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Abstract. Asian terrestrial records of the Eocene-Oligocene
Transition (EOT) are rare and, when available, often poorly
constrained in time, even though they are crucial in un-
derstanding the atmospheric impact of this major step in
Cenozoic climate deterioration. Here, we present a detailed
cyclostratigraphic study of the continuous continental EOT
succession deposited between∼35 to 33 Ma in the Xining
Basin at the northeastern edge of Tibetan Plateau. Lithol-
ogy supplemented with high-resolution magnetic suscepti-
bility (MS), median grain size (MGS) and color reflectance
(a∗) records reveal a prominent∼3.4 m thick basic cyclicity
of alternating playa gypsum and dry mudflat red mudstones
of latest Eocene age. The magnetostratigraphic age model
indicates that this cyclicity was most likely forced by the 41-
kyr obliquity cycle driving oscillations of drier and wetter
conditions in Asian interior climate from at least 1 million
year before the EOT. In addition, our results suggest a du-
ration of∼0.9 Myr for magnetochron C13r that is in accor-
dance with radiometric dates from continental successions
in Wyoming, USA, albeit somewhat shorter than in current
time scales. Detailed comparison of the EOT interval in the
Tashan section with marine records suggest that the most pro-
nounced lithofacies change in the Xining Basin corresponds
to the first of two widely recognized steps in oxygen isotopes
across the EOT. This first step precedes the major and second
step (i.e. the base of Oi-1) and has recently been reported to
be mainly related to atmospheric cooling rather than ice vol-

Correspondence to:H. A. Abels
(abels@geo.uu.nl)

ume growth. Coincidence with lithofacies changes in our
Chinese record would suggest that the atmospheric impact
of the first step was of global significance, while the major
ice volume increase of the second step did not significantly
affect Asian interior climate.

1 Introduction

The Eocene-Oligocene Transition (EOT) encompasses the
most pronounced cooling event during Cenozoic climate de-
terioration (Miller et al., 1991; Zachos et al., 1996, 2001;
Lear et al., 2000, 2008). It was accompanied by the expan-
sion of ice sheets on the Antarctic continent (e.g. Zachos et
al., 2001; Coxall et al., 2005; Lear et al., 2008), a global sea-
level drop (e.g. Miller et al., 1991; Katz et al., 2008), a de-
clining atmospheric CO2 concentration (Pearson and Palmer,
2000; Pearson et al., 2009), a deepening of the calcite com-
pensation depth (Coxall et al., 2005; Tripati et al., 2005),
and a biotic reorganization (e.g. Meng and McKenna, 1998;
Ivany et al., 2003; Hansen et al., 2004; Pearson et al., 2008).
Geological records from different latitudes indicate signifi-
cant cooling during this transition (Zachos et al., 1996; Re-
tallack et al., 2004; Zanazzi et al., 2009; Katz et al., 2008;
Lear et al., 2008; Schouten et al., 2008; Liu et al., 2009), im-
plying that this phenomenon had a global rather than regional
impact on climate. Climate modeling results and ocean sed-
iment records have demonstrated that the decline ofpCO2
and a peculiar orbital configuration were the primary factors
responsible for this transition (Coxall et al., 2005; DeConto
and Pollard, 2003; DeConto et al., 2008). Ocean sediment
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records further show that this transition occurred in two or
possibly three steps within∼400 kyr (Coxall et al., 2005;
Katz et al., 2008; Lear et al., 2008; Pearson et al., 2008).
Age models for paleoclimatic records across the EOT have
increased in both resolution and accuracy, which is crucial
for unraveling cause and effect during such a complicated
transitional interval. Sediments recovered during ODP Leg
199 (P̈alike et al., 2006) and the Tanzanian Drilling Project
(TDP) (Pearson et al., 2008; Lear et al., 2008) are excellent
examples of this approach. The coming years are expected
to shed more light as multiple continuous carbonate-rich
records have been recovered during IODP Leg 320. Equally
promising are continental EOT records that would allow di-
rect evaluation of modeled atmospheric climate, which is
currently mostly based on data from the oceanic domains.
Reliable global marine to continental comparison requires
increased age control at orbital scale resolution of key conti-
nental successions such as in North America (e.g. Zanazzi et
al., 2009), in the UK (Gale et al., 2006; Hooker et al., 2009),
and in China (Dupont-Nivet et al., 2007).

The Eocene to Early Miocene lacustrine records from
the Xining Basin at the northeastern margin of the Tibetan
Plateau (Fig. 1a) provide an excellent opportunity to in-
vestigate climate change during the EOT (Dai et al., 2006;
Dupont-Nivet et al., 2007). The Eocene successions consist
of red mudstones with intercalations of gypsum and gypsif-
erous layers (Qinghai Bureau of Geology and Mineral Re-
sources, 1985). Detailed lithofacies analyses of the Xiejia
and Shuiwan sections showed that gypsum/gypsiferous lay-
ers were formed in shallow playa lake settings, while mud-
stone layers developed in distal alluvial fan and dry mudflat
environments (Dupont-Nivet et al., 2007). Dupont-Nivet et
al. (2007) interpreted gypsum intercalations within red mud-
stones to indicate periods of significantly higher water sup-
ply. They further showed that the regional disappearance of
intercalated gypsum beds from red mudstone stratigraphy co-
incides with the EO-boundary based on a stratigraphic analy-
sis of the Xiejia and Shuiwan sections. This coincidence was
interpreted as to reflect regional aridification related to cli-
mate change. Their magnetostratigraphic age model further
suggested that the regular lithofacies alternations between
mudstone and gypsum in the Late Eocene were forced by the
100-kyr eccentricity cycle. These results provide the frame-
work for a more detailed analysis of the E/O-boundary inter-
val. Here we present a cyclostratigraphic study of the upper
Eocene succession in the Xining Basin enabling a compar-
ison with recently refined marine records. We investigate a
well-exposed section near the village of Tashan (TS section;
Fig. 1) using high-resolution magnetic susceptibility (MS),
median grain size (MGS) and color reflectance (a∗) records,
regional correlation of lithostratigraphy, and detailed magne-
tostratigraphic time control.
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Fig. 1. (a) Location of the Tashan (TS), the Xiejia, and the Shui-
wan sections,(b) View of the TS section. The end of regular, thick
gypsum-mudstone cyclicity occurs above bed G7 indicated as event
1 (see Fig. 7).

2 Geological setting

The Xining Basin is part of a larger Paleocene-Miocene
basin system characterized by upward fining sediments asso-
ciated with decreasing rates of accumulation (1–10 cm/kyr)
attributed to regional post-rift thermal subsidence subse-
quent to Mesozoic extension (Dupont-Nivet et al., 2004;
Horton et al., 2004). The stratigraphic base is found dis-
conformable on the Upper Cretaceous Minhe group. This
basal relationship extends to the east in the adjacent Lanzhou
Basin where thicker conglomeratic series are found uncon-
formable on folded Cretaceous rocks suggesting post Cre-
taceous tectonism east of the Xining Basin followed by re-
gional subsidence and basin initiation or re-activation (Zhai
and Cai, 1984). Magnetostratigraphic dating of the partic-
ularly well-developed>1000 m thick Cenozoic stratigraphy
of the Xining Basin indicates sub-continuous deposition be-
tween ∼52 Ma to 17 Ma (Dai et al., 2006). The stratig-
raphy consists of basal sandy successions (Qijiachuan for-
mation) overlain by red mudstones with distinctive gypsif-
erous intercalations (Honggou and Mahalagou formations)
overlain by light brown to yellow mudstones with occa-
sional sandy lenses (Xiejia, Chetougou and Xianshuihe for-
mations). Apart for the disappearance of gypsum interca-
lation precisely correlated to the 34 Ma Eocene-Oligocene
climate transition (Dupont-Nivet et al., 2007), deposition
is virtually undisturbed with slow accumulation (average
2.2 cm/kyr) until 17 Ma suggesting that important deforma-
tion did not affect the Xining Basin until that time. A post-
17 Ma age is hence indicated for the observed deformation of
the strata by a set of regional E-W and local NW-SE struc-
tures.

The TS section (101◦50′ E, 36◦33′ N) is located∼3 km
west of the Xiejia and∼13 km south of the Shuiwan section
(Dai et al., 2006; Dupont-Nivet et al., 2007) in the Xining
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Fig. 2. Orthogonal (Zijderveld) vector plots of representative thermal demagnetization behaviors of specimens from the TS section(a–f).
The solid and open circles represent vector end-points projected onto horizontal and vertical planes, respectively. NRM is the natural
remanent magnetization before demagnetization. Numbers indicate temperature steps in degrees Celsius. Between parentheses the meter-
levels and chron labels are given which refer to stratigraphic position in the Tashan section and the magnetic chron the samples belong to
after correlation to the time scale, respectively (see Fig. 4).

Basin (Fig. 1a). The TS section measures 103.3 m in thick-
ness, and is composed of red mudstones with 24 muddy gyp-
sum or gypsiferous mud layers labeled G0 ∼ G23 (Fig. 1b).
No indications for unconformities were observed in the TS
section. The succession is clearly correlative to previously
studied Xiejia and Shuiwan parallel sections (Dupont-Nivet
et al., 2007), which include the E/O climate transition.

3 Magnetostratigraphy

3.1 Methods

A total of 306 oriented samples in the TS section with a sam-
ple spacing of 25 cm were paleomagnetically analyzed. No
gypsum or gypsiferous layers were sampled, as these are de-
void of magnetic minerals. All samples were subjected to
progressive thermal demagnetization in a MMTD-80 ther-
mal demagnetizer. Thermal demagnetization up to 690◦C
included a maximum of 15 steps with intervals of 20–50◦C.
Remanence measurements were made using a 2G-760 U-
Channel system and performed in the Paleomagnetism and

Geochronology Laboratory of the Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing, China,
where all equipment is installed in a magnetically shielded
room (background field<300 nT).

3.2 Results

Demagnetization results were evaluated on stereographic
projections and vector end point orthogonal diagrams
(Fig. 2a–f). For most samples, after removing a viscous
magnetization component below 250–300◦C, a Characteris-
tic Remanent Magnetization (ChRM) component was suc-
cessfully isolated between 300◦C and 620◦C (some up
to 670◦C) with most of the remanence demagnetized at
∼585◦C. This suggests a combination of magnetite and
some hematite similarly to the nearby Xiejia and Shuiwan
sections (Dai et al., 2006; Dupont-Nivet et al., 2007). A
small number of samples (14%), mostly from gypsiferous
and/or green beds, showed unstable demagnetization trajec-
tories such that ChRM directions could not be isolated. For
the remaining samples, the ChRM directions were calculated
by principal component analyses (Kirschvink, 1980) on a
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(a) ChRM directions (b) Positive reversals test (Tauxe, 1998)
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Fig. 3. Equal-area projections of characteristic remanent magnetization (ChRM) directions (downward (upward) directions are shown as
solid (open) circles) of 226 samples from the TS section(a) and reversals test(b). The angle between the mean of the normal polarity set and
the mean of the reverse polarity set is 2.3◦. The critical angle is 5.2◦. The probability of exceeding this angle is 0.558 resolved between 5◦

and 10◦ thus defining a B-class reversals test (McFadden and McElhinny, 1990) and a positive reversals test at 95% confidence as indicated
in lower panel (Tauxe, 1998).

minimum of four consecutive steps. ChRM directions with
maximum angular deviation (MAD) above 15◦ were system-
atically rejected. To remove outliers and transitional direc-
tions, we further rejected normal and reverse ChRM direc-
tions with Virtual Geomagnetic Poles (VGP) less than 45◦

from the mean normal and reverse VGP respectively. Re-
maining ChRM directions cluster in antipodal normal and
reverse polarity orientations (Fig. 3). This resulted in a set of
66 normal and 160 revered polarity ChRM directions pass-
ing the reversals test (Fig. 3). This strongly suggests a pri-
mary origin of the magnetization and enables us to confi-
dently establish a polarity zonation through the section. The
ChRM directions of 226 samples (see Supplementary Table)
are used to calculate the virtual geomagnetic pole (VGP) lat-
itudes and define the geomagnetic polarity zones.

Polarity zones are defined by at least two successive levels
of similar polarity. This yields four reversed polarity zones
(R1 to R4, Fig. 4) and four normal zones (N1 to N4). The
obtained pattern is strikingly similar to that previously found
in the same stratigraphic interval in the Xiejia and Shuiwan
sections (Dupont-Nivet et al., 2007) with the exception of a
short reversed interval (R2) defined by two reversed levels
(Fig. 4).

3.3 Correlation to the GPTS

Our magnetostratigraphy is in line with the previous stud-
ies of the Xiejia and Shuiwan sections (Dai et al., 2006;
Dupont-Nivet et al., 2007, Fig. 5) and corresponds to the in-
terval of C12r to C16n.1n in the geomagnetic polarity time
scale of Gradstein et al. (2004) (hereinafter referred to as
GTS04). The correlation is not only based on the magne-

tostratigraphy presented here, but on an integrated set of data
of different and much longer sections, in particular the Xiejia
and Shuiwan sections extending from the Eocene up into the
Miocene (Dai et al., 2006; Dupont-Nivet et al., 2007). An
extensive justification of the correlation is already published
in Dupont-Nivet et al. (2007). This primarily relies on the
distinctive pattern of two long reversed polarity zones sep-
arated by a shorter normal zone that unequivocally corre-
lates with C13n. In addition, the pattern fit is corroborated
by smaller polarity zones, steady accumulation rates and
some age diagnostic fossils found in the Eocene and lower
Miocene part of the sampled sections. Alternative correla-
tions are indeed investigated in Dupont-Nivet et al. (2007)
but the C12r-C16n.1n correlation of the interval considered
here remains robust whatever alternative is considered (see in
particular the methods section of Dupont-Nivet et al., 2007).
The short reversed polarity zone R2 in our section may corre-
late with cryptochron C13n-1, which is based on a tiny wig-
gle observed in marine magnetic anomaly profiles (Cande
and Kent, 1995). This is supported by the low VGP latitudes
observed within this interval (see Supplementary Table) that
may result from the recording of transitional geomagnetic di-
rections. However, this cryptochron requires confirmation by
other high-resolution magnetostratigraphic records of C13n.

3.4 EOT interval in Xining Basin

Regional climate change associated with the EOT has been
previously placed at the top of the uppermost gypsum bed
that is correlatable at the basin scale (Fig. 5; Dupont-Nivet
et al., 2007). Therefore, we first establish basin-wide litho-
logical correlations from the TS section to the nearby Xiejia
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and Shuiwan sections of Dupont-Nivet et al. (2007) based
on magnetostratigraphic correlations followed by correlating
patterns in lithology (Fig. 5). In the top of chron C13r, beds
G4 to G6 of the TS section are readily correlated to beds G0
to G 2 in the Xiejia and Shuiwan sections. Below, the in-
terval from G7 to G17 in TS most likely correlate with beds
G 3 to G 11 in Xiejia and Shuiwan. Around chron C15n, the
intercalated gypsum beds reveal less characteristic patterns,
though the thick beds G19 and G21 correlate best with G15
and G17. Following these correlations, the marked MS min-
imum at∼543 m in the TS section should be correlated to
bed G12 in the Shuiwan section (see Sect. 4.2 for proxy
analysis, Figs. 4 and 5). Figure 5 thus shows dashed lines
representing lithological correlations of stratigraphic inter-
vals and cycle numbers representing the bed-to-bed correla-
tion coeval gypsum beds in the three sections.

The resulting lithological correlations show that prominent
cycle patterns below G4 in the TS section are regionally cor-
relatable with minor differences, which occur especially in
intervals with less pronounced gypsum beds. Above G4, a
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Fig. 5. Magnetostratigraphic and lithostratigraphic correlation be-
tween the Tashan (TS) section of this study and the Xiejia (XJ)
and Shuiwan (SW) sections from Dupont-Nivet et al. (2007). In-
dicated are the gypsum bed labels used here and in Dupont-Nivet et
al. (2007). Lithostratigraphies of the XJ and SW sections have been
slightly adjusted according to more detailed sedimentologic de-
scriptions. Red lines indicate the position of the Eocene-Oligocene
boundary at 85% through C13r in the respective magnetostratigra-
phies of the three sections. Note that the estimated position of the
EOB coincides with the end of regular and regional correlatable
gypsum-mudstone cycles, which is gypsum bed G4 in the TS sec-
tion and G0 in the XJ and SW sections.

few local gypsum beds occur in the TS and Xiejia sections
that can not be correlated between the two sections, while
Shuiwan lacks gypsum beds in this interval. The top of G7
at 504 m in the TS section is the most noticeable lithologic
boundary (Fig. 1b), marking the top of the thick gypsum
beds, while the top of G4 marks the uppermost gypsum bed
that is correlatable on a regional scale. This is the bed that
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has previously been linked to climate change associated with
the Eocene-Oligocene boundary (Fig. 5; Dupont-Nivet et al.,
2007).

The E-O boundary is formally defined at the Global Stra-
totype Section and Point (GSSP) in the Massignano sec-
tion, Italy, and corresponds to the extinction of the plank-
tonic foraminiferal Family Hantkeninidae (Premoli Silva and
Jenkins, 1993). This event is now being positioned at
∼85± 2% from the base within chron C13r (Pälike et al.,
2006; Gradstein et al., 2004). In Fig. 5, the E-O boundary has
been plotted in the TS, Shuiwan, and Xiejia sections accord-
ing to this definition. Remarkably, in all three sections, this
level corresponds to the last regional correlatable gypsum
bed, G4 in TS and G0 in Shuiwan and Xiejia, in accordance
to previous estimates (Dupont-Nivet et al., 2007) while the
last prominent gypsum bed (G7 and G3; Fig. 5) occurs three
mudstone-gypsum cycles before the E/O boundary. Above
the E/O boundary, no gypsum intercalations are observed at
a regional scale. Mudstone lithologies do show some pale-
oenvironmental change for example by better preservation of
sedimentary features and occasional occurrence of thin, dis-
continuous gypsiferous sandstones. In Sect. 5.1, we will fur-
ther discuss the E/O Climate Transition interval in the Xin-
ing Basin records by detailed comparison with open ocean
records. The regional basin-wide extent of the gypsum beds
indicate that the cycles are likely forced by a stable allogenic
mechanism such as orbital forcing of climate indicating that
the successions are suitable for cyclostratigraphic analysis.

4 Cyclostratigraphy

4.1 Methods

The sedimentary cyclicity was studied using high-resolution
magnetic susceptibility (MS), median grain size (MGS) and
color reflectance (a∗) records. MS of air-dried samples was
measured at 10-cm intervals with a Bartington MS2 me-
ter. Grain size was measured at 50-cm intervals with a
Malvern Mastersizer-2000 laser particle analyzer, using the
pre-treatment techniques recommended by Lu et al. (2002).
The color reflectance (L∗, a∗, b∗) of air-dried powdered sam-
ples was measured at 50-cm intervals using a Minolta CM-
2002 spectrophotometer. Here, we used thea∗ value (red
over green ratio) that clearly follows the observed litholog-
ical changes. The AnalySeries 2.0 program (Paillard et al.,
1996) was used to perform Gaussian band-pass-filtering. The
REDFIT program (Schulz and Mudelsee, 2002) was used
to calculate power spectra from unevenly spaced depth and
time series with the Lomb-Scargle Fourier Transform using
a Welch window. Red-noise boundaries were estimated as
upper 80, 90, and 95% chi-squared limits of a fitted AR1-
process.
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Fig. 6. The Redfit spectral estimates of the magnetic susceptibility
(MS), median grain size (MGS), and redness (a∗) in depth domain
(a, upper panels) and in time domain against Age Model 1 (b, mid-
dle panels) and Age Model 2 (c, lower panels) with their 80% to
99% significance levels indicated in grey. Durations of significant
spectral peaks are indicated in depth (m) and time (kyr).

4.2 Time series analysis in depth domain

The MS, MGS anda∗ show good correlation with lithologic
variations below bed G4 (Fig. 4). High MS, MGS anda∗ val-
ues correspond to red mudstone layers and low values corre-
spond to the intercalated gypsum/gypsiferous layers (Fig. 4).
Above bed G4, the MGS record exhibits some low-value in-
tervals that do not correspond to gypsum beds in the stratig-
raphy (Fig. 4), while the MS anda∗ records do not show this
variability.

To investigate the cyclicity in the TS section, we calculated
the red noise power spectra in the depth domain of the MS,
MGS, anda∗ records. The results show a dominant cycle
of ∼3.3–3.45 m with confidence levels above 95 to 99% in
the all proxy records (Fig. 6a). This cyclicity corresponds to
the basic gypsum-mudstone alternations (Fig. 4). Any other
cyclicity, for instance the apparent long cyclicity in the MGS
record with a thickness between 10 to 15 m, does not reach
the 90% confidence limit in the red noise spectra (Fig. 6a).
Bandpass filtering of the∼3.4-m cycle component indicate
that there are around 19 basic cycles in chron C13r in the TS
section, with an estimated uncertainty of 1 cycle. In order to
quantify the duration of the basic cyclicity and potentially re-
late it to orbital forcing, the magnetostratigraphic age model
is used.
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Table 1. Published durations of chrons C13n and C13r from geologic time scale in black, astronomical calibrations in blue, and radiometric
estimates in green. In red, hypothetical duration with obliquity and eccentricity forcing of basic cyclicity in the Tashan section is given. CK95
for Cande and Kent (1995), GTS04 for Gradstein et al. (2004), Pälike06 for P̈alike et al. (2006), Jovane06 for Jovane et al. (2006), Gale06
for Gale et al. (2006), Brown09 for Brown et al. (2009), Hyland09 for Hyland et al. (2009), HK09-SP90 for Hilgen and Kuiper (2009) option
Swisher and Prothero (1990), HK09-Obrad95 for Hilgen and Kuiper (2009) option Obradovich 1995. For the latter two studies recalculated
ages using 28.201 Ma age for the FCT standard, although using different ages for this standard does not influence the durations very much.

Study CK95 GTS04 Pälike06 Jovane06 Gale06 Brown09 Hyland09 HK09-SP90 HK09-Obrad95 Obliquity- Eccentricity-
→ Chron forcing forcing

C13n 0.493 0.518 0.473 – – 0.52 – – – –
C13r 1.126 1.044 1.421 1.014 0.95 0.99 – 0.92 0.88 0.74–0.82 1.80–2.00

4.3 Time domain analysis, obliquity, and duration of
C13r

Various chron ages and durations have been proposed in the
interval considered (Table 1) and a robust orbitally-tuned
time scale is still under construction. A preliminary age
model (Age Model 1) is constructed using the GTS04 ages
of Gradstein et al. (2004) for the top and base of chron C13n
and the top of chron C15n. In this age model, the ages for
the base of chron C15n and top of C16n.1n are not included
in order to avoid unnecessary uncertainties, because polarity
time scales are quite different for this short interval of time
(Pälike et al., 2006; Hilgen and Kuiper, 2009). The resulting
Redfit power spectra indicate that the basic 3.4-m cyclicity
corresponds to a 48 to 55-kyr period (Fig. 6b). This duration
is closer to the 41-kyr period of obliquity than to eccentric-
ity forcing for this interval, which was suggested before as
driving mechanism on the basis of qualitative data from the
Shuiwan section that extended further down into the Eocene
(Dupont-Nivet et al., 2007). Eccentricity forcing of the basic
cyclicity would result in a∼2 Myr duration of chron C13r
(Table 1). This is in contrast with all other proposed po-
larity time scales and would require unlikely high variations
in plate tectonic spreading rates deduced from marine mag-
netic anomaly profiles (D. Wilson, personal communication,
2009). However, obliquity-driven cyclicity in our section
is in good agreement with constant seafloor spreading rates,
even though it implies shorter C13r duration in the order of
0.8 to 0.9 Myr.

Obliquity forcing of the basic cyclicity in the Tashan
section results in an approximate duration of C13r that is
∼200 kyr shorter than in the GTS04 time scale (Table 1) and
than astronomical calibrations at Massignano, Italy (Jovane
et al., 2006; Brown et al., 2009),∼150 kyr shorter than as-
tronomical calibration at Isle of Wight (Gale et al., 2006),
and∼100 kyr shorter than compared to the radiometric age
constraints from intercalated ash layers in continental succes-
sions in Wyoming, USA (Hilgen and Kuiper, 2009). The lat-
ter duration is used in our preferred age model (Age Model 2;
see Supplementary Fig. S1) in combination with the existing
astronomically-tuned ages for C13n of Pälike et al. (2006).

Note that the astronomical ages of Pälike et al. (2006) for
the latest Eocene are not used here, as these were considered
preliminary and subject of change (Heiko Pälike, personal
communication, 2009). The Redfit power spectra of this Age
Model 2 time series indicate a 42 kyr to 49 kyr duration for
the basic cyclicity in the TS section (Fig. 6c), in close agree-
ment with the 41-kyr obliquity period.

We argue that 41-kyr obliquity forcing is the most likely
allogenic mechanism behind the basic mudstone-gypsum cy-
cles in the Late Eocene infill of the Xining Basin, despite
the remaining discrepancies between existing time scales and
astronomically-tuned estimates for the duration of C13r. This
interpretation is based on the following arguments: (1) the
regularity of the basic cycle over more than 1 million year,
(2) the lateral consistency of the stratigraphy over more than
15 km, (3) the estimated duration close to the periodicity
of the obliquity cycle, and (4) radiometric age constraints
in continental successions in Wyoming also suggesting a
shorter duration of C13r than in current time scales (see Ta-
ble 1).

Cycle counting in the Tashan section is probably a min-
imum estimate as it is expected that above the regular
gypsum-mudstone cycling sedimentation rates might have
gone down and cycles are missed in this interval. Therefore,
we constructed a last age model (Age Model 3) that tries to
adjust for this minimal estimate (Fig. S1). Age Model 3 in-
cludes the same age tie-points as Age Model 2 for C13n and
top of C15n and adds two hypothetical obliquity cycles in
C13r, one between G7 and G6 and one between G4 and the
base of chron C13n (Fig. S1). This age model thus does not
result in a different length of C13r, but slightly modifies the
relative position of the upper part of the stratigraphy as it is
expected that cycles are missed there. Finally, a robust as-
tronomical tuning may come out of IODP Leg 320 in the
equatorial Pacific (PEAT) as continuous carbonate-rich suc-
cessions have been recovered that include the EOT. A robust
time scale for this interval is needed to check our age models
for the Tashan section. Until then, we regard the radiometric
estimates from the continental succession in Wyoming as the
most reliable indicators of the duration of C13r.

www.clim-past.net/6/501/2010/ Clim. Past, 6, 501–513, 2010



508 G. Q. Xiao et al.: Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT)

5 Discussion

5.1 Obliquity domination of the latest Eocene

Astronomical forcing of climate dominated by obliquity is
expected at times of low eccentricity values mainly related
to the long-period 2.4-Myr eccentricity cycle (Hilgen et al.,
2000; Hyland et al., 2009) and at times of strong high-
latitude climate change supposedly occurring during phases
of incipient continental ice sheets at high latitudes (Pälike
et al., 2001; Westerhold et al., 2005; Holbourn et al., 2007;
Westerhold and R̈ohl, 2009). A minimum of the 2.4-Myr
eccentricity cycle occurs at∼33.6 Ma, which is above the in-
terval that shows obliquity dominated cyclicity. Therefore, it
seems more likely that a phase of incipient ice sheets preced-
ing the Eocene-Oligocene Transition was causing the strong
obliquity forcing of climate in the Xining Basin.

The imprint of the obliquity cycle is apparent in most ge-
ological records in which astronomical climate forcing has
been detected since the EOT (e.g. Shackleton et al., 1999;
Abels et al., 2007; P̈alike et al., 2006; Raymo et al., 2006).
Before Late Eocene times, however, the dominant cycles
seem to be precession and eccentricity with no apparent
obliquity component (e.g. Herbert and Fischer, 1986; Gale
et al., 1999; Lourens et al., 2005; Westerhold et al., 2007;
Westerhold and R̈ohl, 2009). This supports the idea that the
occurrence of dominant obliquity-paced cyclicity in geologi-
cal records outside intervals of long-period eccentricity min-
ima is related to the presence or development of high-latitude
continental ice volume. Westerhold and Röhl (2009) find an
interval of∼800 kyr within chron C22r (∼50 Ma) in Demer-
ara Rise sediments of ODP Site 1258, which is dominated by
obliquity induced cyclicity. This interval seems to coincide
with low eccentricity values related to long-period eccentric-
ity (despite uncertainties in the astronomical solution, Laskar
et al., 2004), although the obliquity dominance is stronger
than in similar low eccentricity intervals above and below.
Westerhold and R̈ohl (2009) tentatively explain the obliq-
uity dominance in this interval by the special orbital con-
figuration with the “very-long” eccentricity minimum and
high-amplitude obliquity variations favoring the nucleation
of ephemeral ice sheets and/or the formation of extended sea-
ice directly at the end of the Early Eocene Climatic Optimum
(EECO).

Obliquity domination of terrestrial records has been re-
ported from early Oligocene stacking of alternating deep and
shallow calcic paleosols in Oregon (Retallack, 2007). Also,
an Upper Eocene section in Montana suggests obliquity forc-
ing although this section might be too short to establish that
obliquity was the main driver (Retallack, 2007). Cyclostrati-
graphic analysis of the Upper Eocene to Oligocene Solent
Group, mainly deposited on coastal plains, indicates strong,
400-kyr eccentricity related sea-level and climate fluctua-
tions (Gale et al., 2006). On top of these major fluctuations
they find rather strong obliquity-forced sea-level and climate

cycles starting in the latest Eocene. These results suggest that
high-latitude ice-volume changes were dominated by long
eccentricity and obliquity, as they clearly were during the
Oligocene (P̈alike et al., 2006; Abels et al., 2007). Clearly,
these glacial cycles also exerted an influence on local climate
at intermediate latitudes.

In the marine realm, the Umbria-Marche Basin of the
northeastern Apennines in central Italy contains a pelagic
limestone and marl succession covering the EOT in full ex-
tent. Cyclostratigraphic analysis of carbonate content at
Monte Cagnero (Italy) points to 400-kyr, 100-kyr eccentric-
ity and 41-kyr obliquity forcing throughout most of the ear-
liest Oligocene, while the latest Eocene seems to lack the
obliquity component (Hyland et al., 2009). At Massignano,
Jovane et al. (2006) find a 400-kyr eccentricity and 41-kyr
obliquity forcing on susceptibility and carbonate content dur-
ing chron C13r, while the results of Brown et al. (2009) point
to 41-kyr obliquity and 100-kyr eccentricity forcing on sus-
ceptibility, carbonate content, and bulk sedimentδ18O. These
studies thus indicate that obliquity played a (significant) role
in regional climate during the late Eocene with associated
changes interpreted to have induced enhanced terrigenous
supply during wet/warm periods and enhanced productivity
during dry/cold periods (Brown et al., 2009). Strong and per-
sistent obliquity-modulation in the late Eocene is also found
in Ca/Fe records from the ODP Site 1052 (Blake Nose, At-
lantic margin of northern Florida), which show a shift from
a precession-eccentricity dominated system to an obliquity-
eccentricity system at around 36.7 Ma, i.e. well before the
EOT (P̈alike et al., 2001). The authors relate this to changes
in the ocean circulation system and the dominant climatic
regime consistent with the appearance of ice sheets at high
latitude.

In summary, we argue here that the strong obliquity cyclic-
ity observed in the Xining Basin outside an interval with low
eccentricity values related to the 2.4-Myr cycle is caused by
high-latitude ice volume variability influencing climate over
central Asia at this time (Fig. 7). In line with previous sug-
gestions, we believe this might be related to incipient ice
sheets that are highly susceptible to environmental and cli-
matological changes, and that might have a significant im-
pact on global climate due to their presence-absence behav-
ior.

5.2 Comparison with open ocean records

To compare the EOT interval in the Xining Basin with ma-
rine records, we recalculated the age scale of the Tanzanian
Drilling Project (TDP) and ODP Sites 522, 744, and 1218 to
our Age Model 3 using the chron boundaries of C13n and
C15n (Fig. 7).

This comparison indicates that the most pronounced litho-
facies change in the Xining Basin, above bed G7 in TS and
G 3 in Xiejia and Shuiwan, coincides with the start of the
first shift in oxygen isotopes referred to as the “precursor
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Fig. 7. Left half displays results from the Tashan section in time domain of Age Model 3. From left to right, the magnetostratigraphy (Age
model 3), the magnetic susceptibility (MS), redness (a∗), and median grain size (MGS) proxy records in black with their respective obliquity-
domain bandpass filters in red. Event 1 to 3 indicating the last thick regionally correlatable gypsum bed (1), the last regional correlatable
gypsum bed (2), and the hypothetical position of Step 2 or Oi-1 isotope event within the terrestrial stratigraphy at which no change has been
observed. Right half of figure displays marine oxygen isotope records from the Tanzanian Drilling Project (TDP; Lear et al., 2008; Pearson
et al., 2008) and ODP Sites 522, 744 (Zachos et al., 1996), and 1218 (Coxall et al., 2005) against our Age Model 3. Indicated are Step 1
phase, the Eocene Oligocene Boundary (EOB), and Step 2, as recognized within the TDP records. To the right, in black astronomical curves
for obliquity and eccentricity from the La2004 (1,1) solution (Laskar et al., 2004) with in grey bandpass filters showing the 1.2-Myr cycle in
obliquity and 405-kyr cycle in eccentricity.

event”, “EOT-1”, and “Step 1” in the marine realm (Coxall et
al., 2005; Katz et al., 2008; Lear et al., 2008; Pearson et al.,
2008), while the last regionally correlatable gypsum bed cor-
responds to the end of this first step. Within Age Model 2 this
comparison is nearly similar with both events in the Tashan
section correlating slightly higher with respect to the marine
events. In contrast, the base of the Oi-1 oxygen isotope ex-
cursion or Step 2, which is recognized as the main Antarc-
tic ice volume increase event and associated global sea-level
lowering seems to have no expression in the Xining Basin.
Step 2 is expected in C13n about 20% above the base of this
chron (Fig. 7; Coxall and Pearson, 2007), but no lithologi-
cal changes are observed in the Xining records at this level.
The Median Grain Size (MGS) record does show a decrease
though higher than the estimated position of Step 2 (Fig. 7).
Additional sedimentological investigations are needed in or-
der to interpret the paleoenvironmental implication of this
change in MGS and to find out whether the mudstone depo-
sitional environment differed in the early Oligocene from the
latest Eocene.

The disappearance of regionally correlatable gypsum and
gypsiferous beds at the top of G4 has been interpreted as to
reflect regional aridification by Dupont-Nivet et al. (2007).
This interpretation is based on the fact that the gypsum de-
posits represent the wettest facies with respect to the dry
mudflat environments during red mudstone deposition and
disappearance of the wettest facies might indicate a general
aridification. The major reduction in thickness of intercalated
gypsum beds at the top of G7 can likewise be interpreted as
an aridification step. In the TDP records, Step 1 has been
related to a 2.5◦C equatorial temperature decrease with only
minor continental ice volume increases (Lear et al., 2008).
These findings are consistent with a temperature drop indi-
cated by an increase in charophyte oogonia size and a minor
sea-level drop occurring around 150 kyr before the base of
C13n in the Solent Group of the Hampshire Basin in south-
ern England (Gale et al., 2006; see also Hooker et al., 2009).
The coincidence of Step 1 with lithofacies changes in the
Xining Basin emphasizes the global marine and terrestrial
significance of the first step of the EOT, as also suggested by
major marine planktonic and benthic extinctions culminating
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just above Step 1 at the EO-boundary (Pearson et al., 2008;
EOB in Fig. 7). Coincidence of lithofacies change with first
step in oxygen isotope changes, preceding the base of Oi-1
provides a unprecedented teleconnection evidence between
continental and marine realms at the EOT. It has been sug-
gested (Dupont-Nivet et al., 2007; Gasse, 2000; Lawrence
et al., 2003) that the reported cooling of global ocean tem-
peratures at the EOT (Liu et al., 2009) may generally re-
duce moisture transport to continental interiors. However,
the precise climate-ocean dynamics that could have produced
this important global response remain to be tested by climate
modeling studies (Zhang et al., 2007; Eldrett et al., 2009).

Dupont-Nivet et al. (2007) proposed two mechanisms for
the aridification in the Xining Basin around the E-O bound-
ary. Firstly, global ocean cooling would reduce precipita-
tion in the continental interiors (Gasse, 2000) and, secondly,
glacioeustatic sea-level lowering would cause shoreline re-
treat of the Paratethys Sea, which may lead to significant in-
crease in the distance of the water vapor source to the Xining
Basin. The coincidence of the lithofacies change in the Xin-
ing Basin with Step 1 and not Step 2, which is related to the
main sea-level lowering event at the EOT, suggests that the
Paratethys was not the principal moisture source of the Asian
interior. Alternatively, though less likely, the first 15 m of
sea-level lowering estimated for Step 1 could have been the
thresh-hold for Paratethys retreat in case the connection with
the open ocean of this inland sea was already in a critical
state. The coincidence of lithofacies shifts and Step 1, which
is characterized by an atmospheric temperature drop (Gale
et al., 2006; Lear et al., 2008), would further suggest that
Asian paleoenvironmental change also occurred during the
first step rather than the second step. This is at odds with the
major mammal turnover referred to as the “Grande Coupure”
that is reported to occur during the basal parts of C13n at a
major sea level lowstand and is thus equivalent to Step 2 and
Oi-1, rather than Step 1 (Hooker et al., 2009). The latter is
however perfectly in line with European faunal turnover in
reaction to Asian immigration due to the retreat of the ma-
rine barrier between Asia and Europe, likely to occur at Step
2 (Dawson, 2003). Dating of the “Mongolian Remodeling”
fauna is still insufficient for such detailed comparison with
the EOT (Kraatz and Geisler, 2010). In terrestrial records in
North America, a net decrease in precipitation and increase
in seasonality has been deduced from various sedimentolog-
ical and paleontological data, while a decrease in mean an-
nual temperature of around 7◦C is observed based onδ18O
values of fossil remains (e.g. Zanazzi et al., 2009). Despite
these changes, the vast majority of mammal lineages do not
show an observable response to the EOT. The age control of
these records is not at the resolution to distinguish between
Step 1 and Step 2 at the EOT interval. Nevertheless, it seems
that the Chadronian-Orellan mammal zone boundary occurs
before the major increase inδ18O bone carbonate that is cor-
related to Step 2 and the Oi-1 isotope event (Zanazzi et al.,
2009).

6 Conclusions

Our magnetostratigraphic age model for the uppermost
Eocene to Oligocene terrestrial Tashan section in the Xining
Basin, China, suggests that the∼3.4 m thick basic cyclic-
ity of alternating playa gypsum and dry mudflat red mud-
stones is controlled by the 41-kyr obliquity cycle driving al-
ternating drier and wetter periods in Asian climate from at
least 1 million year before the EOT. Regional correlations
to previously studied successions and comparison with ma-
rine records suggests that the most pronounced lithofacies
change in the Xining Basin corresponds to the first of two
widely-recognized steps in oxygen isotopes across the EOT.
This first step or “Step 1” that precedes the major, second
step (i.e. the base of Oi-1 excursion) has been reported to be
mainly related to atmospheric cooling rather than ice volume
growth. Coincidence with lithofacies changes in our Chinese
record suggests a global atmospheric impact of Step 1, in
line with marine plankton extinctions culminating just above
the first step at the Eocene-Oligocene boundary. Lack of im-
pact on the Xining Basin record of Step 2 when major ice
volume increase and sea-level lowering of the EOT occurred
would suggests that Asian climate was not affected by this
event and that Paratethys Sea retreat would be a less obvious
candidate as aridification mechanism for Asian climate at the
EOT. These correlations imply that atmospheric impact and
cooling of the EOT occurred at Step 1.

Supplementary material related to this article is
available online at: http://www.clim-past.net/6/501/2010/
cp-6-501-2010-supplement.zip.
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