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Abstract. The Levant is a key region in terms of both
long-term hydroclimate dynamics and human cultural evolu-
tion. Our understanding of the regional response to glacial-
interglacial boundary conditions is limited by uncertainties
in proxy-data interpretation and the lack of long-term records
from different geographical settings.

The present paper provides a 250 ka paleoenvironmen-
tal reconstruction based on a multi-proxy approach from
northern Levant, derived from a 36 m lacustrine-palustrine
sequence cored in the small intra-mountainous karstic
Yammôuneh basin from northern Lebanon. We combined
time series of sediment properties, paleovegetation, and car-
bonate oxygen isotopes (δc), to yield a comprehensive view
of paleohydrologic-paleoclimatic fluctuations in the basin
over the two last glacial-interglacial cycles. Integration of all
available proxies shows that Interglacial maxima (early-mid
MIS 7, MIS 5.5 and early MIS 1) experienced relatively high
effective moisture, evidenced by the dominance of forested
landscapes (although with different forest types) associated
with authigenic carbonate sedimentation in a productive wa-
terbody. Synchronous and steepδc increases can be recon-
ciled with enhanced mean annual moisture when changes in
seasonality are taken into account. During Glacials periods
(MIS 2 and MIS 6), open vegetation tends to replace the
forests, favouring local erosion and detrital sedimentation.

Correspondence to:F. Gasse
(gasse@cerege.fr)

However, all proxy data reveal an overall wetting during MIS
6, while a drying trend took place during MIS4-2, leading
to extremely harsh LGM conditions possibly linked to water
storage as ice in the surrounding highlands. Over the past
250 ka, the Yammôuneh record shows an overall decrease in
local effective water, coincident with a weakening of sea-
sonal insolation contrasts linked to the decreasing amplitude
of the eccentricity cycle.

The Yammôuneh record is roughly consistent with long-
term climatic fluctuations in the northeastern Mediterranean
region (except during MIS 6). It suggests that the role of sea-
sonality on effective moisture, already highlighted for MIS
1, also explains older interglacial climate. The Yammoûneh
record shares some features with speleothem isotope records
of western Israel, while the Dead Sea basin generally evolved
in opposite directions. Changes in atmospheric circula-
tion, regional topographic patterns and site-specific hydro-
logical factors are invoked as potential causes of spatial
heterogeneities.

Further work is needed to refine the Yammoûneh chronol-
ogy, better understand its functioning through hydrological
and climate modelling, and acquire other long records from
northern Levant to disentangle the relative effects of local
versus regional factors.
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1 Introduction

The Levant (Fig. 1), which stretches along the East Mediter-
ranean seashore from Southeast Turkey to northern Egypt
and Arabia, straddles the boundary between a typical
temperate-warm Mediterranean domain and the subtropical
desertic belt. Moisture primarily comes from the eastern
Mediterranean Sea (EMS). Rainfall decreases sharply from
north to south with latitude and more sharply from west to
east due to the orographic effect of mountain ranges running
parallel to the coastline. Just eastward, a chain of deep de-
pressions, including the Dead Sea basin, forms a narrow cor-
ridor. Altitudes range from more than 3000 m a.s.l. (above
sea level) in Lebanon to 425 m b.s.l. (below sea level) along
the Dead Sea shore. This complex physiogeographic pat-
tern results in a large diversity of terrestrial environmental
conditions which vary dramatically over short distances with
latitude, altitude and continentality.

Numerous terrestrial and marine archives have revealed
huge Late Quaternary climatic-hydrological fluctuations in
the EMS domain. The northeastern Mediterranean region ex-
perienced wet-warm interglacials with intense rainfall from
the North Atlantic and cold-dry glacial environments when
ice sheets over northern Europe reached their maximal ex-
tension (e.g., Tzedakis, 2007), as showed, for example,
by pollen-inferred reconstructions of climatic parameters
(e.g., Guiot et al., 1999). Monsoonal rainfall penetrated
the subtropical desertic belt during boreal summer insola-
tion maximums (peak of Interglacials periods) while glacial
stages were hyperarid, as revealed by speleothem, lake and
groundwater archives (e.g., Gasse, 2000; Hoelzmann et al.,
2004; Fleitmann and Matter, 2009).

Between these two domains, changes in water availabil-
ity in the Levant, which might have influenced the mi-
gration of early modern humans out of Africa and the
Pleistocene-Holocene cultural dynamics of Eurasia (Bar-
Yosef, 1998; Vaks et al., 2007; Shea, 2008; Carto et al.,
2009; Frumkin et al., 2011), have been the focus of out-
standing climatic-hydrological studies (see the reviews of
Robinson et al., 2006; Enzel et al., 2008; Waldmann et al.,
2010; Frumkin et al., 2011, and references therein). The
best records come from U/Th-dated stable isotope profiles
of Israeli speleothems and reconstructed lake-level fluctua-
tions in the Dead-Sea basin (DSB). Long terrestrial pollen
records are scarce and poorly dated (e.g., Bottema and Van
Zeist, 1981; Weinstein-Evron, 1983; Weinstein-Evron et al.,
2001; Meadows, 2005). In southern Levant, sporadic events
of speleothems and travertine growth indicate episodes of en-
hanced effective precipitation in phase with periods of inten-
sified monsoon (Waldmann et al., 2010; Vaks et al., 2010).
Just northward, the DSB experienced generally high lake
water levels indicating locally high effective moisture dur-
ing glacial periods and dry conditions during Interglacials at-
tributed to changes in rainfall amount by Enzel et al. (2008).
Conversely, speleothemsδ18O profiles from western Israel
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Fig. 1. The Levant in the eastern Mediterranean region. Location of
the Yammôuneh basin and of sites cited in the text. For terrestrial
records, 1: Jeita Cave; 2: Aammish marsh; 3: Peqi’in Cave; 4: Soreq
Cave; 5: Lake Ohrid; 6: Tenaghi Philippon; 7: Lake Gölhisar;
8: Lake Konya; 9: Lake Urmia; 10: Lake Zeribar; 11: Lake Mirabad.

have suggested dry-cool glacial and wet-warm interglacial
conditions (Bar-Matthews et al., 2003). This clearly high-
lights contrasted or controversial pictures of the hydrological
evolution of the Levantine region. Furthermore, the complex
regional physiographic pattern, the scarcity of records ex-
tending beyond the Last Glacial Maximum (LGM) in north-
ern Levant and the differences in data interpretation might
explain part of the heterogeneity of the climate signals. It
is also noteworthy to underline that most of the available
records are based on a single type of proxy knowing that
none of the before cited proxy/archive are univocal when in-
terpreted as a unique climate parameter. Crucial questions
remain on the relative contributions of temperature, precipi-
tation, evaporation and seasonal changes to the response of
environmental indicators and of hydro-, eco-systems to cli-
mate changes. Multi-proxy analyses of sedimentary profiles
may help disentangle the impacts of these climatic variables.

This present paper focuses on the interpretation of a multi-
approach study, integrating sedimentological, paleobotanical
and isotopic data, of a long sedimentary sequence (250 ka).
This sub-continuous lacustrine/palustrine sequence comes
from a small, intra-mountainous karstic basin lying in the
poorly known northern Levant (Yammoûneh, Lebanon). Re-
sults already published on the sedimentary profile are briefly
summarized (chronology and sedimentary processes for the
past 250 ka; carbonate oxygen isotopes for the past 21 ka;
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Fig. 2. Sea level pressure and surface precipitation rate in the Mediterranean region in winter – January–February:(a), (b) – and summer
– June–August:(c), (d) – averaged from 1968 to 1996. Source: NCEP/NCAR Reanalysis. NCAA/ESLP Physical Sciences Division
(http://www.cdc.noaa.gov/Composites/Day/). AH: Azores High; SH: Siberian High; CL: Cyprus Low; RST: Red Sea Trough; PT: Persian
Trough.

Develle et al., 2010, 2011). Attention is paid here to new
data: pollen-inferred paleovegetation and biogenic carbonate
δ18O data of the whole sequence. Our main aim is to yield
a comprehensive view of the long-term environmental fluc-
tuations in the Yammôuneh basin over the two last glacial-
interglacial cycles by integrating the different proxies. Our
record is then replaced in its regional context. The paper is
underlaid by the following questions:

1. What are the relationships between individual proxies?

2. What are the main environmental characteristics of the
Yammôuneh basin during full glacial and interglacial
peaks?

3. How does this record from northern Lebanon compare
with other long-term records from central and southern
Levant and from northeastern Mediterranean?

2 Modern setting

2.1 Main physiogeographic and climate features of the
Levant region

The steep topography of the Levant is related to the active
Levant Fault System (Le Pichon and Gaulier, 1988) that runs
from the NW tip of the Red Sea to SE Turkey through the Ar-
ava Valley, the Dead Sea-Jordan Valley-Lake Tiberias-Hula
basins to the Ghab basin in Syria (Fig. 1). East of narrow
coastal plains, the SSW-NNE mountain ranges culminate at
3083 m a.s.l. in Mount Lebanon at only 20–25 km from the
sea shore, while the Dead Sea basin represents the lowest
spot of the Earth. Orography and distance from the seashore
strongly modulate the local rainfall patterns.

The Levant experiences a Mediterranean climate with wet
cool winter and warm dry summer, primarily controlled by
the Mediterranean cyclonic system intimately tied to the
North Alantic system. Winter precipitation is generated by
the cyclonic activity over the Sea (Sharon and Kutiel, 1986),
when the Siberian anticyclone is reinforced over SW Asia
and the Azores High extends over North Africa and Spain
(Fig. 2a and b). The Mediterranean cyclogenesis is in-
fluenced by the surrounding regions and possibly by long
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distance teleconnections, e.g., the North Atlantic Oscillation
(NAO) (Ziv et al., 2006, 2010; Dayan et al., 2008; Raible et
al., 2010). Cyclones, either generated in the Mediterranean
basin or penetrating from the North Atlantic, are steered by
the mid-latitude westerlies and tend to propagate eastward
along the northern coast of the Mediterranean until reach-
ing the Levant region. When propagating over the relatively
warm seawater, air masses become saturated by moisture. In
the EMS, polar intrusions create a deep upper-level trough
accompanied by low-level cyclogenesis. The strength and
position of cyclones formed or reactivated in the EMS (the
Cyprus Lows, Fig. 2a) largely control the winter rainfall
temporal and spatial variability in the Levant (Enzel et al.,
2003; Ziv et al., 2006). In summer (Fig. 2c and d), when the
Siberian anticyclone is attenuated and the Azores anticyclone
and the mid-latitude westerly belt are shifted northward, the
Levantine region is warm and dry. The summer low-pressure
systems developed southward and eastward (the Red Sea
Trough and the Persian Trough) are generally hot and dry
(Kahana et al., 2002).

Several mechanisms indirectly link the Levant to subtrop-
ical and tropical climates. Very dry summer conditions over
the eastern Mediterranean region and northeastern Sahara are
partly due to the subsidence of easterly airflows linked to the
Indian monsoon activity (Rodwell and Hopkins, 1996; Ziv et
al., 2004). Most of the occasional rainfall events occurring
in the Negev desert during spring and autumn are in conjunc-
tion with an active Red Sea Trough (Kahana et al., 2002).
Heavy dust storms of North African origin are frequent from
December to April. Saharan dust influx to the region has
often been attributed to the thermal lows of the Sharav cy-
clones formed over Libya and Egypt (Alpert and Ziv, 1989)
and the Red Sea Trough, but the cold Cyprus Lows also play
a major role in attracting Saharan dust plumes (Dayan et al.,
2008). The Nile River discharge, which depends on tropical
rainfall in East Africa, affects the EMS hydrothermal dynam-
ics (Rossignol-Strick and Paterne, 1999) and, thus, sea-land
interactions.

2.2 The Yammôuneh basin in Lebanon

The Yammôuneh basin (34.06◦ N–34.09◦ N, 36.0◦ E–
36.03◦ E, 1360 m a.s.l.), 6 km long, 2 km wide, lies at
approximately 37 km from the seashore on the eastern flank
of Mount Lebanon (Fig. 3). It was occupied in its southern
part by a seasonal lake from at least Roman times to the
1930s when it was drained for irrigation of the Bakka plain.
It is today entirely cultivated. No paleo-shoreline was
observed, suggesting that the paleolake never reached high
levels during a period long enough to leave geomorphic
evidence. The basin is a SSW-NNE depression of tectonic
origin along the Yammôuneh Fault, a segment of the Levant
Fault System. It was downfaulted through thick sub-tabular
sequence of intensively karstified Cenomanian dolomitic
limestones (Dubertret, 1975; Hakim, 1985). The strike-slip

Fig. 3. The Yammôuneh basin in Lebanon.(a) Satellite view of
Lebanon in winter (January 2003), main morphological structures.
(b) The Yammôuneh basin with location of the sedimentary pro-
files. Dashed line: surface trace of the Yammoûneh Fault. Arrows
schematize the groundwater circulation, from the Mnaı̈tra Plateau
which provides the main water inflow to the basin via karstic springs
emerging along the western edge of the basin, and infiltration along
the eastern edge.

Yammôuneh Fault is active (slip rate: 3.8–6.4 mm yr−1),
but vertical movements likely remained negligible during
the Late Quaternary (Daëron et al., 2004, 2007; A. R. Elias,
personal communication, 2009). The Yammoûneh basin
is limited by the high Mnäıtra plateau (2100 m a.s.l.) that
abruptly rises westward, and by the gently sloping hills
(Jabal el-Qalaa, 1500 m a.s.l.) which separates the basin and
the large Bakka plain syncline to the East.

In Lebanon (Service Ḿet́eorologique du Liban, 1977),
Mean Annual Precipitation (MAP) ranges from 700–
1000 mm along the coast,>1400 mm in Mount Lebanon,
to 400 mm in the Bakka plain and<200 mm in the NE.
Above 2000 m a.s.l., precipitation is essentially niveous. At
Yammôuneh, MAP reaches 900–1000 mm, as snow falls
over about 30 days yr−1. The wet-cold season (November–
March) culminates in January, while precipitation is almost
nil from June to August. Continentality is marked by large
diurnal and seasonal variations in temperature and air humid-
ity. Mean Annual Temperature (MAT) is about 15◦C but
freezing occurs over 3 months yr−1 and temperature maxi-
mum largely exceeds 30◦C during the warmest month (July).

The strong rainfall and temperature gradients in Lebanon
result in vegetation zones ranging from forest and woodland
to open steppe (Abi-Saleh and Safi, 1988). The climatic char-
acteristics and typical plant taxa of vegetation zones are sum-
marized in Table 1. The western slopes of Mount Lebanon
present a transition, with increasing elevation, from suc-
cessive Mediterranean belts with very warm to more tem-
perate climate, a mountain and a subalpine belts charac-
terised by trees of cool-wet conifer forests up to the tree-
line. Due to the gradual change to continental Mediterranean
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Table 1. Distribution of the modern vegetation belts in the Yammoûneh area as a function of location, altitude, mean annual precipitation
(MAP) and mean annual temperature (MAT). After Abi-Saleh and Safi (1988).

Altitude MAP MAT Characteristic plant taxa
(m a.s.l.) (mm yr−1) (T ◦C)

Western flank of Mt Lebanon

Lower Mediterranean belt 0–500 >600 20 Ceratonia silica, Pistacia lentiscus, Myrtus communis

P
in

u
ss

pp
.

Middle Mediterranean belt 500–1000 800–1000 16–18 Evergreen oakQuercus calliprinos, Pinus brutia, P. pinea
Upper Mediterranean belt 1000–1500>900–1000 15–16 Lower part:Q. calliprinos

Upwards: deciduous oaks:
Q. infectoria, Q. cerris

Mountain belt 1500–2000 >1000 5–15 Cedrus libani, Abies cilicica
Subalpine belt >2000 >1200 0–5 Juniperus excelsa up to the tree line

Eastern flank of Mt Lebanon

900–1800 600–800 16–18 Q. calliprinos, Q. infectoria
>1800 >800 <16 Juniperus excelsa

Bakka plain

900–1100 200–600 15 Abundant steppe elements
Hammada eigii Artemisia herba alba Salsola villosa
Noaea mucronata

and sub-desertic conditions, the eastern slopes receive less
rainfall than corresponding altitudes in west Lebanon. Only
Mediterranean oaks, and junipers at high elevation, are
present. The much drier Bakka plain is open to influx of
steppe elements from the adjacent Irano-Turanian territory.
Human impact has considerably deteriorated and modified
the natural ecosystems since millenia.

Hydrologically, the Yammôuneh basin primarily depends
on precipitation over the western highlands. Direct precip-
itation on the paleolake surface (<1.2× 106 m3 yr−1) and
on the small surface watershed (∼105 km2; Develle et al.,
2011) is negligible compared to the important water inflow
brought by permanent karstic springs (35–70× 106 m3 yr−1;
Besançon, 1968; Hakim, 1985). Beneath the Mnaı̈tra
plateau, subterranean karstic networks collect snowmelt wa-
ter feeding a dozen springs along the western edge of the
basin. The cool karstic spring water exhibits an isotopic com-
position (mean:δ18O =∼ −8.9 ‰, δD =∼ −50.8 ‰) very
close to that of winter rainfall (∼90 % of MAP) in the wa-
tershed (Develle et al., 2010), without significant impact
of evaporation or sublimation before infiltration (Aouad et
al., 2004). Studies of nearby karstic aquifer systems show
that groundwater residence time is negligible on the geo-
logical time-scale (from 1 season to 2–3 years; Aouad et
al., 2005; El Hakim, 2005). In the basin floor, sinuous
channels drain spring and runoff water from the west into
karstic sinkholes along the eastern border. The karstified,
intensively fissured and faulted substrate, is highly perme-
able. Hence, the basin is hydrologically open with rapid

throughflow. Water residence time and relative evaporation
losses may have, however, increased when a permanent lake
occupied the basin.

3 Stratigraphy, chronology and sedimentary processes

Descriptions of stratigraphical units, analytical methods ap-
plied for chronology and sedimentology, and discussions on
result interpretations are detailed in Develle (2010) and Dev-
elle et al. (2010, 2011). Main results are summarized below.

3.1 Stratigraphy

The upper 36 m of the sediment core (YAM-04C’, 73 m) col-
lected in 2004 from the central part of the Yammoûneh pa-
leolake (Fig. 3) has revealed a sub-continuous accumulation
of lacustrine-palustrine sediments. A very simplified strati-
graphic log and pictures of some core sections illustrate the
variety of lithofacies (Fig. 4). As the uppermost Unit I is
truncated in the core, some data were derived from nearby
trenches (TR01, TR02, Fig. 3) which contain the whole
Holocene period.

The profile shows two main types of sediments, although
transitions between stratigraphic units are often gradual:

1. Pale intervals, a few metres thick, dominated by car-
bonates. They consist of whitish powdery silt or very
fine sand (Units I, VI and IX; Fig. 4e) rich in calcified
remains of aquatic organisms (gastropods, ostracods,
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Fig. 4. Stratigraphy and lithofacies of the upper 36 m of core Yam 04 C’.(a) Simplified stratigraphic log. Position of gaps in core recovery
and of sediment disturbances on the left; position of chronological markers on the right.(b) to (g) Pictures of some core sections illustrating
the facies diversity.(b) Transition from reddish, oxidized silt of Unit II to olive gray silty clay of Unit III.(c) Pale greenish marl.(d) Typical
banded greenish marl.(e)Typical interglacial calcitic powdery deposits.(f) Brownish, coarsely banded silty clay.(g) Peaty marl of Unit X.

charophytes, fish otoliths ...), or of light gray to light
brown marl (Unit IV and part of Unit IX; Fig. 4c).

2. Thick accumulations of intensively coloured silty clay.
This siliciclastic material is almost devoid of shells (be-
sides ostracods). The ocher to reddish brown Unit II
(Fig. 4b) shows numerous strongly oxidized, indurated
layers and beds of coarse limestone gravels and con-
cretions. Units III, V, VII and VIII consist of plastic
olive gray (Fig. 4d) or grayish brown silty clay (Fig. 4f)
often organised in bands 2–20 cm thick. Several lay-
ers, 3–8 cm thick, suggest paleosoils; a few centimetric

intervals are laminated; lighter marly intervals are in-
terbedded in these units.

The lowest carbonate-rich Unit X (Fig. 4g) differs from oth-
ers by its very dark brownish to black colour and its peaty
feature, rich in aquatic plant fragments, beds of fish otoliths
and well-preserved mollusc shells. Below 3650 cm, it over-
lays greenish clays resembling Units III or VIII.

All encountered remains of aquatic organisms are typical
of fresh, shallow or even ephemeral waterbodies.

Analyses performed on the core for environmental recon-
struction are listed in Table 2.
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Table 2. Performed analyses on the upper 36 m of core YAM04-C’. Variables included in the PCAPM analysis (Fig. 8) are numbered in
column 2.

Observations and Variables Variable Nb of
Analyses included analysed

in PCA samples

Main lithofacies types 1 Whitish powdery, sandy carbonate 1 continous
Pale gray to pale brown marl 2 continous
Yellowish brown to reddish brown silt 3 continous
Olive gray silty clay 4 continous
Brownish gray silty clay 5 continous
Dark brown, peaty or paleosoil-like levels 6 continous

Sediment composition 2 XRD mineralgy (% weight dry sediment) Calcite (+ Aragonite: 0–3 %) 160
3 Quartz 160
4 K-Feldspaths + Plagioclases 160
5 Dolomite 160
6 Clay minerals 160 S

am
e

sa
m

pl
es

7 TOM (% weight dry sediment) 160
8 Total magnetic susceptibility (10−5 SI) 2417
9 XRF Element relative content Ca 2109

10 Si 2109
11 Al 2109
12 Fe 2109
13 Ti 2109
14 K 2109

Pollen analysis 15 Steppic-desertic landscape Artemisia + Chenopodiacea + Cichoroideae 225
16 Middle Mediterranean zone Pinus + evergreen Quercus 225
17 Upper Mediterranean zone Deciduous Quercus 225
18 Montane belt Cedrus + Abies 225
19 Subalpine zone Juniperus 225
20 Aquatic + Hydrophilous (% total pollen) Myrioplyllus, Potamogeton, Typha, 225

Cyperaceae, Ranunculus

Carbonate oxygen isotope 21δc derived from ostracodδ18O values 190
Microscopic observations Smear slides 250

Scanning electron microscope 52Same

Grain size analysis 52 samples

3.2 Chronological framework

The age model of core YAM-04C’ was based on the com-
bination of radiometric dating and magnetic chronostratigra-
phy. The position of dated levels along the profile is showed
in Fig. 4a.

The top of the sequence was14C-dated by Accelerator
Mass Spectrometry (AMS) on partly carbonized wood frag-
ments (11 levels from 0–21 ka; 0–250 cm). A14C age at
535 cm (47± 4 ka) should be regarded with caution as it
reaches the limit of the14C method applicability. The14C
ages were calibrated using IntCal 09 (Reimer et al., 2009).
One level of almost pure authigenic calcite has provided
a reliable U/Th age of 124± 17 ka at 1770 cm. Four ge-
omagnetic events (1 to 4; Fig. 4a) were identified, based
on changes in inclination and relative paleointensity of the
Earth magnetic field. The very well identified Event 2 (1590–
1660 cm) is the Blake event (∼114–120 ka). Events 1 and 3
likely represent the Laschamp (41± 2 ka, 340–370 cm, peak-
ing at 361 cm) and the Iceland Basin event (∼190–194 ka;

2735 cm), respectively. Event 4 (3420–3490 cm) coincides
either with the Pringle Falls event (∼211 ka) or the Ma-
maku event (230± 12 ka). An approximate age of 230
(+12/−20) ka was assigned at 3460 cm.

The age-depth relationships were estimated by linear in-
terpolation between the above-mentioned age control points,
and Units were tentatively related to the stacked and
orbitally-tuned Marine Isotope Stages (MIS; Martinson et
al., 1987). We are aware that our age model only provides
an approximate time scale, due to the low number of dated
points and their age uncertainty, changes in sedimentation
rate and possible sedimentation hiatuses. Nevertheless,14C
ages clearly show that Unit I is of Holocene age (MIS 1).
According to the U/Th date and the depth position of the ge-
omagnetic Blake event, Unit VI is assigned with confidence
to the last Interglacial peak (MIS 5.5). If the age of geomag-
netic event 4 is correct, Unit IX represents MIS 7, a hypothe-
sis supported by its lithofacies analogies with Units I and VI
(Fig. 4a).
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3.3 Sedimentary processes

Major sedimentary results are illustrated in Fig. 5.
Sedimentation has been primarily controlled by: (i) in situ

lacustrine carbonate production, (ii) erosion of the surface
watershed, and (iii) eolian inputs.

The whitish Units I, VI and IX coincide with interglacial
periods (MIS 7, MIS 5.5, MIS 1). They consist mainly of cal-
cite precipitated into the waterbody (authigenic rhomboedric
crystals and biogenic fragments). Lacustrine calcite pro-
duction was enhanced by high temperature and evaporation,
strong biological activity in the lake, and high Ca2+ inputs
suggesting heavy karstic spring discharge and active circula-
tion in the Mnäıtra karstic system. Low magnetic suscepti-
bility values and relatively low contents of Fe, Ti and K and
Total Organic Matter (TOM) were attributed to reduced local
erosion and dilution of detrital particles by authigenic car-
bonates. The quasi-absence of runoff-derived material and
high carbonate content may suggest very low rainfall. How-
ever, the synchrony of carbonate peaks with the abundance of
lacustrine organisms and with the development of arboreal
vegetation (see Sect. 4.1) reducing erosion processes rather

reflects high water availability in both the karstic recharge
zone and the paleolake surroundings.

Coloured clayey silts (Units III, V, VII, VIII) are mainly
composed of eolian and local terrigenous material. Litho-
facies which include paleosoils and the scarcity of aquatic
organisms (mainly ostracod taxa surviving ephemeral con-
ditions) reflect shallow, unstable palustral environments.
Quartz, K-feldspars and plagioclases, almost absent in the
local bedrock, are obviously allochtonous and windblown
from remote sources. Quartz (up to 60 %) largely dominate
the non-carbonated fraction, reflecting a high contribution of
eolian dust to sedimentation, either from direct falls or re-
worked from the basin slopes. Calcite, present throughout,
generally occurs in aggregates resembling those found in wa-
tershed soils or as limestone gravels, indicating its detrital
origin. Dolomite is also probably eroded from the bedrock.
Clay minerals (smectite mainly, kaolinite, traces of illite) are
attributed to weathering and runoff in the basin, implying at
least occasional heavy floods. Elements other than Ca prevail
and are supported by minerals of detrital origin responsible
for high magnetic susceptibility values.
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Marls (Unit IV and IX) and pale marly layers interbedded
in silty clay are intermediate between these two typical sed-
iment types. The peaty marl of Unit X, rich in TOM and
biogenic rests, indicates the occurrence of a productive lake
at the core site.

4 New data from the Yammôuneh sequence

4.1 The pollen record

Most of the Yammôuneh sequence contains pollen grains, al-
though its top (<8.3 ka) is sterile possibly due to oxidation
after the lake drainage. Vegetation patterns inferred from the
pollen record were based on 225 samples prepared for pollen
analysis using standard palynological procedures. An aver-
age of 465 pollen grains was counted in each sample. A total
of 69 pollen taxa were identified, using reference collections
and Reille’s (1992) pollen atlas.

Pollen results are given as a percentage diagram of se-
lected taxa (Fig. 6). Aquatic (Myriophyllum mainly) and
marsh (Cyperaceae dominant) plant pollen, indicative of per-
manent lacustrine conditions or swamps around the core site,
respectively, are expressed in percents of the total pollen
sum. Both reach their highest percentages in the lower half
of the core and then tend to disappear, suggesting drier local
conditions above 1800 cm.

Terrestrial pollen taxa are expressed in percents of a basic
sum excluding pollen from aquatic and marsh plant pollen.
See Table 1 for the modern distribution of major taxa. Main
tree pollen include: (1)Juniperusand Cedrus-Abiesrep-
resentative of cool conifer forests from the subalpine and
mountain belts, respectively. Note thatCedrusand Abies,
which require high water availability, do not extend today
east of Mount Lebanon; (2) deciduousQuercus, common in
the temperate and warm-mixed forests of the upper Mediter-
ranean belt;(3)Pinus, a rather ubiquitous taxa growing in
all Mediterranean vegetation belts; (4) evergreenQuercus,
a xerophytic Mediterranean tree which spreads in the lower
Mediterranean belt and at moderate elevation east of Mount
Lebanon; (5)Artemisiaand Chenopodiaceae, the most sig-
nificant herbaceous taxa which reflect the development of
steppic landscapes; (6) Cichorioideae pollen, which can ac-
count for more than 50 % of the terrestrial pollen above
400 cm. Strong representation of this pollen type may re-
sult from taphonomic processes and poor preservation con-
ditions (Bottema, 1975), i.e., large water table fluctuations
and frequent emersions, as suggested by strongly oxidized
and indurated layers in the sedimentary Unit II, indicating
unstable but generally dry conditions. This pollen type is
present is various amounts throughout the sequence and was
not excluded from the pollen calculations.
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The total percentage of tree pollen (AP %) provides a
broad view of the alternance between forested and steppic
landscapes, mainly reflecting changes from moist to drier
conditions although very cold climate might have limited
the tree growth. The few available regional modern pollen
spectra prevent any application of a pollen-based transfer
function to quantify changes in rainfall amount or in tem-
perature. Terrestrial pollen data were converted into Plant
Functional Types (PFTs) and a pollen-derived biomization
of the PFTs was elaborated using the appropriate meth-
ods for Mediterranean regions (Tarasov et al., 1998). Five
pollen-derived biomes (PdBs; scores not shown) were in-
ferred from the Yammôuneh dataset: (1) cool conifer for-
est; (2) temperate deciduous forest; (3) warm mixed forest;
(4) xerophytic woods/shrubs; (5) steppe. Hot and cool steppe
biomes were not separated, because of the low representa-
tion of discriminating pollen taxa in the spectra. When affin-
ity score differences between biomes are low, the use of the
highest-scoring PdB alone may obscure significant vegeta-
tion changes. Therefore, a down-core ordination of samples
taking into account major changes in all the PdB-scores was
obtained by a principal component analysis (PCAB). The
general pattern of the PCAB scores is not affected when
excluding Asteraceae subfam. Cichorioideae from the ba-
sic sum. PCAB-Axis 1 (77.98 % of total inertia) is posi-
tively loaded by all forested biomes (PdBs 1 to 4; pollen taxa
groups 1 to 4), and negatively by steppe (PdB-5, pollen taxa
group 5). Intervals of highest PCAB-Axis 1 correspond to
periods of best development of arboreal vegetation, whereas
its lowest values indicate the dominance of open vegetation
types. PCAB-Axis 1 closely resembles the AP % curve, but
highlights the development of tree elements below 1800 cm.

Below 3670 cm (>240 ka?), the dominance of steppe
(PdB 5) punctuated by stands of pines may represent the
MIS 8–MIS 7 transition. The interval 3670–3320 cm (∼240–
220 ka?, early-mid MIS 7) has the highest PCAB-Axis 1.
PdB-1 dominated over the basin slopes, as showed by the
highestJuniperusfrequencies associated withCedrus. High-
est aquatic pollen frequencies indicate permanent lacustrine
conditions, allowing the development of riparian deciduous
oak groves (deciduousQuercus). This indicates high Precipi-
tation (P ) and low Evaporation (E) favoured by cool temper-
atures. From 3320 to 2970 cm (late MIS 7?) the increase in
temperate Mediterranean trees and steppic taxa, responsible
for intermediate PCAB-Axis 1 values, reflects lower effective
moisture partly explained by higher temperature as suggested
by the falling representation ofJuniperus.

The interval 2970–1870 cm, assigned to MIS 6 (although
its base is∼10 ka too old in our age model), is first char-
acterised by a strong dominance of steppe (PdB 5), and the
almost disappearance of aquatic and palustral pollen. This
suggests very dry conditions, although the opening of the
landscape may partly result from the lowering of the upper
tree line under glacial cooling. Above 2550 cm (180 ka?),
a step-wise increase in PCAB-Axis 1 depicts a progressive

development of arboreal vegetation. High affinities to the
PdB-1 loaded byJuniperus, CedrusandAbiespoint to cool
and wet conditions, as confirmed by small peaks of aquatic
pollen.

MIS 5.5 (∼1850–1680 cm;∼130–120 ka) begins with
a warming-induced abrupt fall ofJuniperus and rise of
both Quercustypes. Then, temperateQuercusare rapidly
replaced by a typical Mediterranean vegetation. PCAB-
Axis 1 become very high whenPinusand evergreenQuercus
reached their maximum percentages, and aquatic/palustral
plant pollen disappeared. This vegetation does not lend sup-
port to aridity in the Yammôuneh basin, but for high sea-
sonal contrasts. The largest population of evergreenQuer-
cus suggests very dry summers, which increase the com-
petitive advantage of Mediterranean sclerophyllous trees (Di
Castri, 1981). After this last interglacial optimum, between
1680 and 960 cm, a sharp increase in steppic elements is in-
terrupted by two positive shifts in temperate/Mediterranean
tree pollen frequencies, concomitant with small peaks of
palustral plant pollen. These shifts, registered at 1520–
1480 cm (∼105 ka) and 1015–960 cm (∼80–73 ka), are as-
signed to MIS 5.3 and MIS 5.1, respectively.

From 960 to 220 cm (∼73–16 ka; MIS 4-3-2), the steppe
development clearly depicts an overall drying trend from the
beginning of MIS 4. This trend is interrupted by short, hu-
mid episodes revealed by positive shifts of PCAB-Axis 1 at
820–750 cm and 500–410 cm (∼65–60 and 45–40 ka, respec-
tively, in our time scale). The lowest PCAB-Axis 1 values of
the whole record are reached at 240–220 cm (∼21–16 ka).
This demonstrates that temperature and/or moisture condi-
tions in the Yammouneh basin, together with very low CO2
atmospheric concentration, were not compatible with the de-
velopment of an arboreal vegetation at the end of the LGM.

The last forested stage is recorded by a sharp increase of
deciduousQuercus(PdB2) starting at 170 cm (13 ka), and
culminated from 11 to 9 ka. It indicates the re-establishment
of warmer/wetter conditions during the early Holocene.

Major points arising from the pollen study are the
following:

– Arboreal vegetation dominates during interglacial op-
timums (early-mid MIS 7, MIS 5.5 and early MIS 1),
reflecting relatively high effective moisture. Vegetation
dynamics suggest very wet and cool conditions during
MIS 7, strong thermal and hydrological seasonal con-
trasts during MIS 5.5, and wet temperate conditions dur-
ing the early Holocene.

– The driest intervals appear at the end of the LGM and
during early MIS 6.

– From 240 ka onwards, each successive interglacial
PCAB-Axis 1 peak shows a decreasing amplitude. The
same pattern holds true for glacial stages, showing a
lower local moisture during the last glacial period than
during MIS 6. The overall variation in the pollen record,
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including aquatic pollen, suggests a progressive decline
in effective moisture as a result of the combined effect
of temperature, precipitation andpCO2 fluctuations in
the Yammôuneh basin.

4.2 The carbonate oxygen isotope record

The oxygen isotope composition of continental carbonates
reflects complex interactions between several climatic vari-
ables and site-specific factors. In addition, in the case of
biogenic carbonates, species-dependent factors (the so-called
“vital effect” and auto-ecology) should be considered. We
refer to Develle et al. (2010) and reference therein for ana-
lytical procedures, theoretical backgrounds and for the inter-
pretation of the past 21 ka isotope record. Authigenic car-
bonateδ18O values (δc) are primarily controlled by water
temperature and isotopic composition of the ambient water,
here lake water (δL). TheδL values are governed by the iso-
topic composition of the water inflow (δin) and of other terms
of the lake water balance (inflow− [Evaporation + outflow]).
The termδin depends on the precipitationδ18O values (δP)
and the P-E balance in the lake catchment. TheδP val-
ues are in turn controlled by the isotopic composition of the
moisture source, here the EMS surface water (δsw), storm-
track trajectories and the negative/positive relationships with
local rainfall amount/ground-temperature. In central Lev-
ant, Frumkin et al. (1999), Bar-Matthews et al. (2003) and
Kolodny et al. (2005) have showed that long-termδ18O fluc-
tuations in inland carbonates are primarily driven by the
glacial/interglacial variations in the isotopic composition of
the EMS surface water. The rainfall amount probably rep-
resents the second order factor (Frumkin et al., 2011). Bar-
Matthews et al. (2003) and Bar-Matthews and Ayalon (2004)
took the temperature and rainfall amount into account to in-
terpret low interglacial speleothemδ18O values.

The carbonateδ18O record from Yammôuneh was ob-
tained from ostracod valves present and well preserved in
most samples. Analyses were performed on the 4 most
abundant taxa (Ilyocypris inermis, I. gibba, Candona ne-
glecta in Unit I only, andFabaeformiscandona balatonica
only present below 1800 cm; none of them occurs in suffi-
cient number in all samples for analyses). Interspecificδ18O
differences were determined, all values were normalized to
the most widespread taxon (I. inermis) and corrected for the
vital effect (∼2.4 ‰) estimated for this species (Develle et
al., 2010). This correction provides values coeval with that
of authigenic calcite (δc) which would have precipitated at
equilibrium in the same ambient water. Along the entire
profile, δc values fluctuate by 5.1 ‰, between−12.6 and
−7.5 ‰ (Fig. 7a). The profile is characterised byδc values
generally lower before MIS 5.5, a reverseδc trend between
the penultimate and the last glacial periods, and very sharp
δc rises during interglacial peaks.

For the past∼21 ka (Develle et al., 2010),δL was first esti-
mated by correctingδc for lake water temperature (assuming

that the water temperature of the shallow Yammoûneh wa-
terbody was in equilibrium with air/ground temperature), us-
ing the few available data on regional paleotemperatures.
Second, isotopic composition of the moisture source (δsw)
was derived from planktonic foraminifera (G. ruber) δ18O
records (δforam) in a Levantine core (MD84-632, Fig. 1; Es-
salami et al., 2007), corrected for surface water temperature
using alkenone-based SST (SSTalk) records from the same
core. Thirdly, the difference118O =δL −δsw was calculated
in order to discuss the impact of the “source effect” on the
Yammôuneh isotopic signal, adopting an approach close to
that of Almogi-Labin et al. (2009). Develle et al. (2010) con-
cluded that both the “source effect”, amplified by increase in-
land rainfall during the early Holocene, and the large glacial-
interglacial temperature changes have been important drivers
on δ18O fluctuations. Changes in storm-track trajectories
may have also contributed to the signal.

The same approach is attempted here to interpret ma-
jor glacial/interglacialδc changes over the past 250 ka, but
should be regarded with great caution because of large un-
certainties on the timing and marine data (Fig. 7b–d) used to
reconstructδsw andδL .

4.2.1 Temperature effects

In the Levant, inland quantitative paleotemperature estimates
prior to the LGM are limited to punctual data inferred from
isotope geochemistry of Soreq Cave speleothems between
140 ka and present (McGarry al., 2004, Fig. 7b; Affeq et al.,
2008). EMS SSTalk can serve as a first-order approximation
of land paleotemperatures for Levantine inland temperature
(Bar-Matthews et al., 2003), at least at Soreq. SSTalk records
from the eastern EMS either do not extent over the last 250 ka
(Essalami et al., 2007; Castañeda et al., 2010) or are dis-
continuous (core ODP 967; Emeis et al., 2003). We used
the SSTalk record of core MD40-71 (Figs. 1 and 7b) from
the northwestern boundary of the Levantine basin (Emeis et
al., 2003) as a rough regional indicator of temperature de-
viations relative to modern,1T , at sea level (1Tsea level).
These1Tsea leveldata were used to infer1T at Yammôuneh
(1TYam) and to correctδc for lake water temperature, apply-
ing the paleotemperature equation of Craig (1965) to calcu-
late δL (Fig. 7e). During Interglacials, we assume that the
mean annual temperature difference between sea level and
Yammôuneh was the same as today. During glacial peri-
ods, the thermal atmospheric lapse rate was steepened by at
least 2◦C km−1 during the LGM in the Mediterranean do-
main (Kuhlemann et al., 2008). An additional cooling of
2.5◦C at Yammôuneh and≥4◦C in the aquifer recharge zone
(>2000 m a.s.l.) would have induced an additional decrease
of δL of ∼0.7 ‰ (water temperature effect), but a larger de-
crease ofδP values of∼ −1.4 to at least−2.3 ‰ due to
the “ground-temperature effect” (estimated at∼0.58 ‰◦C−1

in northern mid-latitudes; Rozanski et al., 1993) reduc-
ing the δL − δP difference (Fig. 7e). Because most of the
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precipitation was likely niveous (more depleted than liquid
rainfall, Rozanski, 2005),δP may have decreased even more.

In order to inferδsw, we used the high resolution time se-
ries of δforam from core MD-9501 (86 ka; Almogi-Labin et
al., 2009) and the poorly-resolved record of ODP 967 from
Kroon et al. (1998) complemented by detailed measurements
around sapropel events (Emeis et al., 2003) (Figs. 1 and 7c).
Although not recorded in SPECMAP (Imbrie et al., 1984),
δforam fluctuations between∼170 and∼150 ka of the same
amplitude as in ODP 967 were observed in cores MD84-648
and -637 (Fig. 1) closer to the Nile delta (Ducassou et al.,
2007). By combining the1Tsealeveland theδforam values, we
applied the same paleotemperature equation as forδL to ob-
tain an approximate record ofδsw for the northern Levantine
basin (Fig. 7d).

4.2.2 Source effect

The “source effect” was extracted by calculating
1δ18O =δL − δsw (Fig. 8f). Large 1δ18O variations in-
dicate that other factors than the “source effect” have acted
on δL and δc. During Interglacials, high1δ18O values
compared to the modernδP − δsw difference (∼ −11 ‰)
suggest enhanced inland rainfall around 220 and 125–120 ka
and less clearly around 105, 85–75 ka and 11–9 ka (Fig. 7f).
These1δ18O increases are associated with remarkable rises
of δc andδL , particularly clear at∼126–120 or∼85–75 ka,
which classically could suggest deficits in the lake water
balance. Several hypotheses can be invoked to explain these
apparent discrepancies. First, amplified seasonal thermal
contrasts, as expected from orbital forcing, would have
induced evaporative18O-enrichment ofδin and δL during
the warmer dry seasons. A longer water residence time
in the paleolake could have also enhanced the evaporation
effects when the waterbody was permanent. Second,
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changes in rainfall seasonality might have affectedδP and,
thus, δL and1δ18O. At Yammôuneh, modern winter18O-
precipitation values are lower than spring and autumn values
by ∼2.5 ‰ (Develle et al., 2010). The transition to higher
δL and higher1δ18O values could reflect a longer rainy
season, increasing the relative contribution of spring and fall
precipitation on the mean annualδP values. Third, changes
in air mass trajectories might have modifiedδP. Presently, at
the rainfall event scale, the less18O-depleted rains close to
Beirut (δP: −2 to−4 ‰) are associated with air masses from
the North (Aouad et al., 2004, 2005). Felis et al. (2004) have
suggested increased advection over the near East of cold
continental air from the North linked to a high NAO index
in winter during MIS 5.5. Enhanced northerly winds might
have increasedδP. However, based on modern data, Vaks et
al. (2010) suggested that a negative NAO index is linked to
lower winter temperatures in Israel and leads to increased
winter precipitation (and, thus, reduced winterδP).

During Glacials,1δ18O was generally low, although sharp
positive peaks around∼170 ka (in phase with aδL increase),
∼145 ka and during short MIS 4–3 intervals may reflect short
wet pulses. Lowδc, δL andδP values (Fig. 7e) suggest the
dominance of18O-depleted winter rains, low water and at-
mosphere temperatures and low evaporation rates. Freezing
over most of the year have likely inhibited evaporative18O
concentration. Changes in storm tracking may have con-
tributed to the isotopic signal. Today, the most18O-depleted

rains reaching Lebanon (δP: −6 to −11 ‰) come directly
from the west and have a long path over the sea (Aouad et al.,
2004, 2005). Major storm-tracks funneled along the south-
ern EMS coast due to ice extent in northern high latitudes, as
proposed by Enzel et al. (2008), may have enhanced theδP
and1δ18O decreases.

4.2.3 To sum-up

Our approach suggests that the isotope balance of the
Yammôuneh hydrosystem was initially controlled by the
“source effect” (δsw), but this effect was deeply mod-
ulated and modified by other factors associated with
glacial/interglacial atmospheric patterns and the site-specific
water balance. These factors include annual and seasonal
changes in temperature and related evaporation rate, rainfall
amount and rainfall isotopic composition.

5 The multi-proxy Yammoûneh record

5.1 Relationships between individual proxies

Information derived from individual indicators from a given
sedimentary profile should be considered together and recon-
ciled to gain a comprehensive picture of environmental con-
ditions at a given time/core depth.
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Table 3. Significant simple linear correlation coefficients (p < 0.001) between environmental variables from Yammoûneh.

Ca Calcite Quartz Kaolinite K-Fedspaths Magnetic TOM Al Si K Ti Fe Deciduous
(rel. (+ aragonite) + smectite + Plagio. Susceptinility (rel. (rel. (rel. (rel. (rel. Quercus

cont) + chlorite cont) cont) cont) cont) cont) (%)

Calcite (+ aragonite) (%) 0.791
Quartz (%) −0.756 −0.970
Kaolinite + smectite + chlorite (%) −0.620 −0.674 0.509
K-Fedspaths + Plagio. (%) −0.551 −0.807 0.570 0.460
Magnetic Susceptibility (SI) −0.607 −0.640 0.663 0.678
TOM (% wt) −0.484 −0.411 0.330 0.625 0.526
Al (rel. cont) −0.760 −0.728 0.687 0.641 0.602 0.624 0.411
Si (rel. cont) −0.754 −0.794 0.787 0.520 0.545 0.661 0.456 0.426
K (rel. cont) −0.806 −0.784 0.744 0.640 0.602 0.624 0.592 0.976 0.961
Ti (rel. cont) −0.836 −0.812 0.882 0.509 0.587 0.657 0.584 0.927 0.955 0.943
Fe (rel. cont) −0.786 −0.732 0.689 0.866 0.528 0.697 0.628 0.868 0.794 0.851 0.828
Juniperus(%)
Abies + Cedrus(%)
DeciduousQuercus(%) 0.361 0.361 −0.338 −0.342 −0.406 −0.407 −0.392 −0.316
Everg.Quercus+ Pinus(%) 0.335 0.428 −0.496 −0.410
Steppic (%) −0.495 −0.572 0.616 −0.708 0.648 0.387 0.553 0.470 0.578 0.408 −0.674
Aquatic + subaquatic (%)
δ18O carbonate (PDB ‰)
AP % 0.51 −0.49

Environmental variables were initially reconstructed with
different depth resolution and along different core length.
Thus, data were re-sampled with a common depth-scale
(20 cm) between 64 and 3364 cm. This procedure shortens
the high resolution and the longest records, but the resulting
matrix, based on 166 core levels, is well-suited for numerical
analyses. Environmental variables were translated into stan-
dard deviation units (s.d.u.). Significant simple linear corre-
lation coefficients between individual variables are plotted in
Table 3. Data integration was performed using the Analy-
series 2.0 software (Paillard et al., 1996).

We first performed a PCA on the multiproxy matrix
(ACPMP) of 22 variables listed in Table 2. Scores of two
first principal components PC1 and PC2 (63.3 % of total var-
iane) and the projection of the variables in factorial plans 1–
2 are plotted in Fig. 8a and b. PC1 scores confirm the
2 poles (end-members) of sediment fraction, carbonate (Ca,
calcite + aragonite) v. all other sediment components (detri-
tal), already highlighted by Develle et al. (2011). Note that
carbonate-dominated units are mainly composed of authi-
genic calcite. Axis 1 shows close linkages between carbonate
and arboreal vegetation lying on the negative side, Mediter-
ranean evergreenQuercushaving the strongest contribution
among tree taxa. The positive loading of steppe and silici-
clastic (and dolomite) components shows that high contri-
bution of eolian and local detrital influxes to sedimentation
prevailed during periods of open vegetation. PC2 differenti-
ates the lower (>1870 cm) and upper halves of the sequence.
This asymmetry is largely due to the strong positive load-
ing on Axis 2 of pollen from cool conifer forests (Juniperus,
Cedrus, Abies) and aquatic-palustral plants which are poorly
represented above 1870 cm. Theδc values steer Axis 2 on
the negative side. The positive correlation between TOM and
detrital elements and the distance between aquatic-palustral
plant pollen and TOM in factorial plans 1–2 suggests that,

in most samples, TOM is derived from the catchment soil
erosion rather than from organic production in the local wa-
terbody. The low contribution ofδc and tree pollen from cool
wet forests,Pinusand deciduousQuercusto Axis 1 suggest
that δc fluctuations and these tree types are partly indepen-
dent of the sediment components.

We then computed a PCASed based on all sedimentologi-
cal proxies. Figure 9a shows PCASed-Axis 1 (67.8 % of to-
tal variance) and resampled PCAB-Axis 1 based on pollen-
derived biomes (see Sect. 4.1). Aquatic/palustral assemblage
andδ18O are excluded from this comparison. Visual obser-
vation reveals a close link between the highest PCAB-Axis 1
and the lowest PCASed-Axis 1 values, except between∼500
and ∼200 cm when detrital carbonates became abundant.
Drastic decreases in PCAB-Axis 1 may be partly explained
by the lowering of the upper tree line during the coldest pe-
riods, but lithofacies above 500 cm indicate that these shifts
primarily reflect a local drying. A cross-correlation between
the PCAB-Axis 1 and PCASed-Axis 1 scores (Fig. 9b) con-
firms the negative correlation between the two depth/time-
series by a narrow peak centred on depth-lag 0 (−48.6 ‰),
reflecting the co-evolution of both signals during the whole
sequence.

Relationships between isotope (δc) and vegetation dynam-
ics (Fig. 9c and d) are more complex. PCAB-Axis 1 and
δc run roughly parallel during the coloured detrital-rich in-
tervals. Overall decrease/increase inδc when PCAB -Axis 1
increased/decreased can be classically interpreted as reflect-
ing wetting/drying trends, respectively (e.g., in the intervals
∼2750–1840 and 780–200 cm). Conversely, clear antiphas-
ing occurred during periods of sharp increases in PCAB-Axis
(development of arboreal vegetation implying relatively high
water availability), associated with steep and largeδc enrich-
ments. Such discrepancies have already been pointed out
in several post-glacial records from eastern Mediterranean
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lakes. They have been attributed either to a disequilib-
rium between climate and vegetation (e.g., at Lake Golhisar,
Turkey, Fig. 1; Eastwood et al., 2007), or changes in precip-
itation seasonality (at Lakes Zeribar and Mirabad, NW Iran,
Fig. 1; Stevens et al., 2001, 2006). As discussed above
from both pollen and isotope data, we favour the hypothe-
sis of seasonal increased hydrological and thermal contrasts
with wet cool winters, possibly a longer rainy season, and
very dry warm summers generating strong evaporative ef-
fects in both the drainage area and the waterbody. Due to
reversed relationships between these two proxy depth-series
through time, the cross-correlation for the whole record does
not show narrow peak, but an overall correlation (maximum
negative correlation:−44.4, with a small depth lag of 80 cm).
Links between PCASed-Axis 1 andδc also vary with depth
(Fig. 9e and f). These two series are clearly in antiphase dur-
ing carbonate-rich intervals, but intervening periods do not
show clear patterns.

5.2 Major environmental changes through time

The major environmental changes observed at Yammoûneh,
as constrained by all analysed indicators (Figs. 5–7), are
now discussed versus time (Fig. 10a–g), according to our
age model. Figure 10 also displays (with independent time
scales) orbital forcing expressed by eccentricity and sum-
mer/winter insolation at 34◦ N (Fig. 10h; Berger, 1978) and
MISs reflecting global ice volume (Fig. 10i; Martinson et al.,
1987).

The lowest part of the Yammoûneh profile is poorly re-
solved, partly because several gaps in core recovery (Fig. 4a).
The carbonate-rich interval 3670–2970 cm is assigned to
MIS 7 (240–190 ka). Its base (3670–3300 cm;∼240–
220 ka?) is characterised by the maximum development of
arboreal vegetation dominated by cool conifer forests and
temperate deciduous trees indicating cool and wet condi-
tions. A permanent waterbody with high biogenic and in
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situ carbonate production implies a substantial rise of the lo-
cal shallow water table. High1δ18O values around 3250 cm
(220 ka?) suggest heavy rainfall. Periods with highδc values
may result from the18O enrichment of inflowing water due
to a relatively long water residence time in the permanent wa-
terbody, and/or high summer evaporation rate. We interpret
this period as reflecting the highest P-E balance of the whole
record. Above 3300 cm, a negative shift of aquatic-palustral
plant pollen, and the opening of the vegetal cover inducing
enhanced erosion and detrital input, record a slight decrease
in effective moisture which remained, however, high enough
to allow mountain and mixed temperate forest elements to
grow. This generally wet interval apparently coincides with
period of maximum insolation seasonal contrasts. Its termi-
nation is not clearly identified in our record.

The period assigned to MIS 6 (∼190–130 ka) is repre-
sented from∼2950 to 1850 cm by silty clays interrupted
by a marly layer around 2450 cm (∼170 ka?) and progres-
sively enriched in carbonate above 2150 cm (∼150 ka?). At
the base, eolian material prevailed in detrital sediment when
the landscape was predominantly steppic. After∼180 ka,
cool conifer and/or temperate deciduous forests developed,
aquatic vegetation reappeared, andδc shifted to reach the

lowest values of the profile toward the end of this interval.
This suggests an overall increase in local efficient moisture,
although1δ18O decreased possibly due to low temperature
(and, thus, lowδP). This general trend is punctuated by two
events. At∼2450 cm (∼170 ka?), a narrow peak of carbon-
ate, an increase in marsh plant pollen, and a juniper decline
in favour of deciduous oaks suggest a rise of the water ta-
ble and a moderate warming. This event also shows sharpδc
and1δ18O positive shifts, which may reflect an interval of
amplified seasonal thermal and hydrological contrasts possi-
bly coincident with high solar radiation seasonality. Above
2150 cm (∼150 ka?), junipers became dominant again under
the cold conditions of late MIS 6. Even if mean annual pre-
cipitation was low, the local available moisture was sufficient
to sustain arboreal vegetation, wetlands around the core site
and depletedδc values when low glacial temperature mini-
mized evaporation and evapotranspiration.

The last interglacial maximum, MIS 5.5 (∼1850–
1680 cm;∼130–120 ka), is the period of optimal conditions
for authigenic carbonate production culminating at∼124 ka.
At ∼129 ka, an abrupt decline of junipers replaced by de-
ciduous oaks first indicates a warming. Then, a rapid
expansion of mesic Mediterranean forests fingerprints the
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establishment of a typical Mediterranean climate. Aquatic
and hydrophilous plant pollen disappeared and a dramatic
increase inδc values occurred, which, at a first glance, could
evoke a drying. Such an interpretation disagrees with very
high tree pollen percentages and a synchronous large and
positive shift of1δ18O. We interpret this period as reflect-
ing strong orbital-induced seasonal hydrological and ther-
mal contrasts, with cool, strongly rainy winters and possibly
a longer rainy season, but very warm, dry summers induc-
ing relatively low mean annual effective moisture inhibiting
the growth of mountain and temperate trees. MIS 5.5 coin-
cides with a major change in Yammoûneh environments: af-
ter 130 ka, the cool-wet conditions of MIS 7 and late MIS 6
never appeared again.

From ∼120 to∼80–75 ka, finely banded olive gray silty
clay prevailed. Grain-size and colour gradients in each band
evoke episodic runoff events followed by quiet decantation
periods. The detrital accumulation is interrupted by an in-
terval enriched in carbonate around 1500 cm (∼105 ka) and
passes progressively to a light gray marl above 1200 cm
(∼85 ka). Open vegetation tends to replace forested land-
scapes, but this trend is not linear. Peaks of mixed arboreal
pollen coincide with carbonate-enriched phases, and reflect
wetter conditions than during intervening steppe intervals.
These peaks are synchronous with sharpδc enrichments and
1δ18O increases. The last one resembles MIS 5.5 in its min-
eral composition and isotope pattern. These two peaks are
attributed to MIS 5.3 and MIS 5.1, respectively, although the
later is slightly too young in our time scale.

During the last glacial period, MIS 4, 3 and early MIS 2
(∼970–225 cm,∼75–16 ka), olive gray clay first dominates
and the maximum contribution of eolian dust to sedimen-
tation appears around 900 cm (∼70–65 ka). At∼425 cm
(∼40 ka?), the greenish clay passes abruptly to strongly ox-
idized ocher, reddish clayey silt which contains limestone
gravels and carbonate concretions suggesting frequent des-
iccations at the core site. An increase in carbonate content,
mainly detrital, is attributed to physical erosion of the water-
shed limestones in an environment almost devoid of vegeta-
tion. Pollen data clearly show a shift toward steppic-desertic
environments consistent with theδc increase, interrupted by
two moderate humid pulses (around 730 and 500 cm;∼60
and 45 ka?). The local water availability reached the mini-
mum of the whole record between∼21 to 16 ka (LGM and
Termination 1; MIS 2). Karstic groundwater circulation was
considerably reduced. This does not necessarily mean ex-
tremely low regional precipitation, but may reflect water stor-
age in Mt Lebanon glaciers and permafrost in the Mnaı̈tra
plateau when temperature was at least 10◦C lower than to-
day. Indeed, permanent glaciers, evidenced by moraines
above 2000 m a.s.l. on the western flank of Mt Lebanon, oc-
curred during the LGM (L. Benedetti, personal communica-
tion, 2011). The last glacial stage clearly differs from MIS 6
in its trend towards local arid conditions.

After ∼16 ka, the post glacial warming is associated
with the rapid re-establishment of humid conditions in the
Yammôuneh basin, in response to ice melting and enhanced
precipitation. This wetting is evidenced by, successively, a
step-wise decrease inδc from 16 to 8.5 ka (Develle et al.,
2010), the abrupt development of deciduous oaks around 13
ka, and the deposition of a white lacustrine marl rich in rests
of aquatic organisms after 11.5 ka. The wetting optimum is
reached from∼11 to 8.5 ka, in phase with S1. In the core, the
Holocene is truncated at∼7.5 ka, but a trend toward aridity
starting at∼7 ka is registered by the isotope record in trench
TR02 (Develle et al., 2010). This early Holocene wetting
was shown at other sites from Lebanon (see site location in
Fig. 1) by changes in growth rate,δ18O andδ13C in a 12 ka
speleothem from Jeita Cave (Verheyden et al., 2008), and by
the ∼15 ka-pollen records from the Aammish marsh in the
Bakka Plain (Hajar et al., 2008, 2010). Pollen data from the
Ghab Valley, Syria (Yasuda et al., 2000) show similar trends.

6 Discussion and conclusions

The Yammôuneh record represents the first long multi-proxy
paleoenvironmental-paleoclimatic reconstruction based on a
single sedimentary sequence and on both biotic and hydro-
logical indicators in the Levant. The combination of pollen,
sediment properties and isotope data allowed us to cross-
check the information derived from independent proxies and
to strengthen the overall interpretation of paleoenvironmen-
tal changes. This record covers three Interglacials and two
full glacial stages. It fills a geographical gap in data cover-
age as no other long record is available in northern Levant.
Main environmental characteristics of the Yammoûneh basin
during interglacial peaks and glacial periods can be drawn as
follows.

6.1 Main characteristics of interglacial and glacial
stages at Yammôuneh

Interglacial maxima (early-mid MIS 7, MIS 5.5 and early
MIS 1) experienced relatively high effective moisture in
both the surface and groundwater drainage areas. This
is clearly evidenced by sharp increases and dominance of
forested landscapes, leading to reduced erosion in the basin
slopes. Forested stages are closely correlated with periods
of authigenic carbonate sedimentation in the local water-
body which sustained a rich and diversified biocenose. Syn-
chronous and steepδc increases can be reconciled with en-
hanced mean annual moisture when changes in seasonal-
ity are taken into account. By analogy with the relatively
well-dated early Holocene and MIS 5.5 periods, we suggest
(Fig. 10) that other interglacial wet pulses (MIS 5.3–MIS 5.1)
and short-lived warmer/wetter events punctuating glacial pe-
riods (e.g.,∼170 ka) also match phases of high seasonal in-
solation contrasts. Despite these common features, the three
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interglacial maximums differ significantly: very wet and cool
conditions prevailed during the MIS 7 peaks; MIS 5.5 is
characterised by typical Mediterranean environments with
very wet winter and warm evaporative summer conditions,
whereas a more temperate wet climate established during
early MIS 1.

Glacial periods, characterised by the dominance of
coloured silty clay in the sediments, exhibit the highest
weight percentages of wind-blown particles, indicating a
strong contribution of eolian dust to sedimentation. Forest
vegetation cover was generally reduced compared to inter-
glacial stages, favouring local erosion. Environmental con-
ditions evolved, however, in opposite directions during the
penultimate and the Last Glacial period. All proxy data re-
veal an overall wetting during MIS 6 culminating toward the
end of this stage, while a drying trend took place during
MIS4-2, leading to extremely harsh LGM conditions. We
suggest that, under the very cold LGM climate, water was
stored by ice in frozen soils in the Yammoûneh depression
and in glaciers in the aquifer recharge zone, resulting in ex-
tremely low local liquid water availability. As for successive
Interglacials, the glacial stages were not identical.

Our record shows an overall decrease in local available
water: episodes of maximum moisture occurred during early-
mid MIS 7; MIS 6 was wetter than the late glacial stage;
the amplitude of wet pulses decreased from MIS 5.5 to the
early Holocene. The basin infilling by lake sediments might
explain the almost total disappearance of permanent water-
bodies after 130 ka and frequent desiccation periods during
MIS 2, but not changes in terrestrial vegetation. The long-
term aridity trend coincides with a weakening of the seasonal
insolation contrasts linked to the decreasing amplitude of the
eccentricity cycle. It is as though the Yammoûneh water
balance was partly controlled by the amplitude of the sea-
sonal insolation contrast and the relative intensity of winter
cooling.

6.2 Comparison with other EMS records

Placed in its regional context, the Yammoûneh record sug-
gests similarities and differences with other records from
the EMS region and raises a series of questions on the un-
derlying mechanisms. Some key regional records are illus-
trated in Fig. 11, which also displays two proxy curves from
Yammôuneh for comparison. Sites cited below are located in
Fig. 1.

The Yammôuneh evolution generally agrees with data
from northeastern Mediterranean and NW Iran, except dur-
ing MIS 6. This is exemplified (Fig. 11a–c) by pollen
records from Albania (L. Ohrid, Ĺezine et al., 2010), Greece
(Tenaghi Philippon, Tzedakis et al., 2006) to NW Iran (L. Ur-
mia, Djamali et al., 2008). During glacial periods, steppe
landscapes took place under cool, dry conditions. Nev-
ertheless, several east Mediterranean lakes (e.g., Konya in
Turkey, L. Urmia) have experienced relatively high level

stands attributed to substantial temperature lowering reduc-
ing evaporation loss and enhanced runoff when an open veg-
etation cover prevailed (Roberts et al., 1999; Djamali et al.,
2008). During interglacial peaks, maximum tree pollen per-
centages reflect warm conditions and higher precipitation
from the mid-latitude westerly system. Changes in seasonal-
ity were proposed by several authors to explain Holocene cli-
mate in the region (Stevens et al., 2001, 2006; Magny, 2007;
Tzedakis, 2007; Peyron et al., 2010; Djamali et al., 2010).
At Yammôuneh, sharpδc increases in phase with arboreal
pollen peaks, attributed to enhanced seasonal thermal and hy-
drological contrasts, suggest that the hypothesis of seasonal
changes is valid for older interglacial stages (e.g., MIS 5.5
and MIS 5.1). The specific case of Lake Ohrid, a mountain-
ous karstic lake, is interesting to compare with Yammoûneh:
authigenic calcite precipitated during warm phases, when the
karstic system was active and forests developed in the catch-
ment area, while detrital siliciclastic particles accumulated
and forests are replaced by steppic landscapes during the last
glacial period due to strong deficits in available water stored
as ice in the mountains (Lézine et al., 2010).

Our record also shares some features with stable isotope
spelothem records from western Israel (Peqi’in and Soreq
Caves, Fig. 11f) as interpreted by Bar-Matthews et al. (2003).
These authors thought that the records integrate the effects
of the moisture source (the EMS surface water), rainfall
amount and temperature: low/highδ18O reflect wet/dry con-
ditions during interglacial/glacial periods (Bar-Matthews et
al., 2003). Paleoprecipitation reconstructions at Soreq (based
on present-day relationships between rainwaterδ18O and
rainfall amount) suggest very high rainfall around 125 ka
(MIS 5.5) and a precipitation amount close to modern dur-
ing early MIS 5.1 (Bar-Matthews et al., 2003; Bar-Matthews
and Ayalon, 2004), as proposed from our1δ18O calcula-
tions (Figs. 10g and 11e). Sharp negativeδ18O shifts fit EMS
sapropel events linked to increased Nile River discharge and,
thus, to enhanced monsoon strength (Bar-Matthews et al.,
2000). These interpretations are in line with marine pollen
records from the southern Levantine basin (core MD84-
642, Cheddadi and Rossignol-Strick, 1995; core MD-9509;
Langgut, 2011). Another striking point arising from both the
Soreq and Yammôuneh records is the difference between the
penultimate and the last glacial period. At Soreq, theδ18O
andδ13C isotopic records from Soreq Cave suggest that, dur-
ing the entire MIS 6, although the climate was as cold as
much of the last glacial, the conditions were never as dry (Ay-
alon et al., 2002). This Soreq record also shows two major
negative shifts in theδ18O–δ13C values (∼178 and∼152 ka)
interpreted as dramatic increases in rainfall amount, related
to the EMS sapropel S6 (the only sapropel event occur-
ring during a glacial phase) and to another EMS event not
large enough to form sapropel Bar-Matthews et al., 2003),
both associated with increased African monsoon (Fig. 11f,
k, l). The wetting events observed at Yammoûneh at∼170
and ∼150 ka in our time scale (2450 and 2150 cm) could
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feda b g

Age

40

80

60

100

120

140

160

0

20

180

200

220

240

260

c

  N. African
     runoff 
   

mm/day   

0 21

h

NE Mediterranean

MIS
Age
(ka)

40

80

60

100

120

140

160

0

20

180

200

220

240

260

7.5

7.1

7.3

6.1

6.6

6.3

5.1

5.5

5.3

1

2

3

4

8

Hiatus

i

T. Philippon

0 50(ka) 0 50

Urmia
Tree pollen %

Calcite %
0 50 100

Ohrid

0 50

Tree pollen % Tree pollen %

NW Iran

kj

Negev

Tr
av

er
tin

es

S
pe

le
ot

he
m

s

Dead Sea basin

500 300 200400

Dead Sea

L. Lisan
L. S

am
ra

L. A
m

ora

Lake Level

(m  b.s.l.)

Relative frequencies
       of ages

S
pe

le
ot

he
m

s

W. Israel

  speleothems

-2

Soreq C.
Peqi'in C.

-4 -6 -8

δ18O PDB ‰

E
M

S
 S

ap
ro

pe
ls

S9

S5

S8

S6

S4

S1

S3

S7

0 20 40 60 80 %

-16
 

-14 -10 

O (‰ SMOW)∆δ18
-12 

N Lebanon

Tree pollen %

l m

Yammoûneh

? ?

??
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correspond to these Soreq-EMS climatic changes. Keep-
ing in mind that the tropical influence of the Nile River ex-
tent as north as Cyprus in the Levantine basin during MIS 3
and MIS 1 (Almogi-Labin et al., 2009), an indirect tropi-
cal influence superimposed to the dominant role of the North
Atlantic-Mediterranean system might have reached the west-
ern Levant by times. A potential impact on this region of the
remote Eurasian ice sheet, much larger at 160–130 ka than
during the LGM, and of the resulting huge proglacial lakes
over central Europe (Svenden et al., 2004; Mangerud et al.,
2004) might also be considered.

At the northern limits of the Saharan-Arabian desert, in
Negev and the Arava Valley, sporadic events of deposition
of speleothems (Vaks et al., 2010; Fig. 11i) and travertine
(Waldmann et al., 2010: Fig. 11j) indicate episodes of en-
hanced effective precipitation in phases with periods of inten-
sified monsoon, schematized by simulated changes in North
African river discharge to the EMS and related EMS sapro-
pel events (Fig. 11k and l; Ziegler et al., 2010). These
short wet pulses have suggested intrusions of humidity from
southern sources during interglacial periods (Waldmann et

al., 2010), or simultaneous intensification of monsoon and
Atlantic-Mediterranean cyclones (Vaks et al., 2010).

Thus, evidence emerging from the regions evoked above
and the Yammôuneh record appears to be in agreement
in suggesting dry-cool glacial periods (except MIS 6) and
wetter-warm interglacial conditions. In contrast, in the rain
shadow of the Judean mountains, the deep, warm Dead Sea
basin (DSB), behaved in opposite directions, as indicated by
cave stromatolites and periods of speleothem growth/non-
deposition (Vaks et al., 2003, 2006, 2010; Fig. 11h; Lisker
et al., 2008, 2010) and lake level fluctuations (Fig. 11g;
Waldmann et al., 2010) of the Dead Sea (Enzel et al., 2003;
Migowski et al., 2006) and its predecessors (Lake Lisan:
Bartov et al., 2003; Hazan et al., 2005; Bookmann et al.,
2006; Lake Samra: Waldmann et al., 2009; Lake Amora:
Torfstein et al., 2009). The only period when the high al-
titude, small, groundwater-fed Yammoûneh basin roughly
evolved in parallel with the DBS is MIS 6. In the DSB,
local winds predominate on the large-scale wind compo-
nents, and local temperature and related evaporation rates
are crucial factors controlling the Dead Sea water balance
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(Alpert et al., 1997). According to Enzel et al. (2008), in-
creased water availability in the DSB during glacial phases
reflect increased rainfall due to the southward deflection of
moist westerlies southwards by the presence of ice sheets,
as showed by coupled ocean-atmosphere circulation models
for the LGM (e.g., Li and and Battisti, 2008; Lainé et al.,
2009). An alternative explanation was proposed by Vaks et
al. (2003) who suggested reduced evaporation rates during
the cold glacial phases leading to a higher P-E balance, and
vice-versa during interglacials. This second hypothesis ap-
pears consistent with the recent Dead Sea water level lower-
ing, induced by the current warming which results in lower
local air humidity and higher evaporation (Shafir and Alpert,
2010).

To sum-up, all records from the eastern Mediterranean
region, from southeastern Europe to the northern Sahara-
Arabian desert, are in phase with long-term orbitally-induced
temperature fluctuations, ice sheet waxing/waning in the
Northern Hemisphere, and climatic changes in the North At-
lantic system. These linkages reflect, however, different cli-
matic mechanisms, different moisture sources, that resulted
in different responses to global changes of individual proxies
and individual hydrosystems.

6.3 Perspectives

Further work is required to obtain additional age control
points, constrain changes in sedimentation rates and to im-
prove the chronology of environmental changes observed at
Yammôuneh.

The impact of seasonal changes in precipitation and tem-
perature on individual proxies should be investigated using
modern reference data from the region. Although mod-
ern analogues for the glacial periods are missing in the
region, quantification of paleoclimatic variables should be
attempted.

Hydrological modelling, associated with further investiga-
tion of the Mt Lebanon glacier evolution, should help better
understand the functioning of the Yammoûneh system.

Our record is based on a single site and its specific climatic
and hydrological setting. Other long records from northern
Levant and climate modelling are needed to disentangle the
effects of local, regional and global climatic-hydrological
factors on the basin evolution. Solid scenarios could then
be proposed to explain the potential spatial heterogeneity in
available moisture in the Levant region.
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