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Abstract. We present statistical methods to determine cli- Greenland Interstadial (GIS), the warm phase of the glacial
mate regimes for the last glacial period using three temperperiod. An alternation between GIS and the colder Green-
ature proxy records from Greenland: measurements i land Stadial (GS) will be referred to as a DO cycle.

from the Greenland Ice Sheet Project 2 (GISP2), the Green- There is evidence that these dramatic climate shifts at high
land Ice Core Project (GRIP) and the North Greenland Icelatitudes in the Northern Hemisphere had global scale ef-
Core Project (NGRIP) using different timescales. A Markov fects. For exampleBlunier et al.(1998 observed an out
Chain Monte Carlo method is presented to infer the numbeiof phase signal in Antarctic ice cores, wher&¥ang et al.

of states in a latent variable model along with their associated2001) note general agreement of temperature changes in
parameters. By using Bayesian model comparison method&ISP2 and changes in the hydrological cycle from stalag-
we find that a model with 3 states is sufficient. These statesnite records from the Hulu cave in China. A new common
correspond to a gradual cooling during the Greenland In-time scale of Greenland/Antarctica temperature back to Ma-
terstadials, more rapid temperature decrease into Greenlanthe Isotope Stage 5 will allow more accurate tests of mod-
Stadial and to the sudden rebound temperature increase at tledling ability to simulate the global impacts of these events
onset of Greenland Interstadials. We investigate the recur{(Capron et a].2010.

rence properties of the onset of Greenland Interstadials and Bond et al. (1993 used the abundance of planktic
find no evidence to reject the null hypothesis of randomly foraminifera in sediment records to show that sea surface
timed events. temperatures in the North Atlantic (NA) are correlated with
DO cycles. They also note that there are longer periods of
cooling, which each include several DO cycles. At the ter-
mination of these 10-15kyr cycles there are signatures of
large scale ice rafting events that correlate with a GS. Known
Measurements af180 from Greenland ice cores for the last as Heinrich events, they are associated with collapse of the
glacial are a good proxy for regional temperature. These timd-aurentide ice sheet, thereby inundating the NA with fresh-
series indicate large temperature changes occurring on tim@ater, preventing the formation of North Atlantic Deep Wa-
scales of centuries or less. They are characterised by a rapi@’ (NADW) and reducing the thermohaline circulation. The
warming of up to 16C, followed by a slow cooling period. Subsequent depletion of icebergs in the NA is thought to pro-
They are known as Dansgaard_Oeschger (DO) events anﬂ)ke a rapid reorganisation of the climate system and a tem-
were numbered and dated Bansgaard et a(1993 using perature increase into a prominent GIS followed by gradual
a time scale derived from a simple ice flow model and con-c0oling punctuated by a series of DO cycles. This does not
strained by well established events at 11.5 kyr and 110 kyr BFexplain the mechanism driving the shorter DO cycles, al-
(before present). The DO events correspond to the onset of Brough they are considered to be linked with similar ice sheet

calving affecting the salinity of the NA and the formation of
Correspondence tdD. Peavoy
BY (d.peavoy@warwick.ac.uk)

NADW.
Published by Copernicus Publications on behalf of the European Geosciences Union.
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The apparent regular occurrence of DO events has lead
some authors to suggest an external forcing or internal os-
cillation of the climate system. In particular the Fourier 36l
spectrum of the temperature record using the GISP2 time;s -ss
line has a significant peak at 1470 yea®Bdotes and Stu-  GRIP -40
iver, 1997). However, thes'®0 record from the Greenland -42r
Ice Core Project GRIP, completed the same year as GISP2, al
whilst also exhibiting DO cycles does not have this spectral
peak. Neither does that from the North Greenland Ice Core ‘ ‘ ‘ ‘ ‘ ‘
Project (NGRIP) using the GICCOS5 time scale. g 70 e Xt 0 2T

Alley et al. (2007 suggest a simple model for the dynam-
ics that includes weak periodic forcing and a stochastic resoFig. 1: ($180) from NGRIP, GRIP and GISP2 expressed in
nance mechanisnstocker and Johns€R003 link thisto a %o with respect to Vienna Standard Mean Ocean Water us-
bipolar thermal “see-saw”, explaining the observed responséng GICCO05, ss09sea and Meese/Sowers time scales respec-
in Antarctica andBraun et al(2005 propose a resonance be- tively.
tween two faster solar modes of variability to give a resulting
weak signal at 1470 years.

It has been argued that Fourier methods are not suitable to The data sets we study are shown in Rig.The NGRIP
detect recurrence patterns for such non-linear discrete eventsre is dated using GICCOR\(dersen et a).2006, GRIP
that are likely generated by a thresholding procéd®ahm-  chronology from the ss09sea time scalet{nsen et 3120071
storf (2003 measures the deviation of the events from a per-and GISP2 according to the Meese/Sowers time stédege
fect 1470 years signal and finds that their timing is well et al, 1997. We consider the period 82-11.0kyr BP for
within the assumed dating error, although there are severaGRIP and GISP2, and 60-11.0 because of limited resolution
1470 year periods where no event occurs at Blitlevsen  at older dates.
et al. (2007 assess the significance of the observed period- The aim of this paper is to study models that are able
icity by defining null models and computing the Rayleigh to capture the features of the cycles (sudden temperature
measure and standard deviation of residuals for ensembles @hanges and small fluctuations) while also including the as-
surrogate data. They find no evidence to reject the null modeociated uncertainty in the identification of climate states.
of randomly timed events. The exception is when using theThis uncertainty can then be included in subsequent analy-
GISP2 ice core record and omitting DO event 9 as numberegis. We consider there to be hidden states corresponding to
by Dansgaard et a[1993. However, this does not change different climate regimes and identify these in a probabilistic
the result when using the more recent NGRIP ice core recordsense. We generate an ensemble of data sets derived from

The event detection algorithm Blahmstor{2003, which  NGRIP, GRIP or GISP2 using Gaussian Process regression.
uses a criteria of 2%s80 increase over 200 years, does This incorporates variability into the data and reflects our un-
not include DO 9, potentially influencing the conclusion. certainty about the dating and measuring process while re-
Ditlevsen et al(2009 defines a DO event as first up cross- taining the characteristic features of the DO cycles. It will
ings of an upper level following a lower level, identifying also provide a means of assessing how robust our inference
several more events and concluding that they are randomlynethod is.
paced. Given the sensitivity of results regarding the existence \we apply a Bayesian statistical analysis to each ensemble
of periodicity to the definition of the events it is desirable to member, which makes no assumptions about the parameters
have a method that objectively detects their occurrence.  (e.g. mean and variance of the temperature change in a given

Kwasniok and Lohmann(2009 show that a stochas- state). Instead these are computed from the posterior distri-
tic double well model could be fitted using the UnSCGntedbution using Bayes’ rule. We discuss Gaussian Process Re-
Kalman filter to capture stadial-interstadial transitions, while gression in Sect. 2 and the modelling strategy in Sect. 3. In
Ditlevsen (1999 argues that non-Gaussian “heavy tailed” Sect. 4 we analyse the results from the posterior simulation
noise is suitable to capture extreme events within Greenand find that models with three climate regimes fit the data

land paleoclimate datal.ivina et al.(2010 used GRIP and  well. In Sect. 4 we analyse the timing of the model state
NGRIP 680 data to study the number of states in the cli- corresponding to the DO events.

mate for the last 60 kyrs using a polynomial fitting algorithm

to windows of the data. They detect the two states corre-

sponding to the stadial and interstadials of the last glaciaR Gaussian process regression

and find that these merge to a single state around 25 kyrs BP.

Although these methods allow for asymmetry between cli-We consider discrete time models and so require data at reg-
mate states they do not include the characteristic “saw toothular intervals. An interpolation method such as cubic splines
features of DO temperature cycles. will smooth the data removing any jumps or discontinuities.
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-34 be affected by longer time scale variations in the data such as
s the Milankovitch cycles.
\ ; i The parameters of the model include the mean tempera-

1)

' ‘ \ ‘l“ , ture change per unit time and the variance within each state.
Al i fy

4;=;;L!-5

| {
| "w“ﬁ!‘q ‘ghﬁ;:!.)‘; "',‘ These are not fixed but are inferred directly from the data us-
ﬁ L ‘Hr:i;;w'm'{l” w i ing Bayes’ rule. We analyse models with up to five hidden
W W“‘ Ve " states. The occurrence of each state and all of the associated
' ‘ parameters are estimated in a Bayesian framework from the
posterior distribution. We also determine the most suitable
0 30 20 11 model for the data by estimating their marginal likelihoods.
This involves approximating the integral over the whole pa-

Fig. 2: Gaussian Process (GP) fit to the GISP2 data set. ThERMeter space to obtain an estimate of the probability of the

raw data is shown in red with the mean from the GP in blueModel given the data. In this way, models with too many
and the upper and lowep3evels in grey. parameters, that over fit the data, are penalised.

We assume that the time series can be modelled as a ran-
dom walk, dependent upon the state of the climate. This isin-

Since it is the jumps we are interested in we choose totended to capture the differing distributions of the increments

use Gaussian process regression (GPR), which can be tuné%‘at occurdurlr_lg different regimes. Note that one could use a
to capture the “roughness” of the data. GPR is a linear"0"® ge_ner_ql first order process, h(_)we_verwe found that this
least squares estimation algorithm for interpolation where thedld not significantly affect the identification O_f cllmate states.
sample path is considered to be a random process. It also pro- Under the random walk model the dataat time: evolves
vides uncertainty estimates of the interpolated sample path_accordmg to

The method relies upon the specification of a covariance

. . Xiv1=Xi+us, +os€;, 1
function between data points. We use the Matern class ‘T2 @ @ MSiToS€ @

with smoothness parameter set equal to 1 @esmussen  wheree; ~ A (0,1) is the standard normal distributions, is
and Williams 200§. Then points- apart have covariance the forcing ands, is the standard deviation in stafe For

K (r) =exp(—r/1), wherel is the length scale. This is then x data points, the likelihood function of the data given the
equivalent to a first order autoregressive (AR(1)) covarianceynobserved state sequence is

generating continuous but non-differentiable time series. The

length scale, process noise and observation noise are set N-1

using the maximum likelihood software &fasmussen and P (Xi,0,8) = [ [ N (Xiy1—Xi —pus;,08). (2)
Williams (2006. i=0

The method generates a distribution over processes ago capture our uncertainty about the time spent in each state
shown in Fig.2 for GISP2. It is clear that the uncertainty an extra layer is introduced into the hierarchy that conditions
increases as we go back in time but decreases around the 0R-on an unknown parameter;, j € {0...M}. This is the
served values. The “saw tooth” feature of the DO cycles isprobability thats; is in statej, ‘implying a multinomial dis-
preserved. tribution for S;.

We also apply the method to all three data sets and obtain |n Bayesian modelling one considers the unknown param-
an ensemble of 100 members from the Gaussian process digters as random variables and aims to compute their prob-
tribution for each ice core, each with a time step of 50 years ahility distribution conditional upon the observed data. For

generic parameter and dataX the posterior distribution is
proportional to the product of likelihood function and prior
3 Latent state models distribution P(6]X) o< P(X|0)P(0). The prior distribution
can incorporate any previous knowledge alwuot it can be
We assume that there a#¢ unobserved (latent) states gov- designed to be as “uninformative” as possible.
erning the temperature. Rather than consider states corre- In our problema;, ; ando; for j e {0...M} are ran-
sponding to absolute temperature, for example, a high temedom variables which need a prior distribution. We use conju-
perature interstadial and a cooler stadial, we model the temgate priors, which means that the posterior distributions for
perature increments of the series. For example, there may b& given parameter will be of the same family as the priors.
one state for the sudden temperature increase at the onset off&e full posterior will be intractable but using conjugate pri-
Greenland Interstadial (GIS) and another for the slow coolingors implies that one can sample each parameter from their
during the GIS. In this way we aim to capture the asymmetryconditional posterior separately. One then cycles through the
between warming and cooling phases of the DO cycles. Coneonditional posterior distributions to obtain a sample from
sidering only the increments implies that the method will not the full joint distribution. This is a Gibbs sampling algorithm

Bb 70 éO 50 4
kyrs BP
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and will generate dependent samples from the full poste- -1500

rior distribution after discarding some initial convergence pe-
riod (for an introduction to Bayesian inference using Markov 3
Chain Monte Carlo (MCMC) methods s€dlks et al, 1995. é ~1e00r
The conjugate prior fok ; is given by a Dirichlet distri- £ - -
bution with hyperparameter. This respects the constraint & —1700 — %‘ = 2 =
>_.j*j=1. Foro; one definesr; = 1/aj2 and assigns a 'é = T T T T
Gamma priorr; ~ I'(a,b), whereasu ; is a priori normally g ! . ' ' ;
distributed ; ~ \(0,0.%). The hyperparameteus b ando, o ~18000 EI EI EI EI E
are fixed. The posterior distributions will then be Dirichlet, — I
Normal and Gamma respectively. Their particular form is _;g50l ‘ ‘ ‘ R
given in the appendix. 12 3 4 5 1 2 3 4 5
To estimate the number of states we compute the probabil- ___GRIP_ ‘ GisP2
ity of the model given the data, i.e the marginal likelihood. —620r . . T *
For modelM, the marginal likelihood is < 630! _ == %‘ —
2 _ea0l - . -
P(X|M)=Z/P(X|,u,r,S)P(SM)P(M,t,A|M)dudrdA. (3) _?;;
s = 650/
To estimate this integral/sum one could simply sample from % —660r
the prior and compute an average of the likelihood function © —670r
for these values. However, this is likely to be a poor estima- f,, 680"
tor due to the discrepancy between prior and posterior distri- 2 690!
butions Kass and Raftery1995. Another option would be ==
to use the Harmonic Mean estimator. This is calculated us- /90— > 3 A 5
ing samples from the posterior so is more accurate although NGRIP

it does not obey a Gaussian central limit theorem and soex- ) o _
hibits instabilities due to the occasional sample with very low F19- 3: Marginal likelihoods for the ensemble derived from
likelihood value Kass and RafteryL995. each data set for models with 1-5 states. The red line indi-

We choose instead to use the Laplace-Metropolis estimac@tes the median of the ensemble, the box is the 25 and 75
tor of Raftery (1996. This is an adaptation of the classic percentiles, the whiskers are the maximum and minimum of
Laplace method, which is known to provide more efficient the distribution while the red markers indicate outliers.
estimates than those based on posterior simulation. However,
it is not always applicable since it requires the availability ) )
of the posterior mode and covariance matrix. Instead onetO 000 samples from the posterior. The results are shown in
can estimate these quantities from the posterior simulatiofPoxPlot form in Fig.3. .
output. There is a wider spread in results for GISP2 than GRIP

As the hidden states are conditionally independent given ©F NGRIP due to the broad distribution of sampled series

the above sum can be performed analytically and each inteShoWn in Fig.2.  The values for NGRIP are much higher
gral approximated separately due to the smaller data set. If we consider the Bayes Factors

BF;; for modeli versus; for the medians alone we find that
P(X|M)~ Y (2m)"2|w|Y2P(X|1.2, ) P(SIMP(.2,4M), (4)  for GRIP and GISP2 the three state model is supported. For
s GRIP we have B, = 4.1 x 10* regarded as strong by the
scale oflKass and Rafter{1995, whereas for GISP2 we have
BF32=>5.2, regarded as substantial evidence. For NGRIP we
have BR3 =22, favouring four states. In the further analysis
we work with the three state model as no significant extra
4 Estimation of climate states modelling ability is given by including more than three states
for two out of the three data sets.
In all cases we use uninformative priors with large variance. Using the three state model we find that one sjatel,
For examplex ~ A/(0,100. Repeated simulations reveal corresponds very closely to the DO events. The sfate
that the results are not sensitive to the prior. To determinéd occurs during stadial and interstadial periods and corre-
the model most supported by the data we estimate marginaponds to small fluctuations. There is also some agreement
likelihoods using the method described above. The logarithmbetween the temperature decrease stat®, and the termi-
of the marginal likelihoods is computed from each of the 100nation of GIS. However, this does not occur for all DO cy-
ensemble members of the Gaussian Process regression usiolgs so we focus our attention upon the state corresponding to

where/i, £ and2 is the posterior mode andl is the covari-
ance matrix computed from the MCMC output.

Clim. Past, 6, 787794, 2010 www.clim-past.net/6/787/2010/
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Fig. 4: Posterior probability of DO event as a function of K
time for NGRIP on the GICCOS5 timescale. (a) NGRIP, 1320
1 —
DO events. Figurd shows the posterior probability of a DO 08
event for the NGRIP data, i.e for each timhthe probability ‘7\
thatS; = 1. The posterior distribution of hidden states is sim- 0.6
ilar for the other data sets, although more events are detected :(Eu
in the GISP2 data (not shown). The events numbered by 50'4 , ;
Dansgaard et a(1993, all have high posterior probability, o 0.2
implying that the model is able to distinguish these events. L
There are, however several other regions of high probability, 0 -
for example at 26.5 kyr BP. Although not typically regarded 0 50100 10000

as DO events in the literature, these jumps in temperature
share similar statistics and may be important in the analysis (b) GRIP, 2700
of recurrence patterns. Many of the high probability regions -

—_

cluster together and would previously have been classed as a ;
single event. Here, we only regard two events as one if they 038 Pl
occur in immediate succession. In this way we make little <
restriction on the minimum time period between events. 06
For each data set we retained the hidden state sequence = :
with the largest posterior probability and calculated its dis- 2 0.4 !
tribution of waiting times. These are shown in Figalong o 0.2 ’:';
with their best fit exponential distribution. The 95% confi- Y
dence interval is computed according to the bounds derived 0 :
in Massart(1990. The theoretical distribution is within this 0 50100 10000

bound for all three data sets implying that we can not reject
the model of a Poisson process with no periodicity. (c) GISP2, 2900

The posterior distributions for the parameter of integest
are shown in Fig6. Note that this parameter has units of Fig. 5: Empirical cumulative waiting times (red) with the
8180%0 and can be considered to be proportional to the lo-best fit exponential distribution (black) and the 95% confi-
cal temperature change within a 50 year period for each cli-dence interval. Also given are the mean waiting times in
mate state. There is a clear distinction in this forcing be-years.
tween different climate stategio, corresponding to the re-
laxation state, has amean ©0.05— 0.0 for the three data ¢ Analysis of periodicity
sets. The termination state has mea?.2 to—1.7. There
Is good agreement for the DO state between the three datgg i, pitieysen et al.(2007 we use the Rayleigh mea-
sets with a mean of apoprOX|mateI)02 Th|§ corresponds to sure to quantify the amount of periodicity for discrete
a rate of change o0f.04%. per year. This is larger than the events. This is a measure for the average phase coher-

0.01%o per year oRahmstor{2003, although our model al- ence forN events. For period it is given by R(T) =

lows noise in the state which would allow a DO event to have ; |y Dty i 2l .
a slower temperature change. ¥ | 22n=1(COS=7* +isin=z)|. For each period” we com-

pute the Rayleigh measure and assess the significance of the
result by comparing it to the distribution generated from a

www.clim-past.net/6/787/2010/ Clim. Past, 6, 7824, 2010
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Fig. 7: Rayleigh measures for ice core data (solid lines)
shown together with the ensemble means (dashed lines) and
upper & values (dotted lines) in each case. Shown are
NGRIP (black), GRIP (red) and GISP2 (blue).

6 Conclusions

We propose a statistical modelling strategy able to identify
different climate regimes corresponding to differing rates of
temperature change. This is a more objective method than
setting threshold criteria based on the appearance of the data.
The method allows for uncertainty in the detection of events,
avoiding the sensitivity of results due to absolute inclusion or
exclusion of a single event according to an authors preferred
interpretation of the data.

To obtain a regular 50 year sampling, and to check the
robustness of the procedure, we apply the method to an en-
semble of time series derived from a Gaussian Process re-
gression, separately for three Greenl&HtD series: NGRIP,

_4 = " ™ 0 GRIP and GISP2 on different time scales. Using a Bayesian
1, model comparison method we find that models with three
states offer a good fit to all three data sets.
Fig. 6: Posterior distributions of forcing for three hidden The inferred model states have distinct posterior distribu-
states. There is significant agreement between NGRIP angqns for their rates of temperature change with good agree-
GRIP for all three states. ment for all data sets. We found that one of the states closely
corresponds to the onset of Greenland Interstadials and ac-
null ensemble of the original data. The null ensemble is gencounts for all of the canonical Dansgaard-Oeschger events
erated by sampling the data without replacement so that it iof Dansgaard et a[1993. This state had a mean rate of
randomly ordered. Then hidden state sequences are gendemperature change of 0.04%o. per year, which is greater than
ated by sampling from the posterior distribution conditionedthe 0.01%. per year threshold criteria Rhhmstorf(2003.
upon the randomly ordered data and the other parameters (ir€ontrary toRahmstor{2003, DO event 9 at 40 kyr BP is in-
ferred for the original data). This means that the climatecluded in this state while the Allergd event, occurring at the
states in the ensemble will be equal in distribution to thosestart of the Younger Dryas, is not. Although the threshold
in the actual data but their occurrence will be randomised. criteria is larger the method allows for greater flexibility in

Figure 7 shows the Rayleigh measure computed for thethe identification of states due to the incorporation of noise.
state corresponding to the DO events over a range of periods Having identified states we analyse their recurrence prop-
T with the mean and values for the null ensemble. Using erties. From the waiting time distribution we find no evi-
this method no significant peridiocities occur for any of the dence to reject the null hypothesis of randomly timed events.
data sets agreeing with the result of Figor randomly timed ~ We also apply the Rayleigh periodicity measure used by
events. Ditlevsen et al.(2007 to an ensemble derived from the

Clim. Past, 6, 787794, 2010 www.clim-past.net/6/787/2010/
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posterior distribution of shuffled data and find no evidenceAppendix A

of significant periodicity within thed80 series. Thus, we

cannot reject our null hypothesis that DO events are randonConditional posterior distributions

events. This suggests that DO events are likely triggered

by internal dynamics of the climate system. The periodic-For i ;, we have

ity seen in GISP2 by previous authors is apparently due to a

small number of events that occur at the regular interval of NG IS = j1Xi 1 — S GMLS; = j1X0)

1450-1500 years. The method we present is robust to thede’ va_;)l[[si =] +g.2/g/3

events. We conclude that there is no lasting periodic signal > 5 !

for the rapid warming events of the last glacial period. %% (A1)
We applied the analysis to the GRIP ice core record on O'[%ZlN:_OlI[Si =j]_|_gj2 ’

the GICCO5 time scale giving parameter estimates similar

to those in Fig6. Contrasting with the results for NGRIP wherel[S; = j]=1if S; = j or 0 otherwise. The posterior

using this time scale there is more support for a single statdor z; is the Gamma distribution

model, similar to the results for the other time scales shown vt ' vt

in Fig. 3a. This implies that some of the differences in the .. _ . <a+ Z I[Si _]],b+%ZI[S,~ = (Xit1— X —//«s,»)2>~

’

results could be due to regional effects (different locations of ! == 2 5

drilling sites for GRIP and NGRIP) rather than the different (A2)

time scale. Indeed the NGRIP data is less smooth, with larger

jumps than the other data sets. Each unobserved state is sampled from the updated multino-

Here, we have been primarily concerned with statisticalmial distribution with probability
methods to detect jump events within noisy, irregularly sam- -
pled data. To make conclusions about variability of high P(S; = j) OC)\/'\/T_jeXFX—E](Xi+1_Xi —1)?. (A3)
latitude glacial climate one should relate the signal to tem-
perature while controlling for regional affects. Past changesvhereas. is sampled as a vector, from the updated Dirichlet
in atmospheric transport from the source of evaporation todistribution
the site of measurement can affect the stable isotope ratios. =~
The seasonality of precipitation can also affect the tempera2L ~Dir(a), (A4)
ture reconstruction. Simulation studies are one way to gain A N-1 .
better understanding of the influencessdfO signals Krin- Whered; =+ ¥ [5: = j).
ner et al, 1997. Multi-proxy studies may als_o be useful to 54 Laplace-Metropolis estimator
control for factors that could affe&®0 besides the tem-
perature of condensatioMasson-Delmotte et a{2009 re-  The approximation of the marginal likelihood by the
construct temperatures allowing for changes in seasonality of gp|ace-Metropolis method.
precipitation and seawater isotope composition using a dif-
ferent slope between temperature and isotope ratio for cold®(X) ~ (27)%/?|w|¥?P(X|0) P ©H), (A5)
and warm periods. The temperatures are shown to be con-

sistent with the borehole and gas fractionation temperaturévhereX is the observed daté,is the posterior mode and
reconstruction. is the empirical covariance matrix. In this equation the miss-

Future work could include applying our analysis directly ing variablesS have been integrated out. In this model this is
to temperature resonstructions. Extensions could include agomputationaly tractable because fheare independent for
extra component to the likelinood function incorporating the @ll i and alsoX; is independent ok ; given §; ands;. The
dating uncertainty. This would be a more challenging statisti-likelihood term is then

cal problem as these errors are not independent. This analysis . n .

would benefit from including the estimated maximum annuallogP (X|0) = ZlogP(X[ |0) (A6)
layer counting errors available for the NGRIP GICCO5 time i=1

scale.

It is easy to evaluat® (X;|0) as it is simply a sum over all
possibleJ hidden states:

J
P(Xi10) =Y P(Xi|Si=j,0)P(S; = jl0). (A7)
j=1
The full data likelihood is the® (X;|S; = j,é) =NXit1—
X; —£j,1/,/%;), with the priorP(S; = j|0) = A;.

www.clim-past.net/6/787/2010/ Clim. Past, 6, 7824, 2010
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