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Abstract. CO2 and carbon cycle changes in the land, ocean
and atmosphere are investigated using the comprehensive
carbon cycle-climate model NCAR CSM1.4-carbon. Ensem-
ble simulations are forced with freshwater perturbations ap-
plied at the North Atlantic and Southern Ocean deep wa-
ter formation sites under pre-industrial climate conditions.
As a result, the Atlantic Meridional Overturning Circula-
tion reduces in each experiment to varying degrees. The
physical climate fields show changes qualitatively in agree-
ment with results documented in the literature, but there is
a clear distinction between northern and southern perturba-
tions. Changes in the physical variables, in turn, affect the
land and ocean biogeochemical cycles and cause a reduc-
tion, or an increase, in the atmospheric CO2 concentration
by up to 20 ppmv, depending on the location of the pertur-
bation. In the case of a North Atlantic perturbation, the land
biosphere reacts with a strong reduction in carbon stocks in
some tropical locations and in high northern latitudes. In
contrast, land carbon stocks tend to increase in response to a
southern perturbation. The ocean is generally a sink of car-
bon although large reorganizations occur throughout various
basins. The response of the land biosphere is strongest in
the tropical regions due to a shift of the Intertropical Con-
vergence Zone. The carbon fingerprints of this shift, either
to the south or to the north depending on where the fresh-
water is applied, can be found most clearly in South Amer-
ica. For this reason, a compilation of various paleoclimate
proxy records of Younger Dryas precipitation changes are
compared with our model results. The proxy records, in gen-
eral, show good agreement with the model’s response to a
North Atlantic freshwater perturbation.
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1 Introduction

Records from various climate proxies, especially Greenland
ice cores and sediments from the North Atlantic, suggest that
there have been large and abrupt changes in the climate dur-
ing the last glacial period (Stocker, 2000; Rahmstorf, 2002;
Clement and Peterson, 2008). Those transitions occurred on
the time scale of a few decades to as little as a few years.
The Greenland ice core from North GRIP contains 26 such
abrupt warming events with amplitudes locally of up to 16◦C
(NorthGRIP Members, 2004; Huber et al., 2006; Steffensen
et al., 2008). These are known asDansgaard-Oeschger (D-
O) events(Dansgaard et al., 1984; Oeschger et al., 1984).
There are also accompanying intense cold periods preced-
ing these events which have a corresponding signal in the
sediment cores from the northern Atlantic that are marked
by distinct layers of ice rafted debris (Heinrich, 1988; Bond
et al., 1993; Hemming, 2004). These surges of large amounts
of ice into the sea, known asHeinrich events, are associated
with some of the coldest temperatures in Greenland. More-
over, high-resolution measurements on Antarctic ice cores
indicate that each of the D-O events has a less abrupt coun-
terpart in the south (EPICA Community Members, 2006),
likely due to the operation of the bipolar seesaw (Stocker
and Johnsen, 2003). The last event in this sequence was the
Younger Dryas cold event (12.7–11.6 cal kyr BP) and its ter-
mination with an abrupt warming (D-O 0). Signatures of
those climate events have also been found in other climate
archives, such as the isotopic and pollen records in the lake
and marine sediments (Eicher et al., 1981; Ruddiman and
McIntyre, 1981; Bond et al., 1993; Yu and Eicher, 1998; Am-
mann et al., 2000; Baker et al., 2001; Prokopenko et al., 2001;
Voelker, 2002; Hughen et al., 2004; Barker et al., 2009) and
European and Asian loess records (Ding et al., 1999; Porter,
2001; Rousseau et al., 2002) with a geographic distribution
from Europe to Asia and beyond.
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Many of the characteristics of an abrupt climate change
event can be simulated by coupled climate models that are
perturbed by anomalous freshwater fluxes applied in the
North Atlantic (Bryan, 1986; Mikolajewicz, 1996; Schiller
et al., 1997; Manabe and Stouffer, 1999; Marchal et al., 1998;
Timmermann et al., 2003; Knutti et al., 2004; Zhang and
Delworth, 2005; Stocker and Marchal, 2000; Stouffer et al.,
2006), which can cause the collapse of the Atlantic Merid-
ional Overturning Circulation (AMOC).

The purpose of this paper is to determine the dependence
of the climate and carbon cycle to the freshwater perturba-
tions of different origins and identify fingerprints of these re-
sponses, by using a comprehensive atmosphere-ocean global
circulation model coupled with a land surface model. More-
over, we quantify the changes in the carbon cycle during a
collapse of the AMOC under pre-industrial conditions, con-
sidering both northern and southern possible origins. In this
respect, both ocean response and the response of the land
biosphere have been investigated with a special focus on a
region of South America, where the model simulates partic-
ularly strong responses.

The reasons behind these abrupt changes found in the pa-
leoclimate records have been surmised already in 1984 as
a result of the nonlinear nature of the ocean-climate system
(Oeschger et al., 1984). One such nonlinearity in the system
is the existence of different modes of the thermo-haline circu-
lation. At least some of the past abrupt climate changes, in-
cluding the Younger Dryas event which caused intense cool-
ing around the northern Atlantic and had climatic impacts
over the globe, are considered to be a result of such rapid
reorganizations (Boyle and Keigwin, 1987; Duplessy et al.,
1988; Broecker, 1997; Clark et al., 2002). It is also docu-
mented in the records of14C and10Be that the ocean’s ven-
tilation in the North Atlantic was slowed during these cold
periods (Hughen et al., 2000; Muscheler et al., 2000).

Any interruption in this ocean-wide circulation would
have climatic effects both on regional and global scales.
Those effects include intense cooling in the Northern Hemi-
sphere, centred around Northern Europe and Greenland
spreading to the northern Pacific (Okumura et al., 2009);
changes in the marine ecosystem in the Atlantic (Schmittner,
2005) and sea level in the North Atlantic (Levermann et al.,
2005); changes in precipitation patterns over the tropics due
to the shift of the Inter-tropical Convergence Zone (ITCZ)
(Vellinga and Wood, 2002; Dahl et al., 2005) and changes
in the El Niño-Southern Oscillation phenomenon (Timmer-
mann et al., 2005, 2007). The tropics have an important
role in the abrupt climate change events, that is globaliz-
ing the Northern Hemispheric phenomenon of the AMOC
shutdown through reorganizations in the ocean and the at-
mosphere (Chiang, 2009).

Understanding the response of the global carbon cycle to
a large freshwater input into the ocean is necessary in order
to explain the changes in the CO2 concentration in the atmo-
sphere during those abrupt events. During the intense cooling

events in Greenland and the more gradual Antarctic warm
events, atmospheric CO2 records show small but significant
variations. Antarctic warm events A1 to A4 had seen atmo-
spheric concentrations of CO2 rise by about 20 ppmv (Stauf-
fer et al., 1998; Inderm̈uhle et al., 2000), and by about the
same amount during the much shorter Younger Dryas cold
event (Monnin et al., 2001).

There are two different ideas regarding the source of this
increase, that is either the ocean or the change of vegeta-
tion cover on land. While some modelling experiments have
suggested that this atmospheric CO2 increase was due to an
oceanic release of carbon (Marchal et al., 1999; Schmittner
and Galbraith, 2008), others suggest that it was due to a land
carbon release (Köhler et al., 2005; Obata, 2007; Menviel
et al., 2008). Ocean outgassing, for instance, can explain
the increasing atmospheric CO2 levels if the cooling of the
sea surface is constrained to the high northern latitudes, the
warming in the Southern Ocean is more pronounced and the
contribution from land is not taken into account (Marchal
et al., 1999). Schmittner and Galbraith(2008) also iden-
tified the ocean as the source of the atmospheric CO2 in-
crease during abrupt climate change events. Due to the ab-
sence of a complex atmospheric component, however, their
model is probably limited in representing tropical precipita-
tion changes that have a potentially large impact on the land
biosphere.

The other possible contributor to the carbon cycle changes
during abrupt climate change events is the land biosphere.
Köhler et al.(2005) have found that under both pre-industrial
and pre-Younger Dryas conditions, atmospheric CO2 con-
centration rises due to the release of carbon from land, with
the rise in the latter being slightly less pronounced.

More recently,Obata(2007) employed a general circu-
lation model coupled with a simple land surface model to
simulate an AMOC shutdown which caused a release of car-
bon from land resulting in an atmospheric CO2 increase. In
another study, using an earth system model of intermediate
complexity (LOVECLIM), Menviel et al.(2008) suggested
that in the event of an AMOC shutdown, the ocean acted
as a carbon sink and the land as a carbon source under both
pre-industrial and LGM (Last Glacial Maximum) conditions.
Our results support their conclusions in many ways and ex-
tend it further by offering a clearer picture of the reaction
of the land biosphere. An alternative location for apply-
ing freshwater perturbations is also a feature of our study
which gives insight as to which hemisphere might have trig-
gered such events in the past. The fingerprints of each trig-
ger (northern or southern) are evident in the South Ameri-
can continent, which is the centre of action for carbon cycle
changes on land. A comparison of our model results with
paleo-records in that region is also provided.

The paper is organised as follows; in Sect. 2 a brief de-
scription of the model and the experiments is given, in Sect. 3
the results of our experiments are explained, which is fol-
lowed by the discussion and conclusions in Sect. 4.
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2 Methods

2.1 Model description

The model used in this study is a modified version of the
CSM1.4-carbon climate model developed by the National
Centre for Atmospheric Research (NCAR) in Boulder, USA.
It is a fully coupled 3-D climate model that consists of land,
ocean, atmosphere and sea ice components integrated via
a flux coupler without flux adjustments (Boville and Gent,
1999).

The CSM 1.4-carbon source code is available electron-
ically on the CCSM website (http://www.ccsm.ucar.edu/
working groups/Biogeo/csm1bgc/). The detailed descrip-
tion of the model is given byDoney et al.(2006) andFung
et al. (2005). Further information on the sensitivity of the
model to external forcing can be found in the literature (Fung
et al., 2005; Frölicher et al., 2009; Frölicher and Joos, 2010;
Steinacher et al., 2009, 2010).

The atmospheric component CCM3 of the model has
a spectral truncation resolution of approximately 3.75◦

(T31 Grid) and 18 vertical levels with 10 in the troposphere
and 8 in the stratosphere (Kiehl et al., 1998).

The ocean component is called the NCAR CSM Ocean
Model (NCOM) and has 25 vertical levels with longitudinal
resolution of 3.6◦ and latitudinal resolution between 0.8◦ to
1.8◦ (T31x3 Grid) (Gent et al., 1998). Since the original ver-
sion of CSM1.0, modifications have been made on horizontal
and vertical diffusivity and viscosity to improve the equato-
rial ocean circulation and inter-annual variability.

The sea-ice component has the same resolution as the
ocean component and the land component has the resolution
of the atmosphere component. The overall water cycle is
closed through a river runoff scheme.

In the fully coupled carbon-climate model, atmospheric
CO2 is a prognostic variable whose balance is determined by
exchange fluxes with the land and ocean (Fung et al., 2005).
The carbon-cycle in the ocean is based on the OCMIP-2 bi-
otic carbon model (Najjar et al., 1992). The main differ-
ences between the original OCMIP-2 model and this model
are that the biological source-sink term has been changed
from a restoring formulation to a prognostic formulation and
iron has been added as a limiting nutrient together with a
parametrization for the iron-cycle (Doney et al., 2006).

The land biogeochemistry in the CSM1.4-carbon model
is a combination of the NCAR Land Surface Model (LSM)
(Bonan, 1996) and the Carnegie-Ames-Stanford Ap-
proach (CASA) biogeochemical model (Randerson et al.,
1997), both of which are very well documented in the lit-
erature. Carbon is recycled in the CASA model follow-
ing the life cycles of plant functional types (PFTs) through
carbon assimilation via photosynthesis and carbon release
via mortality, decomposition and microbial respiration (Fung
et al., 2005). There are 3 soil texture types and 14 PFTs with
fractional coverage of up to four PFTs within each model

grid-box. Carbon assimilation is calculated by the LSM by
estimating stomatal conductance of CO2 and water vapour in
the leaves that are in shaded or directly lit conditions (Sellers
et al., 1996). The net primary productivity (NPP) is fixed as
50% of the gross primary productivity (GPP) and is calcu-
lated by LSM to be allocated to three alive biomass pools
of leaf, wood and roots. The allocation of NPP to these
biomass pools is climate dependent, i.e., more of the NPP is
allocated to the roots under water-limited conditions, while
under light-limited conditions leaves are the preferred choice
of biomass pool (Friedlingstein et al., 1999). In addition to
three alive biomass pools, there are 9 dead biomass pools
with leaf mortality contributing to the surface litter pool, root
mortality contributing to the soil litter pool and wood mortal-
ity contributing to the coarse woody debris pool. The rest of
the 9 dead biomass classes includes dead surface and soil mi-
crobial pools and slow and passive pools. The rate of trans-
fer between different carbon pools is climate sensitive, deter-
mined by soil temperature and soil moisture saturation.

The carbon cycle is fully coupled to the water and energy
cycles such that changes in the temperature and soil moisture
calculated by LSM affect the NPP, allocation and decompo-
sition rates and changes in the leaf area fraction calculated by
CASA affect GPP transpiration and albedo. A terrestrial CO2
fertilization effect is inherent to the model because carbon as-
similation via the Rubisco enzyme is limited by the internal
leaf CO2 concentration that is dependent on the atmospheric
CO2 concentration. Thus, the productivity increases with the
atmospheric CO2 concentration, eventually saturating at high
CO2 levels (Doney et al., 2006).

Other land surface processes that can affect atmosphere-
biosphere interactions, but are not implemented in this study
include: explicit nitrogen cycle, fires, volcanic eruptions,
dynamic vegetation change and anthropogenic land cover
change.

2.2 Experimental setup

The model used in this study was brought to steady state with
the 1000-year spin-up procedure undertaken byDoney et al.
(2006). The 1000-yr integration is nearly stable with a min-
imal drift in the deep ocean. There are known biases in this
spin-up, which include a cold bias in the surface air tem-
perature (SAT) over the continental interior in the Northern
Hemisphere, precipitation anomalies in the tropics such as
the formation of the ITCZ over the Pacific as two bands of
excess precipitation, and too much or too little precipitation
over land in some tropical regions of South America, Cen-
tral Africa and Southeastern Asia. These biases in the physi-
cal climate also lead to corresponding anomalies of NPP and
carbon storage on land that include an underestimation of
NPP in higher latitudes and an overestimation in lower lati-
tudes. Nevertheless, overall global NPP compares well with
the reconstructed pre-industrial levels of NPP. The simulated
climatologies in carbon inventory and fluxes resemble those
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determined from available observations. Atmospheric CO2
excursions are small, 4 ppm over several centuries, and no
abrupt changes are found during the integration. The spin-up
stops at the 1820 AD atmospheric CO2 levels and our exper-
iments start at this point in time. Additional runs with two
of the freshwater settings have been performed starting from
a slightly different point in time at the steady state in order
to account for the effects of short term variability in the cli-
mate system. The starting points for those additional runs are
chosen with a different ENSO state than the original runs.

The freshwater hosing experiments (Table1) are designed
to investigate the response of the ocean and climate system
to a freshening of the surface water around the key deep
water formation sites in the Northern and Southern Hemi-
spheres under pre-industrial conditions of atmospheric CO2
(278 ppm). Perturbations applied simulate a change in the
freshwater budget of the high-latitude ocean as a result of
a surge in glacial melt-water from Greenland, Antarctica, or
other pre-industrial continental glacial formations such as the
Laurentide icesheet, which is responsible for the abrupt cli-
mate events of Younger Dryas 12.7–11.6 cal kyr BP and an-
other smaller one during Holocene around 8200 yr BP (Bar-
ber et al., 1999).

It is important to note here that even though we compare
our results with paleoclimate reconstructions, the boundary
conditions used in our experiments are not glacial boundary
conditions which had significantly different levels of atmo-
spheric CO2, as well as differences in temperature, precip-
itation and biome distribution, especially in mid- and high-
latitudes. In the Discussion section, we address this issue by
comparing it to a previous study byMenviel et al.(2008).

For each perturbation the freshwater input was assumed
to be a rectangular pulse uniform over 100 years. The du-
ration of each run is 300 years including the duration of the
perturbations. The three different sites where the freshwater
is applied are the northern Atlantic Ocean between the lati-
tudes of 50◦ N and 70◦ N (including the Labrador Sea) and
the Weddell Sea and Ross Sea in the Southern Ocean.

The perturbation, which is actually a negative salinity flux
as there is no actual water volume in the parametrization of
the model, is set to correspond to a freshwater flux of 1.0 Sv
(in two of the experiments smaller perturbations of 0.5 Sv
and 0.3 Sv are applied) distributed uniformly across the area
of the perturbation. There has been no salt compensation per-
formed (Stocker et al., 2007). The amounts of the freshwater
fluxes are highly idealized and do not directly correspond to
the recorded events in the past.

3 Results

3.1 Global average

The most direct response of the climate system to a fresh-
water perturbation is a reduction in the maximum strength

Table 1. List of experiments given together with the region where
freshwater is applied and the size of the perturbation. Different
starting years for perturbations in the ensemble experiments refer
to the date in the Control and are chosen according to the ENSO
index in order to account for the effect of natural variability in the
system. In addition to the ensemble experiments, three sensitivity
simulations have been performed to investigate the effect of a dif-
ferent perturbation size and/or freshwater input region.

Experiment Freshwater Input Freshwater Flux (Sv) Start Year

Control – – 0

Ensemble Experiments

1.0 NA-1 North Atlantic 1.0 0
1.0 NA-2 ´́ 1.0 30
1.0 NA-3 ´́ 1.0 126
1.0 NA-4 ´́ 1.0 263
1.0 NA-5 ´́ 1.0 295
1.0 Ros-1 Ross Sea 1.0 0
1.0 Ros-2 ´́ 1.0 30
1.0 Ros-3 ´́ 1.0 126
1.0 Ros-4 ´́ 1.0 263
1.0 Ros-5 ´́ 1.0 295

Sensitivity Experiments

1.0 Wed Weddell Sea 1.0 0
0.3 NA North Atlantic 0.3 0
0.5 NA ´́ 0.5 0

of the North Atlantic Meridional Overturning Circulation
(Fig.1a). By the end of the perturbation, the maximum North
Atlantic MOC strength is reduced from around 24 Sv to 2 Sv
for experiment 1.0 NA and to 4 Sv and 6 Sv for experiments
0.5 NA and 0.3 NA, respectively. Along with this reduction
in the North Atlantic Deep Water, the Antarctic Bottom Wa-
ter penetrates further into the Atlantic. For the 1.0 NA experi-
ment, the circulation does not recover during our simulations,
whereas in the 0.5 NA and 0.3 NA experiments it regains its
original strength by the end of the experiments.

In response to a freshwater flux from near Antarctica
(1.0 Wed and 1.0 Ros), the strength of the North Atlantic
MOC slightly increases in the beginning, which is followed
by a reduction of smaller magnitude than in the 1.0 NA ex-
periment. The mechanism behind this is explained byStouf-
fer et al.(2007) as thedilution effect, i.e., freshwater input
from the Southern Ocean, does not stay there but is rather
transported to the other parts of the ocean. This is evidenced
by the time evolution of salinity. The result of the fresh-
water perturbation is a decrease in the global mean surface
air temperature (SAT) in all experiments (Fig.1b). Together
with the changes in the precipitation fields, these two cli-
matic variables cause the atmospheric CO2 concentration to
increase by up to 20 ppmv in the 1.0 NA experiments and to
decrease by up to 10 ppmv in the Southern Ocean experi-
ments (Fig.1c).
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Fig. 1. Time series of:(a) Maximum North Atlantic MOC strength (Sv),(b) Global Annual Mean SAT (◦C) and(c) surface atmospheric
CO2 concentration (ppmv). The green curve represents the Control; pink and magenta represent the smaller perturbations from the NA of
0.3 and 0.5 Sv, respectively, and violet represent the 1.0 Wed perturbation. The other two perturbations of 1.0 NA (black) and 1.0 Ros (red)
are given as the averages of five ensemble members and the grey and orange curves in the background are the five individual runs in each
ensemble, intended to show the spread of the anomalies. The values are 10-year box averages. The grey bar at the bottom marks the duration
of the freshwater input.

3.2 Physical response

Because temperature and precipitation changes impact the
carbon cycle, we first present changes in these two variables.

In the 1.0 NA experiment annual mean surface air temper-
ature in the Northern Atlantic region decreases drastically
(Fig. 2, left column) with reduced heat input from lower lati-
tudes, as a result of the shutdown of the MOC in the Atlantic.
Anomalies of up to−15◦C are observed over the North At-
lantic between Iceland and Scandinavia. The cooling is not
confined to the North Atlantic region but further extends to
the high latitudes over North America and Asia. In line
with the idea of inter-hemispheric redistribution of heat, the
Southern Hemisphere exhibits warm anomalies of up to 3◦C
over the Southern Pacific, Atlantic and Indian oceans and up
to 6◦C over South America. In 1.0 NA, this general pattern
stays roughly the same even 200 years after the end of the
freshwater input, except for a temporary spike in the SAT co-
inciding with the end of the perturbation. The reason for that
warming lies in the subsurface warming in the North Atlantic

as a result of the increased stratification. A resumption of the
vertical mixing, once the freshwater perturbation is switched
off, brings up water to the surface from the subsurface warm
pool which was created during the AMOC shut-down. By
that time, this subsurface warm pool is mixed with the sur-
face water and, subsequently, the atmosphere. However, this
mixing is insufficient to restart the AMOC because of the di-
luted state of the surface water. Even though there is a slight
increase in the salinity during this exchange, it is not enough
to bring it to the original values. To a lesser extent, the warm-
ing is also caused by the delayed warming in the Southern
Hemisphere, as it takes time for the warming to penetrate
towards Antarctica.

Generally, the duration and severity of the atmospheric
cooling (and warming) is dependent on the size of the fresh-
water flux. However, South America remains the region
where the strongest warming occurs in all the North Atlantic
experiments.

In the 1.0 Ros and 1.0 Wed experiments the strongest cool-
ing in surface temperatures is observed in the Southern
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Fig. 2. The left column shows the SAT anomalies (◦C) with respect to the Control by the end of the 100-year perturbation (decadal
average of the model years 97–106) for the experiments 1.0 NA (top), 1.0 Ros (middle), and 1.0 Wed (bottom). The right column shows the
precipitation anomalies (mm yr−1). Stippled areas indicate where the ensemble mean anomaly is significantly different from zero at the 67%
level (Student’s t-Test). Confidence level of the 1.0 Wed experiment results is not quantified since there is only one simulation available.

Hemisphere near Antarctica and the strongest warming is in
the Northern Hemisphere near Greenland. But in the 1.0 Ros
experiment, partial cold anomalies can also be seen in the
Northern Hemisphere high latitudes. Because of this more
widespread cooling in the 1.0 Ros experiment, the range of
global average SAT anomaly is comparable to the 1.0 NA ex-
periment, even though local anomalies are not as severe.

Overall, the regional amplitudes of the anomalies are
smaller for the Southern Ocean perturbations. This is in line
with the fact that there is a smaller reduction in the AMOC
strength, as mentioned in the previous section. This can be
due to the fact that freshwater is diluted in the larger volume
of the Southern Ocean. Thus, a larger freshwater input is
needed in order to achieve a response similar in magnitude
to the 1.0 NA experiment.

As air temperature and sea surface temperature play a
great role in the determination of the precipitation patterns,
a change in those fields also cause a change in the amount
and distribution of precipitation over the globe (Fig.2, right
column). The largest precipitation anomalies occur mainly
at low latitudes and over the oceans, where water vapour
availability is the greatest. But for the following analysis of
the land biosphere, the most important changes are in South
America and Africa. In the 1.0 NA experiment, total annual
precipitation anomalies of up to 1.6 m are recorded in those
locations.

The distribution of the most severe precipitation anoma-
lies near the equator is consistent with what is expected from
a shift of the ITCZ. Northern Atlantic perturbations cause
a southward shift of the ITCZ as a result of the cooling in
the Northern Hemisphere, whereas perturbations from the
Southern Ocean cause a northward shift. This northward
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migration of the ITCZ was also simulated in a study byMen-
viel et al.(2010). In that study, freshwater was applied uni-
formly over the Southern Ocean leading to similar changes in
the ocean circulation and deep water formation. A decrease
in the SST and SAT values in the Southern Hemisphere ac-
companied by subsurface warming in the Southern Ocean is
also one of the commonalities.

3.3 Response of the carbon cycle

3.3.1 Changes in the global carbon inventories

Climatic change, as a result of a freshwater perturbation as in
our experiments, affects the distribution of carbon in the three
main reservoirs of land, ocean and atmosphere. The freshwa-
ter perturbations from the northern deep water formation site
cause an increase in the atmospheric carbon inventory, while
the southern perturbations cause a decrease and associated
changes in each carbon inventory (Fig.3).

The response of the land carbon stocks to the three per-
turbations from the North Atlantic amounts to a decrease by
several tens of GtC. The magnitude of this decrease is pro-
portional to the strength of the freshwater perturbation. It
is also important to note here that in the control run a drift
of about−6 GtC over 300 years is recorded in the ocean.
This does not invalidate our experiments as the magnitude
is relatively small. The negative carbon drift in the ocean is

slightly masking the carbon uptake by the ocean in all exper-
iments.

Changes in the land carbon stocks immediately affect the
atmosphere, while the time required for this perturbation to
reach the much larger inventory of the ocean is longer. The
land carbon stocks decline as a response to the 1.0 NA per-
turbation causing the atmospheric CO2 to increase, which,
in time, is partially taken up by the ocean. Yet, in the time
frame of our simulations a larger than expected portion of the
carbon emitted from land remains in the atmosphere. This in-
dicates that the ocean does not behave like a passive carbon
sink, in which case it would be expected to take up a much
larger proportion of the carbon emitted to the atmosphere.
Instead, after the initial increase, total carbon in the ocean
stays quite stable until the end of the experiment. This points
to a reorganization of the ocean carbon cycle, which leads to
a new equilibrium with the atmosphere.

For the 1.0 NA experiment, emissions from the land bio-
sphere exceed 60 GtC by the end of the perturbation, and yet
only about 20 GtC are taken up by the ocean by the end of
the experiment. This amount corresponds to less than one
third of the total emitted carbon by the land biosphere. At
this time, some 30 GtC are still in the atmosphere and about
15 GtC go back to the land due to the recovery of the land
biosphere. The changes in carbon stocks scale with the size
of the freshwater perturbations.
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In the experiments with a freshwater input from Antarc-
tica, the change in the land carbon stocks is an increase.
The peak values of the increase in the land carbon pools
are about 20 GtC for experiment 1.0 Ros and about 12 GtC
for 1.0 Wed, resulting in a reduced atmospheric CO2 concen-
tration. However, these changes are not permanent and re-
turn to their original values soon after the perturbations stop.
Changes in the ocean carbon inventory are smaller, reaching
about 10 GtC by the end of the experiments and cannot be
easily distinguished from the variations in the control. It is
safe to assume that a southern perturbation on a scale com-
parable to our experiments (that is to say less intense than a
northern perturbation) creates changes in the land biosphere
that are relatively short-lived. The response of the ocean to
decreasing atmospheric CO2 concentrations would be releas-
ing carbon to balance it. Whereas, the slight increase in the
oceanic carbon instead of an expected decrease leads us to
believe that the changes in the carbon cycle in the ocean play
a role in this experiment, too. Hence, the stable behaviour of
the ocean carbon inventory during the first 140 years of the
1.0 Ros experiment is probably due to the fact that the com-
peting effects of the reorganization of the carbon cycle and
the decrease of the atmospheric CO2 concentrations due to
land uptake cancel each other out.

A similar experiment performed with the LOVECLIM cli-
mate model did not lead to any significant changes in atmo-
spheric CO2 (Menviel et al., 2010).

3.3.2 A more regional look

The response of the land biosphere shows clear latitudinal de-
pendencies accompanied by the strong latitudinal coupling of
the climate parameters, temperature and precipitation. Fig-
ure4 shows the zonal averages of the changes in the temper-
ature and precipitation fields over land, and total land carbon
stocks per latitude. Changes in the carbon stocks closely fol-
low the changes in the precipitation in lower latitudes, while
in higher latitudes temperature anomalies become more dom-
inant. This is not surprising given the fact that, as a re-
sult of an MOC shutdown, in the higher latitudes temper-
ature anomalies are larger than precipitation anomalies and
the lower latitudes experience substantial changes in precip-
itation due to the shift of the ITCZ and the exponential de-
pendence of saturated water vapour pressure to temperature.
Hence, small temperature changes translate into large differ-
ences in precipitation in the tropics where the ambient tem-
perature is higher (Bard, 2002). Nevertheless, globally, pre-
cipitation anomalies are responsible for most of the change
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in the carbon stocks on land as most of the carbon emissions
stem from the large vegetation pool of the low latitudes.

However, Fig.4 cannot capture the inhomogeneous dis-
tribution of changes within those climatic zones. Therefore,
we consider a snapshot of the distribution of the changes in
the carbon stocks both on land and in the ocean (Fig.5). In
the ocean, most of the carbon ends up in the Atlantic Ocean.
However, this does not necessarily mean an increased air-sea
gas exchange in this region. The main reason for the carbon
build-up in the Atlantic is the increased transport of DIC-rich
Antarctic Bottom Water and a smaller amount comes from
the air-sea gas exchange. The decreased primary production
makes a small negative contribution. This reorganization also
causes the reduction of total carbon in the other oceans, espe-
cially in the northern part of the Pacific and Indian Oceans.
The contribution from the air-sea gas exchange is positive
in the Pacific and Indian oceans, whereas in the Southern
Ocean outgassing prevails. The carbon stocks in the North
Pacific are influenced negatively by the increased circulation
at depth due to the onset of deep water formation in this re-
gion. The initiation of North Pacific meridional overturning
as a result of the AMOC shutdown has also been reported in
previous modelling and reconstruction studies (Mikolajew-
icz et al., 1997; Okazaki et al., 2010; Menviel et al., 2011).
This is an interesting feature which requires further investi-
gation with regards to the underlying mechanisms. However,
this is beyond the scope of the present study.

On land, the biggest changes occur in the tropical regions
of South America, Africa and southeastern Asia, with the
high latitudes contributing to anomalies smaller in magni-
tude but more widespread. As has been shown in Fig.4, the
regions near the equator exhibit large precipitation anomalies
due to the shift of the ITCZ, either positive or negative.

In order to account for the life-cycle of the land vegeta-
tion and different cycling time-scales of carbon, the model
includes various carbon pools, as mentioned in the methods
section. The biggest change occurs in the vegetation pool
(Fig. 6). Carbon inventories in the vegetation decrease in
northern latitudes and in northern South America. The re-
sponse of the soil carbon is determined by the competing in-
fluences of the input from the vegetation pool as well as the
microbial overturning in the soil, which is reduced due to the
lower temperatures. The sum of these two influences at high
latitudes, where bigger proportions of carbon are stored in
the soil, is a small increase in soil carbon. Where the temper-
ature change is positive, as is the case in parts of South Amer-
ica, the proportion of the soil carbon compared to the carbon
stored in the vegetation cover is small. In northern South
America soil carbon content amounts to about 8 kg m−2 on
average, whereas average carbon stored in the vegetation
cover is more than 20 kg m−2. Because of these factors, the
contribution of the soil carbon pool to the changes in the at-
mospheric CO2 concentration remains small.

In order to quantify the correlation between the anoma-
lies in various climatic variables and the changes in the car-
bon stocks on land, a linear regression analysis has been per-
formed. As the vegetation carbon pool is the biggest contrib-
utor to those changes and it is directly affected by the changes
in the net primary production (NPP), which in turn is deter-
mined by the climate, NPP is chosen as the variable of inter-
est for this comparison. Figure7 shows the the sensitivity of
the NPP to those variables, given here with the colour shad-
ing. This reveals the latitudinal dependency of the sensitiv-
ity of NPP, especially to temperature anomalies; there is a
positive dependence in the colder climates of high latitudes,
whereas it is negative in the warmer tropical regions. Also
shown in the figure is the correlation between NPP and three
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climatic variables, temperature, precipitation and soil mois-
ture. Soil moisture shows the highest correlation with NPP,
as it is a composite variable that is determined by both pre-
cipitation and temperature. Correlation is generally higher in
low latitudes for precipitation and soil moisture, while tem-
perature shows a better correlation in the high latitudes. Nev-
ertheless, South America stands out as a region of high cor-
relation for each of the variables mentioned, including tem-
perature.

3.3.3 South America – a more detailed analysis

In our model simulations, the contribution of the South
American continent to the global atmospheric CO2 rise (or
fall, in the case of southern perturbations) is disproportion-
ately high compared to the rest of the world. About half of
all the losses in the land carbon pool is from the northern
part of South America in the 1.0 NA experiment, as well as
a comparable fraction of the gains in the 1.0 Ros experiment
(Table2).

The net change in the total carbon stocks in the northern
part of South America (the region marked in Fig.8 top left)
is more than 40 GtC by the end of the 100-year perturba-
tion. The driving factors of this substantial change are the
increasing temperature and reduced precipitation, the com-
bined effect of which is the transformation of one of the
wettest climates on land into an arid desert-like climate un-
able to sustain the carbon-rich rain-forest type vegetation.

Precipitation decreases by about 400 mm yr−1 and the sur-
face air temperature rises by 1.4◦C on average (Fig.9). Soil

carbon also decreases significantly, but this amounts to only
half of the change in the vegetation carbon pool.

The response in the northern South America is a combina-
tion of changes in the precipitation and the air temperature,
which is influenced by the prevailing winds. Over the ocean,
where water vapour availability is primarily governed by the
sea surface temperature, a positive correlation between the
SAT and precipitation is apparent in most places. Over land,
on the other hand, wind-driven transport of moisture from
the sea is crucial. The north-easterlies that carry moist air to
northern South America are weakened (Fig.10) and, due to
the colder SST in the northern equatorial Atlantic, their mois-
ture content is reduced, which makes the region drier. This,
in turn, results in a substantial drop in the latent heat flux
(Fig. 9 last panel), most of which is due to reduced canopy
transpiration as a result of the decrease in rain-forest vegeta-
tion. Consequently, a larger portion of the heat is transferred
as sensible heat, raising the SAT. Removal of the rain-forest
type vegetation, therefore, creates a very important feedback
which further reduces the evapotranspiration and the latent
heat flux.

The dramatic change in the northern part of South Amer-
ica also persists in the 1.0 Ros experiment, though with an
opposite sign. As in the 1.0 NA experiment, a greater portion
of the total anomaly in this experiment is in the vegetation
carbon pool and it follows the changes in the climate field;
higher precipitation and lower SAT values that lead to higher
soil moisture.

The rest of the continent is also affected significantly by
the changes in the climate system. Among them are the
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western part of the continent and northeastern Brazil, both of
which respond oppositely relative to the northern part of the
continent such that, NPP increases in the 1.0 NA experiment
and decreases in the 1.0 Ros experiment. Those changes,
basically, follow the shift of the ITCZ. The opposite im-
pact (relative to the northern South America) of the ITCZ
displacement on the climate and vegetation of the northeast-
ern Brazil during the Younger Dryas (Wang et al., 2004) and
Heinrich events (Dupont et al., 2010) is also evident in the
records of the past climate.

The high-latitude regions of South America do not play
an important role, in general. Although the southern parts
of South America show a decrease in the carbon stocks in
1.0 Ros experiment due to the lower temperatures, compared
to the other regions, it does not add up to significant values.
This is simply because of the initially small size of the carbon
pool in that region.

Figures8 and 9 reveal the characteristic property of a
South American response to a reduction in the thermoha-
line circulation, which is a distinct and opposite reaction
at the two different locations of the freshwater perturbation.
1.0 NA and 1.0 Ros experiments produce opposite responses
not only in the north of the continent, but also in the rest
of the continent (central/northeastern Brazil and possibly the
western part of the continent) that form a dipole relationship
with the north. Currently, the ITCZ over South America is
located northward of the continent, and northeastern Brazil
has a semi-arid climate. During reduced AMOC, the north
end of this continental dipole responds in a positive way to
a North Atlantic perturbation while the other end responds
negatively, and vice-versa in the case of a southern pertur-
bation. This kind of a decoupling of the precipitation re-
sponse within the continent is also documented in other stud-
ies (Cruz et al., 2009).
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3.4 Comparison of South American paleoclimate
reconstructions with the model results

A comparison of several paleoclimate reconstructions of pre-
cipitation anomalies during the Younger Dryas period (Ta-
ble 3) with our model results shows a good agreement be-
tween proxy records and the 1.0 NA experiment responses
in most locations (Fig.11), which supports the robustness
of the ITCZ-shift hypothesis and the existence of a dipole
relation between the north of the continent and eastern and
southern Brazil, as suggested byWang et al.(2007). Such
a dipole seems to exist between the north and the west of
the continent too (Martin et al., 1997). This increase in pre-
cipitation in the west of the continent is also apparent in the

proxy records. Differences in the boundaries of the precipita-
tion increase and decrease exist, yet it should be kept in mind
that the ability of the model to make regional predictions is
limited by its resolution.

Overall, the difference in behaviour of the global car-
bon cycle, together with the site-specific responses in South
America give us a way to interpret the origin of the fresh-
water input. Thus, for future reconstruction studies consid-
ering the anti-phase relationship between different parts of
the continent and also the opposite responses to the origin of
the freshwater input should help us obtain a clearer picture
of what has actually happened during such events.
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4 Discussion and conclusions

In our model simulations the response of the climate and the
land biosphere to a collapse or a reduction in the AMOC can
be divided into two categories according to where the fresh-
water perturbation is applied. All the perturbations from the
North Atlantic Deep Water formation region cause similar
responses, which are opposite to those caused by the pertur-
bations from the Weddell Sea and the Ross Sea. Weddell Sea
and Ross Sea responses are also different from each other,
Ross Sea creating a much more widespread cooling and a
clearer precipitation signal. That seems to be because the
Ross Sea is a more important player in the creation of the
AABW in our model than the Weddell Sea and, therefore,
the perturbation in the Ross Sea has a stronger effect on the
global climate. We note, however, that the specific locations
of deep water formation are model dependent.

The most significant changes in precipitation occur around
the tropics near the ITCZ, whose position is sensitive to shifts
in SST. This, in turn, creates large changes in the carbon
stocks in these locations. Additionally, the fact that large
amounts of carbon are stored in low latitudes causes these
precipitation anomalies to amplify changes in carbon stocks.
Köhler et al.(2005) forced the Lund-Potsdam-Jena (LPJ)
model with an output from freshwater experiments with the
ECBILT-CLIO model. They found large changes in carbon
stocks in the boreal zone and relatively small carbon stock
changes in the tropics in contrast to our results. There are
a variety of differences between the two studies. Vegeta-
tion dynamics is explicitly simulated in the LPJ, whereas
vegetation distribution is prescribed in the NCAR CSM1.4-
carbon model. On the other hand, interactions and feed-
backs between vegetation and climate, such as those related
to albedo and the water cycle, are represented in the cou-
pled NCAR model, but not in the forced runs with LPJ. The
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Fig. 10.Wind velocity (m s−1) at 800 mbar for the Control (100-year average, top) and the anomaly at years 97–106 in 1.0NA (bottom). The
reference vector is 25 m s−1 for Control and 5 m s−1 for the 1.0NA anomaly.

atmospheric dynamics in the cost-efficient ECBILT-CLIO is
represented in a simplified manner which limits its ability to
simulate dynamics in the tropics.

While the southward shift of the ITCZ after the north-
ern perturbations is well studied with climate models and
supported by paleoclimate records (Leduc et al., 2009), we
show that the opposite is also true, that is to say, the north-
ward shift of the ITCZ in response to a southern perturbation.
Moreover, this has direct consequences for the tropical rain-
forest type of vegetation in that region. The very direction
of this shift determines the direction of the change in the at-
mospheric CO2 concentration through its effects on the land
carbon pool in the low latitudes.

The magnitude of CO2 increase during the Heinrich
events and also during the Younger Dryas event was around
20 ppmv, as recorded in ice-cores (Inderm̈uhle et al., 2000;
Monnin et al., 2001). According to our results, all of this
amplitude can be explained by the carbon release from the
land biosphere while the ocean acts as a carbon sink. The
isotopic signature of the CO2 from the ice cores also points
to a land origin for the increase during Younger Dryas (Smith
et al., 1999). Moreover, in a recent comprehensive simula-
tion of the last deglaciation, covering the Heinrich Event 1
(H1), with a coupled atmosphere-ocean general circulation
model,Liu et al. (2009) successfully reproduced the major
features of this cooling event. They found strong cooling
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Table 2. A selection of regions that have recorded considerable changes given with their land area, the limits defined and the change of
total carbon stocks in that area by the year 101 (end of the perturbation). 0.5 NA and 0.3 NA experiments are also included in the list for the
purpose of comparison.

Regions Area Size Change of Total Carbon (GtC)

(106 km2) 1.0 NA 0.5 NA 0.3 NA 1.0 Ros 1.0 Wed

Northern 13◦ W–28◦ E 2.04 −3.34 −3.35 −2.58 −0.16 −0.27
Europe 50◦ N–65◦ N

Northern 51◦ W–160◦ W 7.02 −4.58 −4.00 −2.92 −0.68 −0.40
North America 50◦ N–65◦ N

Northern 50◦ W–84◦ W 3.14 −42.86 −29.16 −13.75 15.20 10.10
South America 1◦ S–10◦ N

Africa 15◦ W–30◦ E 12.26 10.05 6.17 1.16 5.54 7.43
18◦ S–18◦ N

Southeast Asia 90◦ E–150◦ E 5.88 9.44 5.73 2.76 −0.31 −1.78
14◦ S–22◦ N

Other 119.26 −37.35 −21.27 −7.28 −5.45 −2.22

Total land 149.6 −68.64 −45.88 −22.61 14.14 12.86

Table 3. List of the paleoclimate reconstruction studies of precipitation change in and around South America during the Younger Dryas
event, as used in the compilation given in Fig.11. Reconstructed anomalies during Younger Dryas are given in comparison with our model
results from the experiment 1.0 NA. A wide range of climate proxies are used in these reconstructions including, marine sediments, lake
sediments, ice cores and speleothems. Pollen records as written in parenthesis are indicative of a change in the vegetation. These are shown
in the figure as squares to distinguish from the rest of the proxies (circles).

# Location Proxy Model Proxy Type Reference

1 Ceara Rise, Brazil wet dry Marine sediment (Ti/Ca, Fe/Ca) Arz et al.(1998)
2 Lake Titicaca, Bolivia and Peru wet wet Lake sediment Baker et al.(2001)
3 Atacama Desert, Chile wet wet Fossil rodent middens Betancourt et al.(2000)
4 La Yeguada, Panama dry dry Lake sediment (charcoal) Bush et al.(1992)
5 Laguna de Chochos, Peru dry wet Lake sediment (pollen) Bush et al.(2005)
6 Botuveŕa Cave, Brazil wet dry Speleothem Cruz et al.(2005)
7 Laguna Baja, Peru dry wet Lake sediment (pollen) Hansen and Rodbell(1995)
8 Cariaco Basin, Venezuela dry dry Marine sediment (Ti/Ca, Fe/Ca) Haug et al.(2001)
9 Cariaco Basin, Venezuela dry dry Marine sediment (bio-markers) Hughen et al.(2004)
10 NE Brazil wet dry Marine sediment Jennerjahn et al.(2004)
11 Lagoa do Caḉo, Brazil dry dry Lake sediment(pollen) Ledru et al.(2002)
12 Amazon Basin dry dry Marine sediment (planktonicδ18O) Maslin and Burns(2000)
13 Heulmo mire, Chile dry dry Lake sediment (pollen) Massaferro et al.(2009)
14 Lago Condorito, Chile dry dry Lake sediment (pollen) Moreno(2000)
15 Offshore-Lima, Peru wet wet Marine sediment Rein et al.(2005)
16 Serra dos Carajas, Brazil wet dry Lake sediment (pollen) Servant et al.(1999)
17 Salitre, Brazil dry dry Lake sediment (pollen) Servant et al.(1999)
18 Colombia dry dry Lake sediment (pollen) van’t Veer et al.(2000)
19 Lapa dos Brejões and wet wet Speleothem Wang et al.(2004)

Toca da Barriguda caves, Brazil
20 Caverna Botuverá, Brazil wet dry Speleothem Wang et al.(2007)
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Fig. 11. Compilation of different reconstructions showing precipi-
tation and vegetation changes in South America during the Younger
Dryas event (ca. 12 kyr BP). Plus (+) sign indicates dryer condi-
tions during the event and minus (−) sign wetter. Square frames
around the signs are used for vegetation proxies, whereas circle
frames are for precipitation proxies in general. The colour shad-
ing in the background shows the 10-year average annual precip-
itation anomaly by the end of the perturbation in the experiment
1.0 NA. The numbering of the studies is as follows: 1.Arz et al.
(1998), 2. Baker et al.(2001), 3. Betancourt et al.(2000), 4. Bush
et al.(1992), 5. Bush et al.(2005), 6. Cruz et al.(2005), 7. Hansen
and Rodbell(1995), 8. Haug et al.(2001), 9. Hughen et al.(2004),
10. Jennerjahn et al.(2004), 11. Ledru et al.(2002), 12. Maslin
and Burns(2000), 13.Massaferro et al.(2009), 14.Moreno(2000),
15. Rein et al.(2005), 16–17.Servant et al.(1999), 18.van’t Veer
et al.(2000), 19.Wang et al.(2004), 20.Wang et al.(2007).

in the Northern Hemisphere with a milder warming in the
south, and reduced precipitation in the Cariaco basin (north-
ern South America). The good agreement of the general pat-
terns of change indicates that a comparison of a paleoclimate
event under glacial conditions (H1) and our simulations un-
der pre-industrial conditions is reasonable.

The net atmospheric CO2 increase in our experiments is
comparable to, but more than, that ofObata(2007) with
similar initial conditions. Even though the changes in the
climatic variables and the NPP show a strong resemblance,
their magnitudes differ in some areas. These include a more
wide-spread cooling in the Northern Hemisphere in our ex-
periments, and a smaller land biosphere response to the pre-
cipitation anomalies in eastern Asia. Additionally, a larger
negative anomaly is recorded in northern part of South Amer-
ica in our study. Yet, the general effect of the ITCZ-shift is
robust in both studies. The differences may be attributed to
the more limited representation of the land biosphere in the
model used byObata(2007).

The exact amount of the contribution of the land biosphere
to this atmospheric CO2 increase, however, should be taken
with caution since the glacial vegetation cover on land was
different than that implemented here. Our experiments are
done under pre-industrial conditions with a larger vegetation

carbon pool than during the glacial times. In a previous study
(Menviel et al., 2008), in which the experiments were done
under both pre-industrial and glacial boundary conditions,
it has been shown that the differences in the amplitudes of
the individual contributions from the land and ocean carbon
pools may lead to an opposite net effect on the atmospheric
CO2, even though the nature of each contribution is quali-
tatively the same. In their study, irrespective of the initial
state, the roles of the ocean as a carbon sink and of the land
as a carbon source remain unchanged. Also, the changes on
land are very similar in both cases, that is, a reduction in the
carbon stocks in the high and mid-latitudes of the Northern
Hemisphere and in the tropics north of the equator and an
increase to the south. Yet, the emissions from land under
glacial conditions are weaker than under the pre-industrial
conditions. That is probably due to the lower moisture con-
tent of the glacial atmosphere, which leads to the dampening
effects of the ITCZ shift (Menviel et al., 2008), and relatively
large gains in primary production in some regions such as
eastern Asia and southern North America. Compared to our
experiments, the main differences are the larger increases in
carbon stocks in the Southern Hemisphere and the above-
mentioned regions in the north, which might be due to some
model specific differences as well as the initial conditions.

Nevertheless, as the patterns of the anomalies are very
similar in both studies, it is safe to assume that our results are
relevant for paleo-reconstructions as a possible indirect way
to distinguish between the sources of freshwater discharge
in abrupt cooling events, because the northern Atlantic and
Antarctic perturbations have distinct implications for the land
biosphere. Globally, the atmospheric CO2 signal is different;
an increase for the North Atlantic case and a decrease for
the Antarctic case. Regionally, the South American conti-
nent proves to be in a particularly suitable position to record
such past events, as the movement of the ITCZ – either to the
south or to the north – would create distinguishable and, at
some places, opposite responses.

In addition to what has been presented in the results sec-
tion, there are some other notable features that are observed
in response to the freshwater perturbations, such as the North
Pacific Deep Water formation, or the strengthening of South-
ern Hemispheric westerlies (Fig.10). A more detailed in-
vestigation of those responses may be undertaken in a future
study.

The results of this study have also implications for fu-
ture anthropogenic climate change which, as many modelling
studies show, is to cause a reduction in the AMOC (Meehl
et al., 2007). The effects of such a reduction can be sub-
stantial for climate and for low latitude ecosystems includ-
ing, but not limited to, the rain-forests. It is also important
to note that, the changes in the carbon cycle during such an
event would possibly contribute to the increase in the atmo-
spheric carbon and hence, operate as a weak positive feed-
back to the global warming, in addition to that associated
with outgassing from a warmer ocean (Joos et al., 1999).
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Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney,
S. C.: Imminent ocean acidification in the Arctic projected with
the NCAR global coupled carbon cycle-climate model, Biogeo-
sciences, 6, 515–533,doi:10.5194/bg-6-515-2009, 2009.
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