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Abstract. We present statistical methods to determine cli-
mate regimes for the last glacial period using three temper-
ature proxy records from Greenland: measurements ofδ18O
from the Greenland Ice Sheet Project 2 (GISP2), the Green-
land Ice Core Project (GRIP) and the North Greenland Ice
Core Project (NGRIP) using different timescales. A Markov
Chain Monte Carlo method is presented to infer the number
of states in a latent variable model along with their associated
parameters. By using Bayesian model comparison methods
we find that a model with 3 states is sufficient. These states
correspond to a gradual cooling during the Greenland In-
terstadials, more rapid temperature decrease into Greenland
Stadial and to the sudden rebound temperature increase at the
onset of Greenland Interstadials. We investigate the recur-
rence properties of the onset of Greenland Interstadials and
find no evidence to reject the null hypothesis of randomly
timed events.

1 Introduction

Measurements ofδ18O from Greenland ice cores for the last
glacial are a good proxy for regional temperature. These time
series indicate large temperature changes occurring on time
scales of centuries or less. They are characterised by a rapid
warming of up to 16◦C, followed by a slow cooling period.
They are known as Dansgaard-Oeschger (DO) events and
were numbered and dated byDansgaard et al.(1993) using
a time scale derived from a simple ice flow model and con-
strained by well established events at 11.5 kyr and 110 kyr BP
(before present). The DO events correspond to the onset of a
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Greenland Interstadial (GIS), the warm phase of the glacial
period. An alternation between GIS and the colder Green-
land Stadial (GS) will be referred to as a DO cycle.

There is evidence that these dramatic climate shifts at high
latitudes in the Northern Hemisphere had global scale ef-
fects. For example,Blunier et al.(1998) observed an out
of phase signal in Antarctic ice cores, whereasWang et al.
(2001) note general agreement of temperature changes in
GISP2 and changes in the hydrological cycle from stalag-
mite records from the Hulu cave in China. A new common
time scale of Greenland/Antarctica temperature back to Ma-
rine Isotope Stage 5 will allow more accurate tests of mod-
elling ability to simulate the global impacts of these events
(Capron et al., 2010).

Bond et al. (1993) used the abundance of planktic
foraminifera in sediment records to show that sea surface
temperatures in the North Atlantic (NA) are correlated with
DO cycles. They also note that there are longer periods of
cooling, which each include several DO cycles. At the ter-
mination of these 10–15 kyr cycles there are signatures of
large scale ice rafting events that correlate with a GS. Known
as Heinrich events, they are associated with collapse of the
Laurentide ice sheet, thereby inundating the NA with fresh-
water, preventing the formation of North Atlantic Deep Wa-
ter (NADW) and reducing the thermohaline circulation. The
subsequent depletion of icebergs in the NA is thought to pro-
voke a rapid reorganisation of the climate system and a tem-
perature increase into a prominent GIS followed by gradual
cooling punctuated by a series of DO cycles. This does not
explain the mechanism driving the shorter DO cycles, al-
though they are considered to be linked with similar ice sheet
calving affecting the salinity of the NA and the formation of
NADW.
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The apparent regular occurrence of DO events has lead
some authors to suggest an external forcing or internal os-
cillation of the climate system. In particular the Fourier
spectrum of the temperature record using the GISP2 time
line has a significant peak at 1470 years (Grootes and Stu-
iver, 1997). However, theδ18O record from the Greenland
Ice Core Project GRIP, completed the same year as GISP2,
whilst also exhibiting DO cycles does not have this spectral
peak. Neither does that from the North Greenland Ice Core
Project (NGRIP) using the GICC05 time scale.

Alley et al. (2001) suggest a simple model for the dynam-
ics that includes weak periodic forcing and a stochastic reso-
nance mechanism.Stocker and Johnsen(2003) link this to a
bipolar thermal “see-saw”, explaining the observed response
in Antarctica andBraun et al.(2005) propose a resonance be-
tween two faster solar modes of variability to give a resulting
weak signal at 1470 years.

It has been argued that Fourier methods are not suitable to
detect recurrence patterns for such non-linear discrete events
that are likely generated by a thresholding process.Rahm-
storf (2003) measures the deviation of the events from a per-
fect 1470 years signal and finds that their timing is well
within the assumed dating error, although there are several
1470 year periods where no event occurs at all.Ditlevsen
et al. (2007) assess the significance of the observed period-
icity by defining null models and computing the Rayleigh
measure and standard deviation of residuals for ensembles of
surrogate data. They find no evidence to reject the null model
of randomly timed events. The exception is when using the
GISP2 ice core record and omitting DO event 9 as numbered
by Dansgaard et al.(1993). However, this does not change
the result when using the more recent NGRIP ice core record.

The event detection algorithm ofRahmstorf(2003), which
uses a criteria of 2‰δ18O increase over 200 years, does
not include DO 9, potentially influencing the conclusion.
Ditlevsen et al.(2005) defines a DO event as first up cross-
ings of an upper level following a lower level, identifying
several more events and concluding that they are randomly
paced. Given the sensitivity of results regarding the existence
of periodicity to the definition of the events it is desirable to
have a method that objectively detects their occurrence.

Kwasniok and Lohmann(2009) show that a stochas-
tic double well model could be fitted using the unscented
Kalman filter to capture stadial-interstadial transitions, while
Ditlevsen (1999) argues that non-Gaussian “heavy tailed”
noise is suitable to capture extreme events within Green-
land paleoclimate data.Livina et al. (2010) used GRIP and
NGRIP δ18O data to study the number of states in the cli-
mate for the last 60 kyrs using a polynomial fitting algorithm
to windows of the data. They detect the two states corre-
sponding to the stadial and interstadials of the last glacial
and find that these merge to a single state around 25 kyrs BP.
Although these methods allow for asymmetry between cli-
mate states they do not include the characteristic “saw tooth”
features of DO temperature cycles.
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Fig. 1: (δ18O) from NGRIP, GRIP and GISP2 expressed in
‰ with respect to Vienna Standard Mean Ocean Water us-
ing GICC05, ss09sea and Meese/Sowers time scales respec-
tively.

The data sets we study are shown in Fig.1. The NGRIP
core is dated using GICC05 (Andersen et al., 2006), GRIP
chronology from the ss09sea time scale (Johnsen et al., 2001)
and GISP2 according to the Meese/Sowers time scale (Meese
et al., 1997). We consider the period 82–11.0 kyr BP for
GRIP and GISP2, and 60–11.0 because of limited resolution
at older dates.

The aim of this paper is to study models that are able
to capture the features of the cycles (sudden temperature
changes and small fluctuations) while also including the as-
sociated uncertainty in the identification of climate states.
This uncertainty can then be included in subsequent analy-
sis. We consider there to be hidden states corresponding to
different climate regimes and identify these in a probabilistic
sense. We generate an ensemble of data sets derived from
NGRIP, GRIP or GISP2 using Gaussian Process regression.
This incorporates variability into the data and reflects our un-
certainty about the dating and measuring process while re-
taining the characteristic features of the DO cycles. It will
also provide a means of assessing how robust our inference
method is.

We apply a Bayesian statistical analysis to each ensemble
member, which makes no assumptions about the parameters
(e.g. mean and variance of the temperature change in a given
state). Instead these are computed from the posterior distri-
bution using Bayes’ rule. We discuss Gaussian Process Re-
gression in Sect. 2 and the modelling strategy in Sect. 3. In
Sect. 4 we analyse the results from the posterior simulation
and find that models with three climate regimes fit the data
well. In Sect. 4 we analyse the timing of the model state
corresponding to the DO events.

2 Gaussian process regression

We consider discrete time models and so require data at reg-
ular intervals. An interpolation method such as cubic splines
will smooth the data removing any jumps or discontinuities.
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Fig. 2: Gaussian Process (GP) fit to the GISP2 data set. The
raw data is shown in red with the mean from the GP in blue
and the upper and lower 3σ levels in grey.

Since it is the jumps we are interested in we choose to
use Gaussian process regression (GPR), which can be tuned
to capture the “roughness” of the data. GPR is a linear
least squares estimation algorithm for interpolation where the
sample path is considered to be a random process. It also pro-
vides uncertainty estimates of the interpolated sample path.

The method relies upon the specification of a covariance
function between data points. We use the Matern class
with smoothness parameter set equal to 1 (seeRasmussen
and Williams, 2006). Then pointsr apart have covariance
K(r) = exp(−r/ l), wherel is the length scale. This is then
equivalent to a first order autoregressive (AR(1)) covariance,
generating continuous but non-differentiable time series. The
length scale, process noise and observation noise are set
using the maximum likelihood software ofRasmussen and
Williams (2006).

The method generates a distribution over processes as
shown in Fig.2 for GISP2. It is clear that the uncertainty
increases as we go back in time but decreases around the ob-
served values. The “saw tooth” feature of the DO cycles is
preserved.

We also apply the method to all three data sets and obtain
an ensemble of 100 members from the Gaussian process dis-
tribution for each ice core, each with a time step of 50 years.

3 Latent state models

We assume that there areM unobserved (latent) states gov-
erning the temperature. Rather than consider states corre-
sponding to absolute temperature, for example, a high tem-
perature interstadial and a cooler stadial, we model the tem-
perature increments of the series. For example, there may be
one state for the sudden temperature increase at the onset of a
Greenland Interstadial (GIS) and another for the slow cooling
during the GIS. In this way we aim to capture the asymmetry
between warming and cooling phases of the DO cycles. Con-
sidering only the increments implies that the method will not

be affected by longer time scale variations in the data such as
the Milankovitch cycles.

The parameters of the model include the mean tempera-
ture change per unit time and the variance within each state.
These are not fixed but are inferred directly from the data us-
ing Bayes’ rule. We analyse models with up to five hidden
states. The occurrence of each state and all of the associated
parameters are estimated in a Bayesian framework from the
posterior distribution. We also determine the most suitable
model for the data by estimating their marginal likelihoods.
This involves approximating the integral over the whole pa-
rameter space to obtain an estimate of the probability of the
model given the data. In this way, models with too many
parameters, that over fit the data, are penalised.

We assume that the time series can be modelled as a ran-
dom walk, dependent upon the state of the climate. This is in-
tended to capture the differing distributions of the increments
that occur during different regimes. Note that one could use a
more general first order process, however we found that this
did not significantly affect the identification of climate states.

Under the random walk model the dataXi at timei evolves
according to

Xi+1 = Xi +µSi
+σSi

εi , (1)

whereεi ∼N (0,1) is the standard normal distribution,µSi
is

the forcing andσSi
is the standard deviation in stateSi . For

N data points, the likelihood function of the data given the
unobserved state sequence is

P(X|µ,σ,S) =

N−1∏
i=0

N (Xi+1−Xi −µSi
,σ 2

Si
). (2)

To capture our uncertainty about the time spent in each state
an extra layer is introduced into the hierarchy that conditions
S on an unknown parameterλj , j ∈ {0...M}. This is the
probability thatSi is in statej , implying a multinomial dis-
tribution forSi .

In Bayesian modelling one considers the unknown param-
eters as random variables and aims to compute their prob-
ability distribution conditional upon the observed data. For
generic parameterθ and dataX the posterior distribution is
proportional to the product of likelihood function and prior
distributionP(θ |X) ∝ P(X|θ)P (θ). The prior distribution
can incorporate any previous knowledge aboutθ or it can be
designed to be as “uninformative” as possible.

In our problemλj , µj and σj for j ∈ {0...M} are ran-
dom variables which need a prior distribution. We use conju-
gate priors, which means that the posterior distributions for
a given parameter will be of the same family as the priors.
The full posterior will be intractable but using conjugate pri-
ors implies that one can sample each parameter from their
conditional posterior separately. One then cycles through the
conditional posterior distributions to obtain a sample from
the full joint distribution. This is a Gibbs sampling algorithm
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and will generate dependent samples from the full poste-
rior distribution after discarding some initial convergence pe-
riod (for an introduction to Bayesian inference using Markov
Chain Monte Carlo (MCMC) methods seeGilks et al., 1995).

The conjugate prior forλj is given by a Dirichlet distri-
bution with hyperparameterα. This respects the constraint∑

j λj = 1. For σj one definesτj = 1/σ 2
j and assigns a

Gamma priorτj ∼ 0(a,b), whereasµj is a priori normally
distributedµj ∼N (0,σ 2

µ). The hyperparametersa, b andσµ

are fixed. The posterior distributions will then be Dirichlet,
Normal and Gamma respectively. Their particular form is
given in the appendix.

To estimate the number of states we compute the probabil-
ity of the model given the data, i.e the marginal likelihood.
For modelM, the marginal likelihood is

P(X|M) =

∑
S

∫
P(X|µ,τ,S)P (S|λ)P (µ,τ,λ|M)dµdτ dλ. (3)

To estimate this integral/sum one could simply sample from
the prior and compute an average of the likelihood function
for these values. However, this is likely to be a poor estima-
tor due to the discrepancy between prior and posterior distri-
butions (Kass and Raftery, 1995). Another option would be
to use the Harmonic Mean estimator. This is calculated us-
ing samples from the posterior so is more accurate although
it does not obey a Gaussian central limit theorem and so ex-
hibits instabilities due to the occasional sample with very low
likelihood value (Kass and Raftery, 1995).

We choose instead to use the Laplace-Metropolis estima-
tor of Raftery (1996). This is an adaptation of the classic
Laplace method, which is known to provide more efficient
estimates than those based on posterior simulation. However,
it is not always applicable since it requires the availability
of the posterior mode and covariance matrix. Instead one
can estimate these quantities from the posterior simulation
output.

As the hidden states are conditionally independent givenθ

the above sum can be performed analytically and each inte-
gral approximated separately

P(X|M) ≈

∑
S

(2π)d/2
|9|

1/2P(X|µ̂,τ̂ ,S)P (S|λ̂)P (µ̂,τ̂ ,λ̂|M), (4)

whereµ̂, τ̂ andλ̂ is the posterior mode and9 is the covari-
ance matrix computed from the MCMC output.

4 Estimation of climate states

In all cases we use uninformative priors with large variance.
For exampleµ ∼N (0,100). Repeated simulations reveal
that the results are not sensitive to the prior. To determine
the model most supported by the data we estimate marginal
likelihoods using the method described above. The logarithm
of the marginal likelihoods is computed from each of the 100
ensemble members of the Gaussian Process regression using
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Fig. 3: Marginal likelihoods for the ensemble derived from
each data set for models with 1–5 states. The red line indi-
cates the median of the ensemble, the box is the 25 and 75
percentiles, the whiskers are the maximum and minimum of
the distribution while the red markers indicate outliers.

10 000 samples from the posterior. The results are shown in
boxplot form in Fig.3.

There is a wider spread in results for GISP2 than GRIP
or NGRIP due to the broad distribution of sampled series
shown in Fig.2. The values for NGRIP are much higher
due to the smaller data set. If we consider the Bayes Factors
BFij for modeli versusj for the medians alone we find that
for GRIP and GISP2 the three state model is supported. For
GRIP we have BF32 = 4.1×104 regarded as strong by the
scale ofKass and Raftery(1995), whereas for GISP2 we have
BF32= 5.2, regarded as substantial evidence. For NGRIP we
have BF43= 22, favouring four states. In the further analysis
we work with the three state model as no significant extra
modelling ability is given by including more than three states
for two out of the three data sets.

Using the three state model we find that one statej = 1,
corresponds very closely to the DO events. The statej =

0 occurs during stadial and interstadial periods and corre-
sponds to small fluctuations. There is also some agreement
between the temperature decrease statej = 2, and the termi-
nation of GIS. However, this does not occur for all DO cy-
cles so we focus our attention upon the state corresponding to
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Fig. 4: Posterior probability of DO event as a function of
time for NGRIP on the GICC05 timescale.

DO events. Figure4 shows the posterior probability of a DO
event for the NGRIP data, i.e for each timei the probability
thatSi = 1. The posterior distribution of hidden states is sim-
ilar for the other data sets, although more events are detected
in the GISP2 data (not shown). The events numbered by
Dansgaard et al.(1993), all have high posterior probability,
implying that the model is able to distinguish these events.
There are, however several other regions of high probability,
for example at 26.5 kyr BP. Although not typically regarded
as DO events in the literature, these jumps in temperature
share similar statistics and may be important in the analysis
of recurrence patterns. Many of the high probability regions
cluster together and would previously have been classed as a
single event. Here, we only regard two events as one if they
occur in immediate succession. In this way we make little
restriction on the minimum time period between events.

For each data set we retained the hidden state sequence
with the largest posterior probability and calculated its dis-
tribution of waiting times. These are shown in Fig.7 along
with their best fit exponential distribution. The 95% confi-
dence interval is computed according to the bounds derived
in Massart(1990). The theoretical distribution is within this
bound for all three data sets implying that we can not reject
the model of a Poisson process with no periodicity.

The posterior distributions for the parameter of interestµ

are shown in Fig.6. Note that this parameter has units of
δ18O‰ and can be considered to be proportional to the lo-
cal temperature change within a 50 year period for each cli-
mate state. There is a clear distinction in this forcing be-
tween different climate states.µ0, corresponding to the re-
laxation state, has a mean of−0.05−0.0 for the three data
sets. The termination state has mean−2.2 to−1.7. There
is good agreement for the DO state between the three data
sets with a mean of approximately 2.0. This corresponds to
a rate of change of 0.04‰ per year. This is larger than the
0.01‰ per year ofRahmstorf(2003), although our model al-
lows noise in the state which would allow a DO event to have
a slower temperature change.
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5 Analysis of periodicity

As in Ditlevsen et al.(2007) we use the Rayleigh mea-
sure to quantify the amount of periodicity for discrete
events. This is a measure for the average phase coher-
ence forN events. For periodT it is given by R(T ) =

1
N

∣∣∣∑N
n=1(cos2πtn

T
+ isin2πtn

T
)

∣∣∣. For each periodT we com-

pute the Rayleigh measure and assess the significance of the
result by comparing it to the distribution generated from a
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Fig. 6: Posterior distributions of forcingµ for three hidden
states. There is significant agreement between NGRIP and
GRIP for all three states.

null ensemble of the original data. The null ensemble is gen-
erated by sampling the data without replacement so that it is
randomly ordered. Then hidden state sequences are gener-
ated by sampling from the posterior distribution conditioned
upon the randomly ordered data and the other parameters (in-
ferred for the original data). This means that the climate
states in the ensemble will be equal in distribution to those
in the actual data but their occurrence will be randomised.

Figure 7 shows the Rayleigh measure computed for the
state corresponding to the DO events over a range of periods
T with the mean and 2σ values for the null ensemble. Using
this method no significant peridiocities occur for any of the
data sets agreeing with the result of Fig.7 for randomly timed
events.
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upper 2σ values (dotted lines) in each case. Shown are
NGRIP (black), GRIP (red) and GISP2 (blue).

6 Conclusions

We propose a statistical modelling strategy able to identify
different climate regimes corresponding to differing rates of
temperature change. This is a more objective method than
setting threshold criteria based on the appearance of the data.
The method allows for uncertainty in the detection of events,
avoiding the sensitivity of results due to absolute inclusion or
exclusion of a single event according to an authors preferred
interpretation of the data.

To obtain a regular 50 year sampling, and to check the
robustness of the procedure, we apply the method to an en-
semble of time series derived from a Gaussian Process re-
gression, separately for three Greenlandδ18O series: NGRIP,
GRIP and GISP2 on different time scales. Using a Bayesian
model comparison method we find that models with three
states offer a good fit to all three data sets.

The inferred model states have distinct posterior distribu-
tions for their rates of temperature change with good agree-
ment for all data sets. We found that one of the states closely
corresponds to the onset of Greenland Interstadials and ac-
counts for all of the canonical Dansgaard-Oeschger events
of Dansgaard et al.(1993). This state had a mean rate of
temperature change of 0.04‰ per year, which is greater than
the 0.01‰ per year threshold criteria ofRahmstorf(2003).
Contrary toRahmstorf(2003), DO event 9 at 40 kyr BP is in-
cluded in this state while the Allerød event, occurring at the
start of the Younger Dryas, is not. Although the threshold
criteria is larger the method allows for greater flexibility in
the identification of states due to the incorporation of noise.

Having identified states we analyse their recurrence prop-
erties. From the waiting time distribution we find no evi-
dence to reject the null hypothesis of randomly timed events.
We also apply the Rayleigh periodicity measure used by
Ditlevsen et al.(2007) to an ensemble derived from the
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posterior distribution of shuffled data and find no evidence
of significant periodicity within theδ18O series. Thus, we
cannot reject our null hypothesis that DO events are random
events. This suggests that DO events are likely triggered
by internal dynamics of the climate system. The periodic-
ity seen in GISP2 by previous authors is apparently due to a
small number of events that occur at the regular interval of
1450–1500 years. The method we present is robust to these
events. We conclude that there is no lasting periodic signal
for the rapid warming events of the last glacial period.

We applied the analysis to the GRIP ice core record on
the GICC05 time scale giving parameter estimates similar
to those in Fig.6. Contrasting with the results for NGRIP
using this time scale there is more support for a single state
model, similar to the results for the other time scales shown
in Fig. 3a. This implies that some of the differences in the
results could be due to regional effects (different locations of
drilling sites for GRIP and NGRIP) rather than the different
time scale. Indeed the NGRIP data is less smooth, with larger
jumps than the other data sets.

Here, we have been primarily concerned with statistical
methods to detect jump events within noisy, irregularly sam-
pled data. To make conclusions about variability of high
latitude glacial climate one should relate the signal to tem-
perature while controlling for regional affects. Past changes
in atmospheric transport from the source of evaporation to
the site of measurement can affect the stable isotope ratios.
The seasonality of precipitation can also affect the tempera-
ture reconstruction. Simulation studies are one way to gain a
better understanding of the influences onδ18O signals (Krin-
ner et al., 1997). Multi-proxy studies may also be useful to
control for factors that could affectδ18O besides the tem-
perature of condensation.Masson-Delmotte et al.(2006) re-
construct temperatures allowing for changes in seasonality of
precipitation and seawater isotope composition using a dif-
ferent slope between temperature and isotope ratio for cold
and warm periods. The temperatures are shown to be con-
sistent with the borehole and gas fractionation temperature
reconstruction.

Future work could include applying our analysis directly
to temperature resonstructions. Extensions could include an
extra component to the likelihood function incorporating the
dating uncertainty. This would be a more challenging statisti-
cal problem as these errors are not independent. This analysis
would benefit from including the estimated maximum annual
layer counting errors available for the NGRIP GICC05 time
scale.

Appendix A

Conditional posterior distributions

Forµj , we have

µj ∼N
(

(
∑N−1

i=0 I [Si = j ]Xi+1−6N−1
i=0 I [Si = j ]Xi)∑N−1

i=0 I [Si = j ]+σ 2
j /σ 2

µ

,

σ 2
j σ 2

µ

σ 2
µ

∑N−1
i=0 I [Si = j ]+σ 2

j

)
, (A1)

whereI [Si = j ] = 1 if Si = j or 0 otherwise. The posterior
for τj is the Gamma distribution

τj ∼ 0

(
a+

N−1∑
i=0

I [Si = j ]

2
,b+

1

2

N−1∑
i=0

I [Si = j ](Xi+1−Xi −µSi
)2

)
.

(A2)

Each unobserved state is sampled from the updated multino-
mial distribution with probability

P(Si = j) ∝ λj
√

τj exp(−
τj

2
(Xi+1−Xi −µj )

2). (A3)

whereasλ is sampled as a vector, from the updated Dirichlet
distribution

λ ∼ Dir(α̂), (A4)

whereα̂j = α+
∑N−1

i=0 I [Si = j ].

A1 Laplace-Metropolis estimator

The approximation of the marginal likelihood by the
Laplace-Metropolis method.

P(X)≈ (2π)d/2
|9|

1/2P(X|θ̂ )P (θ̂), (A5)

whereX is the observed data,θ̂ is the posterior mode and9
is the empirical covariance matrix. In this equation the miss-
ing variablesS have been integrated out. In this model this is
computationaly tractable because theSi are independent for
all i and alsoXi is independent ofXj givenSi andSj . The
likelihood term is then

logP(X|θ̂ ) =

n∑
i=1

logP(Xi |θ̂ ) (A6)

It is easy to evaluateP(Xi |θ̂ ) as it is simply a sum over all
possibleJ hidden states:

P(Xi |θ̂ ) =

J∑
j=1

P(Xi |Si = j,θ̂)P (Si = j |θ̂ ). (A7)

The full data likelihood is thenP(Xi |Si = j,θ̂) =N (Xi+1−

Xi − µ̂j ,1/
√

τ̂j ), with the priorP(Si = j |θ̂ ) = λj .
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