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Abstract. A systematic coherence analysis is presented for
the set of the most prominent millennial reconstructions of
northern hemispheric temperature. The large number of mu-
tual coherences underwent a clustering analysis that revealed
five significant, mutually incoherent (“inconsistent”) clus-
ters. The use of multiple proxies seems to be causing the
clustering, at least in part, but not in an easily definable,
physical way. Alternatively, a multidimensional scaling is
performed on the same set of coherences. This results in
a graphic, two-dimensional rendering of the reconstructions
whose geometry (location and distance) is given by the co-
herences. Both approaches offer complementary ways in
dealing with the inconsistencies.

1 Introduction

How inconsistent do two models have to be in order to dis-
miss at least one of them? – For example, if model M1 pur-
ports that at least 60%± 5% of all crows are green and model
M2 purports 55%± 5% are red, then, using classic logical
and arithmetical reasoning, the models are inconsistent and
at least one model must be dismissed as being wrong. (Of
course, both can be wrong.) But what happens if the un-
certainty is slightly larger (10% instead of 5%)? And are
these arguments still valid in times of “reasoning under un-
certainty” (Shafer and Pearl, 1990; Parsons, 2001) and an
emergence of “paraconsistent” logics (Priest, 2000, 2002;
Arieli, 2008)? In the latter, for example, logical reasoning
does not become useless as soon as an “inconsistency” oc-
curs in a system, in the form of a proposition (A) together
with its opposite (¬A).
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Such questions may arise when investigating the modeling
– or reconstructing – of past millennial northern hemispheric
(NH) temperature. They arose in me, at least, in an attempt
to understand the reconstructions of the latest IPCC report
(Jansen et al., 2007; Fig. 6.10), of which the following ex-
tend back to the year 1000: (Jones et al., 1998; Mann et al.,
1999; Briffa, 2000; Esper et al., 2002; Mann and Jones, 2003;
Moberg et al., 2005; d’Arrigo et al., 2006). The figure in
that report displays an overlap of the 1σ and 2σ uncertainty
bands of the reconstructions, weighted accordingly, that ap-
proximates the “most likely” temperature for any given year.
In statistical terms, the figure entails what is also known as
a “probability mixture model” (McLachlan and Peel, 2000),
with all sub-models weighted equally. The reconstructions
are thus tacitly considered as mutually consistent, and con-
flicting variations between any two of them are not resolved,
but instead add to an overall uncertainty of a unique, albeit
unknown NH temperature.

The present study investigates in more detail whether this
consistency assumption is actually justified, by analyzing
“consistency” very simply in terms of spectral coherence.
I will not delve, however, into any logical implications of
potential inconsistencies, or whether a paraconsistent frame-
work is indicated in this case or not, but leave the semantic
details of the notion to the reader. For the purpose of this
study I have also included the reconstructions (Crowley and
Lowery, 2000) and (Mann et al., 2008), making a total of
ten reconstructions listed in Table 1. That all reconstructions
are usually weighted equally, such as in the IPCC Figure, is
mainly due to the lack of better evidence. Many verification
attempts (Briffa et al., 1988; Mann et al., 1998, 2008; Ruther-
ford et al., 2005; Wahl et al., 2006) suffer from insufficient
independent verification data, which severely obscures the
corresponding statistics (Bürger, 2007; Christiansen et al.,
2009). This lack of data can partly be evaded by using the
synthetic data of a climate simulation, where “pseudo” prox-
ies, which are temperature grid points degraded by noise, are
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Table 1. The ten reconstructions used in this study, with target sea-
son and proxy type.

Symbol Reference Season Proxies

Br00 Briffa, 2000 Summer trees
dA06 d’Arrigo et al., 2006 Annual trees
Es02 Esper et al., 2002 Annual trees
MJ03 Mann and Jones, 2003 Annual multi-proxy
Mo05 Moberg et al., 2005 Annual multi-proxy
CL00 Crowley and Lowery, 2000 Annual multi-proxy
Jo98 Jones et al., 1998 Summer multi-proxy
Ma08L Mann et al., 2008 Annual multi-proxy
Ma08 Mann et al., 2008 Annual multi-proxy
Ma99 Mann et al., 1999 Annual multi-proxy

used to track temperature (Von Storch et al., 2004; Mann et
al., 2005; Lee et al., 2008; Christiansen et al., 2009). The
variance of the noise, or the signal-to-noise ratio (SNR), is
determined from local temperature-proxy correlations. Ac-
cording to these studies none of the tested methods revealed
a performance conclusive enough to provide reliable temper-
ature estimates for the entire millennium, at least not for the
appropriate setting, that is, a small proxy network with a low
SNR. It should be noted, moreover, that the reported perfor-
mance measures are likely too optimistic anyway, as the local
temperature-proxy error model – independent white noise –
has been shown to be inadequate (Bürger et al., 2006; B̈urger,
2007); see also (Von Storch et al., 2006).

With verification being thus poor, debates about compet-
ing approaches to climate reconstruction, such as regional
curve standardization (Briffa et al., 1992; Esper et al., 2002),
or different variants of regression (Von Storch et al., 2004;
Mann et al., 2005) remain largely undecided.

If such “unilateral” validation approaches fail, bilateral
analyses may offer some guidance to assess millennial cli-
mate reconstructions. I am aware of only one systematic
analysis of such kind. (Juckes et al., 2007) calculate cross
correlations of six reconstructions, four of which are also
considered here. But their analysis has a number of caveats.
For example, the corresponding low-pass filtered versions
(21-year running mean) have been described as “highly cor-
related”, but no significance analysis has been supplied that
would put “high” into context. Moreover, their estimates are
optimistically biased as they include the instrumental period
which was used for calibration. Keep in mind, however, that
bilateral methods provide necessary but probably insufficient
validation criteria for climate reconstructions.

I follow a similar approach here by systematically ana-
lyzing the mutual consistency of the ten reconstructions of
Table 1. To avoid the “synchronization” effect from the
calibration, the analysis will be based exclusively on pre-
instrumental variations. Additionally, spectral coherence is
used as a consistency measure. Significance estimates of co-
herence rely on little more than very general stationarity as-

sumptions on the time series, so that this approach presents a
better protection against, e. g., spurious significance in cor-
relation measures (Granger and Newbold, 1974). This is fur-
ther discussed in Sect. 3.

Using a distance measure that is based on coherence, ag-
gregated across relevant frequencies, a clustering analysis is
performed on the set of reconstructions. This results in a
structured view of the reconstructions, with any two clusters
being called “incoherent” or “inconsistent” if the coherence
of at least two of their members cannot be established in a
significant way. Based on the same distance metric, a multi-
dimensional scaling (MDS; Hastie et al., 2001) of the ten re-
constructions is performed. In two dimensions the technique,
which is briefly described in the next section, produces a very
graphic rendering of the reconstructions that may already be
useful for, e.g., detecting outliers, and may help to design
new reconstructions from the ones given. And it may ulti-
mately lead to a better logical understanding, as indicated
above, of what has actually been reconstructed.

2 Clustering reconstructions

The following coherence analysis establishes statistically
whether corresponding covariations represent coherent be-
havior or just pure chance. The analysis is constrained to
reconstructed data prior to 1850, to ensure that the estimated
coherence is not inflated by calibrating effects from the in-
strumental period. All reconstructions are rescaled to have
zero mean and unit variance.

We use the multitaper spectral estimator (Percival and
Walden, 1993). Coherence,κ, as a spectral measure depends
on frequency,f . An appropriate summary measure is given
by the quantity

κ = 1/0.2
∫

0≤f ≤0.2

κ (f )df, (1)

representing the average coherence in the spectral band 0≤

f ≤0.2, which means variability above 5 years. This is the
time scale where significant temperature-proxy interaction is
to be expected (Cook et al., 1998, 2000, 2004; Biondi et al.,
2001; d’Arrigo et al., 2001; Briffa et al., 2002; Gray et al.,
2003, 2004; Wilson et al., 2007). Table 2 shows the complete
set of mutual coherencesκ for the millennial reconstructions.
Corresponding significance levels can be estimated analyti-
cally as follows. For a spectral smoothing filter of lengthm,
the quantity

Y = 2m
|κ̂(f )|2

1−|κ̂(f )|2
(2)
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Table 2. Mutual coherenceκ between millennial (1000 to 1850) reconstructions, averaged over frequencies≥5y. Significant values (κ ≥0.47
as the 99% level) are highlighted.

κ Br00 dA06 Es02 MJ03 Mo05 CL00 Jo98 Ma08L Ma08 Ma99

Br00 1
dA06 0.65 1
Es02 0.55 0.6 1
MJ03 0.4 0.38 0.44 1
Mo95 0.46 0.41 0.42 0.54 1
CL00 0.38 0.35 0.31 0.32 0.33 1
Jo98 0.42 0.4 0.36 0.31 0.27 0.54 1
Ma08L 0.3 0.28 0.22 0.35 0.31 0.28 0.25 1
Ma08 0.42 0.36 0.36 0.48 0.42 0.32 0.27 0.48 1
Ma99 0.37 0.34 0.38 0.38 0.31 0.34 0.44 0.26 0.3 1

follows an F-distribution with 2 and 4m degrees of freedom
(Brockwell and Davis, 1991). Therefore, using a significance
level of α the null hypothesis of zero (= random) coherence
is rejected if

Y >Fα(2,4m) (3)

This criterion, which is obviously independent of frequency,
is valid under very broad conditions, and holds for exam-
ple if only the series are stationary (Brillinger, 2001). Con-
sequently, it applies uniformly, whether the process under
consideration has no memory, finite memory, or even infi-
nite memory (so called long-range dependence). It is ver-
ified easily using Monte Carlo experiments, an example of
which is given in the Interactive Discussion of the current
paper. Note that the allowance for long-range dependence
in null hypothesis testing crucially affects other significance
estimates, e.g. of correlation coefficients, a fact that will be
further discussed in the next section.

Based on Eq. (3), of all

(
10
2

)
= 45 pairs, only a small

fraction (7) turns out to be significantly nonzero, indicat-
ing nonrandom behavior. Among these, the pairs dA06,
Br00 and dA06, Es02 (abbreviations from Table 1) stick out
with values of 0.65 and 0.6; and, adhering to what can be
called the transitive law of coherence, Br00, Es02 follow
with κ = 0.55. It should be added that in these cases, the
phase spectrum was always close to zero, indicating vanish-
ing time shift as one would expect for any two significantly
coherent reconstructions.

More systematically, a hierarchical clustering analysis
(Hastie et al., 2001) is applied to Table 2, using as a distance
metric the term

D = 1−κ. (4)

Starting from each single reconstruction as a cluster, new
clusters may be formed recursively from any given set of
clusters by merging the two nearest (most coherent) clusters,
the distance of any two clusters being taken as the maximum
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Fig. 1. Dendrogram of reconstructions, with distance metric d based
on coherenceκ (see text). Each node immediately below the 99%
significance level of d=0.525 corresponds to a significant cluster,
signified by the coloring.

Fig. 1. Dendrogram of reconstructions, with distance metricD

based on coherenceκ (see text). Each node immediately below
the 99% significance level ofD=0.525 corresponds to a significant
cluster, signified by the coloring.

of all member distances (“complete linkage”). If that dis-
tance is smaller than the distance corresponding to the level
of κ significance in Eq. (4) (from the 99% level), the two
clusters are calledcoherentand merged to form a new clus-
ter. A looser criterion of forming clusters is “single linkage”
where maximum distance is replaced by minimum distance.
But in that case, two clusters are merged if onlyany two
members are significantly coherent, and so clusters are pop-
ulated with mutually incoherent members (reconstructions)
which should be avoided after all. Therefore, single linkage
clustering is generally dropped from this analysis. The clus-
tering is shown in Fig. 1, the resulting group of internally
coherent but mutually incoherent clusters signified by differ-
ent colors. The height of a node is given by the distance of its
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Fig. 2. MDS image of the ten climate reconstructions, based on
mutual coherence. The five colors represent the five inconsistent
clusters (complete linkage),{Br00, Es02, dA06} (blue), {MJ03,
Mo05} (orange),{CL00, Jo98} (green),{Ma08L, Ma08} (red),
and{Ma99} (black).

Fig. 2. MDS image of the ten climate reconstructions, based on mu-
tual coherence. The five colors represent the five inconsistent clus-
ters (complete linkage),{Br00, Es02, dA06} (blue),{MJ03, Mo05}
(orange),{CL00, Jo98} (green),{Ma08L, Ma08} (red), and{Ma99}
(black).

two constituents. Five clusters are so obtained:{Br00, Es02,
dA06}, {MJ03, Mo05}, {CL00, Jo98}, {Ma08L, Ma08}, and
{Ma99}.

A more graphic representation of the reconstruction clus-
tering is obtained from performing a MDS analysis. In MDS,
a matrix of dissimilarities,D, between a number of objects is
mimicked as a distance matrix of an abstract set of points in
some higher dimensional Euclidean space. This is achieved
by embedding the objects into that space in a way that their
distance matrix is as close as possible to the matrixD. Be-
yond this resemblance the mapped points, respectively their
coordinates MDS1, MDS2,..., have no particular physical
meaning. In this study, the ten reconstructions, withD being
the matrix of Table 2, are embedded into a two-dimensional
Euclidean space, the result of which is shown in Fig. 2. Br00
occupies the center of the plot, with relatively moderate (al-
beit mostly inconsistent) distances to the other reconstruc-
tions; dA06 is similar. In this display, Ma08L appears as the
most “excentric” reconstruction, followed by CL00, Ma99,
and Mo05. Ma08L and Ma99 show the greatest distance,
that is, of all pairs they are maximally inconsistent. Note that
all five clusters are well represented in the plot (which is not
too surprising as this is exactly the purpose of MDS).

Figure 3 displays the reconstructed time series grouped
by cluster. Cluster{Br00, Es02, dA06} shows warm con-
ditions at about the years 1000, 1400 and 1550, and cooler
conditions from 1200 to 1350 and at 1450 and 1600. Cluster
{MJ03, Mo05} is, like all remaining clusters, dominated by

a fairly strong negative trend. On top of that there is an ex-
tended cooling in the 17th century, followed by much warmer
conditions in the 18th century. Not much variability is in
cluster{CL00, Jo98}, only the apparent negative trend which
seems stronger for CL00. The series are weakly coherent.
Finally, the clusters{Ma08L, Ma08} and {Ma99} are both
characterized by little variability, interrupted by sporadic out-
breaks of strong cooling (1350, 1450, 1700) that might be
related to volcanic events.

To exemplify the inter- and intra-cluster coherence I have
plotted in Fig. 4 typical coherence spectra from the clusters
{Br00, Es02, dA06}, {MJ03, Mo05}, {Ma08L, Ma08}, and
{Ma99}, together with the 90%, 95%, and 99% confidence
band of no coherence (which is known to be independent of
frequency). Br00 and dA06 are significantly (99%) coher-
ent on all timescales, whereas MJ03 and Mo05 are coherent
at the lower frequencies (f ≤0.2) only. An extreme case of
cross-cluster inconsistency are the two most distant recon-
structions Ma99 and Ma08L, which are nowhere coherent
except at very small frequencies, signifying their common
negative trend.

A potential cause of the cluster incoherence may lie in
the different target areas of the reconstructions. For exam-
ple, Br00 reconstructs the NH extratropical land temperature
only, while Mo05 is targeted at the entire NH. Inspecting Ta-
ble 3 shows that in fact the five clusters are nicely lined up
with their respective target configurations, with the excep-
tion of {Ma08, Ma08L} which are distinguished by using sea
surface information. But this characterization is not unique,
as, e.g.,{MJ03, Mo05} and{Ma99} are incoherent but share
the same targets. Moreover, the different targets are not very
different in the first place, as Table 4 shows: a millennial
climate simulation (Gonzalez-Rouco et al., 2003) shows that
the various target areas are strongly coherent for the relevant
time scales≥5 y, with κ ∼ 0.95 orD ∼0.05.

If the different target areas cannot sufficiently account for
the different clusters, having a sufficiently even type and pro-
cessing of proxies seems to lead to coherent reconstructions.
This applies to the cluster{Br00, Es02, dA06}, all whose re-
constructions are based on tree rings and a similar technique
(age band decomposition and regional curve standardization)
to retain low-frequency information for the proxy standard-
ization.

It should be noted that choosing a narrower spectral band,
such as for example 0≤ f ≤0.1, that is, decadal and longer,
does not alter the dendrogram of Fig. 1 substantially. Sim-
ilarly, the 95% significance level (D=0.61) yields identical
clusters, while under the 90% level (D=0.65) clusters{Br00,
Es02, dA06} and{MJ03, Mo05} merge.
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Fig. 3. The five clusters of reconstructions (smoothed). Note that
Ma99 forms a single cluster.

Fig. 3. The five clusters of reconstructions (smoothed). Note that Ma99 forms a single cluster.

Table 3. Target area for reconstructions.

Br00 dA06 Es02 MJ03 Mo05 CL00 Jo98 Ma08L Ma08 Ma99

NH � � � � �
NH extratropics � � � � �
land + sea � � � � � �
land � � � �

3 Coherence vs. correlation

The Interactive Discussion raised some concern about the
preference for spectral coherence,κ, over correlation,ρ, as
a consistency measure. My argument in favoringκ is its
simplicity with respect to significance estimates. These esti-
mates depend on the degrees of freedom,dof , used to calcu-
late the statistic in question. Because spectral estimates are in
most cases independent for different frequencies, this num-
berdof is directly and simply related to the spectral smooth-
ing used for the estimates (see Eqs. 2 and 3). Forρ, however,
the determination ofdof is often a matter of debate, such as,
for example, in the controversy around the so called “hockey
stick” (e.g. McIntyre and McKitrick, 2005).

Analogously to Table 2, I have calculated the matrix of
correlations between the ten reconstructions, restricting the
analysis to variations≥5y, shown in Table 5. The overall
magnitude ofρ is similar to the values reported in (Juckes
et al., 2007), but single values differ quite considerably (e.g.

ρ = 0.71 there vs.ρ = 0.36 here, for the Es02, Ma99 corre-
lation). This difference is caused solely by the restriction to
pre-instrumental temperatures and/or the somewhat weaker
smoothing used in this study.

To decide the significance question the correlations need
to be assessed against a realistic, albeit “pessimistic” null hy-
pothesis of them being based on pure chance, which brings
up the problem of thedof s. Treating all 851 points of the
time series as independent without any memory, so that each
represents one degree of freedom, leads to a white noise null
distribution which is quite unrealistic and too optimistic. Au-
toregression introduces more memory into a process, but still
remains in the realm of “short-range” where memory fades
after some time. “Long range” dependent processes (with a
fractional differencing parameterd>0) have instead a mem-
ory that never dies off completely, but require very long time
series to obtain sufficiently robust estimates ofd. Of several
existing procedures I applied the local Whittle estimator
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Fig. 4. Intra- and inter-cluster coherence spectrum (smoothed). The
gray areas mark, from dark to light gray, the 90%, 95%, and 99%
significance level. The vertical dashed line indicates the frequency
threshold below which reconstructions are compared for clustering.

Fig. 4. Intra- and inter-cluster coherence spectrum (smoothed). The gray areas mark, from dark to light gray, the 90%, 95%, and 99%
significance level. The vertical dashed line indicates the frequency threshold below which reconstructions are compared for clustering.

(“LW”: Shimotsu and Phillips, 2005) and the method of dis-
crete variations in presence of outliers and/or an additive
noise (“DV”: Achard and Coeurjolly, 2010). Both meth-
ods revealed a very strong dependence on the choice of pa-
rameters, especially DV. This latter method, moreover, us-
ing the default setting offered for the ten reconstructions
the entire range from white (d = −0.4 for Jo98) to brown
noise (d = 1.3 for Ma08) as a null model, which I therefore
dropped as being unrealistic. For the LW method I gener-
ated pairwise null distributions from the default parameters
and obtained corresponding significance levels forρ. Based
on this, the number of insignificant correlations was much
smaller than the corresponding number for coherence (9 vs.
38). It increased to 23, however, (and 39 for coherence) after
removing the negative trend that is common to all reconstruc-
tions.

Comparing the intricacy and uncertainty of this estimate
with the analytic estimate of Eq. (3), and because of the
strong impact of the millennial trend on correlation, I put
more confidence into the coherence estimates.

Table 4. Coherence between target areas as simulated by
ECHO-G Erik.

κ NH NH
extratropics

land + sea 0.93 0.89
land 0.90 0.91

4 Discussion

By avoiding the (calibrating) instrumental period, and by us-
ing a fairly robust spectral measure for low-frequency perfor-
mance, the above coherence analysis has uncovered several
inconsistencies among the group of millennial reconstruc-
tions that figured prominently in the latest IPCC report and
elsewhere. An immediate lesson from this is that simple vi-
sual inspection of smoothed time series, grouped and over-
laid into a single graph, can be very misleading. For exam-
ple, the two reconstructions Ma99 and Ma08L, which have
previously been described to be in “striking agreement” (cf.
Mann et al., 2008), turned out to be the most incoherent of
all in our analysis.
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Table 5. Mutual correlationρ between millennial (1000 to 1850) reconstructions, using variations≥5 y. Bold numbers indicate significance
(99%) for the detrended series.

Br00 dA06 Es02 MJ03 Mo05 CL00 Jo98 Ma08L Ma08 Ma99

Br00 1
dA06 0.74 1
Es02 0.64 0.74 1
MJ03 0.60 0.62 0.52 1
Mo95 0.61 0.51 0.36 0.80 1
CL00 0.54 0.43 0.36 0.78 0.75 1
Jo98 0.53 0.44 0.31 0.62 0.57 0.69 1
Ma08L 0.53 0.49 0.28 0.74 0.74 0.79 0.57 1
Ma08 0.56 0.55 0.32 0.71 0.69 0.72 0.51 0.92 1
Ma99 0.42 0.54 0.40 0.68 0.56 0.68 0.58 0.60 0.60 1

The most obvious, pragmatic, response to the inconsisten-
cies is to inspect the methods and try to improve and harmo-
nize them. But as I have pointed out, without a functioning,
uncontroversial verification procedure this will not lead very
far.

Having therefore to live, for now, with pairwise inconsis-
tent reconstruction clusters there is more than one way to
interpret the coherence results meaningfully. Two comple-
mentary views regarding the “true” NH temperature are pos-
sible, depending on the focus lying on the clustering or on
the MDS:

(a) five inconsistent clusters each representing a possible
truth

(b) ten independent approximations of an otherwise un-
known truth

ad (a) With no obvious means at hand to dismiss any of the
five inconsistent reconstructions, one would have to deal with
derivations involving inconsistent statements. As mentioned
in the beginning, this requires a non-standard approach to
the logical discourse, perhaps along the lines of, e.g., (Arieli,
2008).
ad (b) This viewpoint, which may be somewhat more realis-
tic than a), is closer to the conventional approach where all
reconstructions are seen as approximations to a single, true
temperature curve. However, the error metric is fundamen-
tally different here. The conventional metric would operate
on the reconstructed temperatures themselves and construct
a real temperature average. The view suggested here (mainly
through Fig. 2) is that the best estimate of truth is near the
“center” of the reconstructions in the MDS rendition. But
this rendition is non-physical, or not directly physical, as the
MDS dimensions are not related to the original temperature
series in a simple way. Least-squares approaches do not work
here, so that estimating the center by simple temperature av-
eraging is impossible. That center represents a compromise
of the reconstructions, in the sense that it would be, on aver-
age, maximally coherent with all of them. It is likely to be

“close” to Br00 and Ma08 and may be found by prudently
merging techniques and proxies from both approaches. Oth-
erwise, one would probably have to resort to trial and error.

Favoring correlation over coherence raises serious ques-
tions about the significance levels, and any corresponding
null hypotheses will be a matter of debate. Moreover, with-
out the common negative millennial trend considerable in-
consistencies remain.

One may as well choose to neglect the inconsistencies al-
together. But then the following, and likely more, semantic
subtleties regarding the reconstructions have to be resolved:

– Can theyskillfully represent NH temperatures?

– Can they lie within acommon uncertaintybound?

– If they suggest an identicalconclusion– such as the
non-existence of a Medieval Warm Period, what does
it mean for that conclusion?

Using inconsistent reconstructions to approximate the
temperature curve has one particular visual consequence.
Whether overlaying them in one figure or forming an av-
erage, the result tends to be a cancellation of larger ampli-
tudes, because inconsistency here means to be indistinguish-
able from random covariations. Together with the mentioned
synchronization through the instrumental calibration period,
such “synthesis” figures automatically resemble a hockey-
stick.

It was shown that the target area plays only a minor
role. Furthermore, if type and processing of proxies are
sufficiently even, coherent reconstructions are produced. If
that is true in general, the main source of reconstruction
inconsistency is the use of mixed types of proxies (“multi-
proxies”), and their role for temperature reconstruction
should be revised. One should systematically check whether
“uni”-proxy reconstructions tend to be more coherent than
multi-proxy reconstructions, and if so, which types of
proxies actually create the inconsistencies.

Edited by: J. Guiot
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