
in the EEP because coupled models are usually unable to
reach this equilibrium state. A number of recent studies have
explored mechanisms capable of sustaining a permanent El
Niños in climate models (Fedorov et al., 2010; Sriver and
Huber, 2010). These studies have shown that vertical ocean
mixing can push the EEP into a more El Niño-like state (Fe-
dorov et al., 2010; Sriver and Huber, 2010). These modeling
studies give a plausible physical mechanism for the perma-
nent El Nĩno and expanded warm pool in the EEP that has
been inferred from Pliocene proxy records (Ravelo et al.,

2004; Brierley et al., 2009), but more work is necessary to
prove this hypothesis.

Other work has suggested that a transition to superrotation
could contribute to a permanent El Niño state through weak-
ening of the trade winds (Tziperman and Farrell, 2009). Our
experiments have shown that the presence of a strong, persis-
tent El Niño anomaly causes superrotation and contributes to
a reversal of the trade winds, i.e., to surface westerlies along
the Equatorial Pacific. This constitutes a potential positive
feedback loop that could produce a stable, large-amplitude
permanent El Nĩno state. Further investigation of this supper-
rotation hypothesis will require additional experiments with
fully-coupled ocean-atmosphere climate models.

5 Conclusions

By using a high-resolution global general circulation model
and nested regional model, here we explored the possible at-
mospheric dynamics that could develop if the ocean was in
a permanent El Niño-like mean state. Results from this study
sensitivity show that changes in tropical Pacific SSTs provide
one possible explanation for this aridity paradox between
past and future climate in the subtropical dry zones. Our
teleconnection response generally agrees with the hydrologic
cycle blueprint presented by Molnar and Cane (2002) as seen
in the model and proxy comparison. The modeled precipita-
tion anomaly matches the proxy record well over North and
South America and the Mediterranean and European regions.
The modeled precipitation does not do as well over Australia
and Central Africa. Furthermore, the NINO induced precip-
itation anomalies are able to explain the majority of North
American proxy record, which has been a difficult for previ-
ous studies to describe.

More novely, we give a detailed seasonal analysis quanti-
fying why the precipitation anomalies develop using both a
global and a high resolution regional model. The increases in
precipitation can be explained by a shift in atmospheric cir-
culation in all seasons. During boreal winter the Aleutian low
deepens, and the 200 mb jet intensifies and shifts southward.
The boreal winter precipitation anomalies over the western
US are induced by increased moisture flux convergence by
the mean flow, while the positive precipitation anomalies in
eastern US are induced by increased moisture flux by ed-
dies. This atmospheric response in the Pacific and Atlantic
persists into MAM, increasing summertime precipitation and
soil moisture values all year round.

During boreal summer, precipitation increases are associ-
ated with shifts in the upper atmospheric jet and increased at-
mospheric moisture availability, while feedbacks from spring
soil moisture to summer precipitation are relatively weak.
This shift in boreal summer circulation does not seem to be
associated to an intensification of NAM and leads to large
scale increases in precipitation over the entire eastern United
States. Further, our experiments indicate that persistent El
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Niño-like conditions with an El Modoki-like central Pacific
SST maximum could result in supperrotation and a reversal
of the trade winds, a mechanism that could help to explain
past periods in which climate proxies suggest a permanent
El Niño mean state.
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2007.

Namias, J. and Cayan, D. R.: El Niño: implications for forecasting,
Oceanus 27, 41–47, 1984.

O’Gorman, P. and Schneider, T.: Scaling of Precipitation Extremes
over a Wide Range of Climates Simulated with an Idealized
GCM Climate, 22, 5676–5685,doi:10.1175/2009JCLI2701.1,
2009.

Oort, A. H. and Yienger, J. J.: Observed interannual variability in

the hadley circulation and its connection to enso, J. Climate, 9,
2751–2767, 1996.

Pal, J. S. and Eltahir, E. A.: Pathways relating soil moisture condi-
tions to future summer rainfall within the land-atmosphere sys-
tem, J. Climate, 15, 1227–1242, 2000.

Pal, J. S. and Eltahir, E. A.: Teleconnections of soil moisture and
rainfall during the 1993 midwest summer flood, Geophys. Res.
Lett., 29, 1865,doi:10.1029/2002GL014815, 2002.

Pal, J. S., Eltahir, E. A., and Small, E. E.: Simulation of regional-
scale water and energy budgets – representation of subgrid cloud
and precipitation processes within RegCM, J. Geophys. Res.,
105, 29579–29594,doi:10.1029/2000JD900415, 2000.

Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., and Solmon, F.: Re-
gional Climate Modeling for the Developing World: The ICTP
RegCM3 and RegCNET., B. Am. Meteorol. Soc., 88, 1395,
doi:10.1175/BAMS-88-9-1395, 2007.

Pierrehumbert, R. T.: Climate change and the Tropical Pacific: the
sleeping dragon wakes, P. Natl. Acad. Sci., 97, 1355–1358, 2000.

Philander, S. G. and Fedorov, A. V.: Role of tropics in changing the
response to Milankovitch forcing some three million years ago,
Paleoceanography, 18, 1045,doi:10.1029/2002PA000837, 2003.

Plumb, R.: On the three-dimensional propagation of stationary
waves, J. Atmos. Sci., 42, 217–229, 1985.

Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B.,
Lunt, D. J., Hunter, S. J.: A Tortonian (Late Miocene, 11.61–7.25
Ma) global vegetation reconstruction , Palaeogeogr. Palaeocl.,
300, 29–45,doi:10.1016/j.palaeo.2010.11.029, 2011.

Rauscher, S. A., Pal, J. S., and Diffenbaugh, N. S.: Future changes
in snowmelt-driven runoff timing over the western US, Geophys.
Res. Lett., 35, L16703,doi:10.1029/2008GL034424, 2008.

Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., and
Wara, M. W.: Regional climate shifts caused by gradual
global cooling in the Pliocene epoch, Nature, 429, 263–267,
doi:10.1038/nature02567, 2004.

Raymo, M. E., Grant, B., Horowitz, M., and Rau, G. H.: Mid-
Pliocene warmth: stronger greenhouse and stronger conveyor,
Mar. Micropaleontol., 27, 313–326, 1996.

Retallack, G.J.: Late Miocene climate and life on land in Ore-
gon within a context of Neogene global change, Palaeogeogr.
Palaeocl., 214, 97–123,doi:10.1016/j.palaeo.2004.07.024, 2004.

Retallack, G. J.: Cenozoic paleoclimate on land in North America.
Journal of Geology 115, 271–294,doi:10.1086/512753, 2007.

Salzmann, U., Haywood, A. M., and Lunt, D. J.: The past is a
guide to the future? Comparing Middle Pliocene vegetation with
predicted biome distributions for the twenty-first century, Philo-
sophical Transactions of the Royal Society of London, 367, 189–
204,doi:10.1098/rsta.2008.0200, 2009.

Sang-Wook Y., Jong-Seong, K., Boris, D., Min-Ho, K., Kirt-
man, B. P., and Fei-Fei, J.: El Niño in a changing climate, Nature,
461, 511–514,doi:10.1038/nature08316, 2009.

Seager, R. and Vecchi, G. A.: Greenhouse warming and the 21st
Century hydroclimate of southwestern North America, P. Natl.
Acad. Sci. USA, 21277–21282,doi:10.1073/pnas.0910856107,
2010.

Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G.,
Huang, H. P., Harnik, N., Leetmaa, A., and Lau, N. C.: Model
projections of an imminent transition to a more arid climate
in southwestern North America, Science, 316, 1181–1184,
doi:10.1126/science.1139601, 2007.

www.clim-past.net/7/723/2011/ Clim. Past, 7, 723–743, 2011

http://dx.doi.org/10.1175/2009JCLI2936.1
http://dx.doi.org/10.1029/2005RG000190
http://dx.doi.org/10.1175/JCLI3745.1
http://dx.doi.org/10.1080/08120099.2010.510578
http://dx.doi.org/10.1016/j.palaeo.2007.03.042
http://dx.doi.org/10.1029/2001PA000663
http://dx.doi.org/10.1175/2009JCLI2701.1
http://dx.doi.org/10.1029/2002GL014815
http://dx.doi.org/10.1029/2000JD900415
http://dx.doi.org/10.1175/BAMS-88-9-1395
http://dx.doi.org/10.1029/2002PA000837
http://dx.doi.org/10.1016/j.palaeo.2010.11.029
http://dx.doi.org/10.1029/2008GL034424
http://dx.doi.org/10.1038/nature02567
http://dx.doi.org/10.1016/j.palaeo.2004.07.024
http://dx.doi.org/10.1086/512753
http://dx.doi.org/10.1098/rsta.2008.0200
http://dx.doi.org/10.1038/nature08316
http://dx.doi.org/10.1073/pnas.0910856107
http://dx.doi.org/10.1126/science.1139601


742 A. Goldner et al.: Permanent El Niño teleconnections

Seneviratne, S. I., L̈uthi, D. L., Litschi, M., and Scḧar, C.: Land
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