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Abstract. Water isotope records such as speleothems
provide extensive evidence of past tropical hydrological
changes. During Heinrich events, isotopic changes in mon-
soon regions have been interpreted as implying a widespread
drying through the Northern Hemisphere tropics and an anti-
phased precipitation response in the south. Here, we examine
the sources of this variability using a water isotope-enabled
general circulation model, Goddard Institute for Space Stud-
ies ModelE. We incorporate a new suite of vapour source
distribution tracers to help constrain the impact of precipi-
tation source region changes on the isotopic composition of
precipitation and to identify nonlocal amount effects. We
simulate a collapse of the North Atlantic meridional over-
turning circulation with a large freshwater input to the region
as an idealised analogue to iceberg discharge during Heinrich
events. An increase in monsoon intensity, defined by vertical
wind shear, is modelled over the South American domain,
with small decreases simulated over Asia. Simulated iso-
topic anomalies agree well with proxy climate records, with
lighter isotopic values simulated over South America and en-
riched values across East Asia. For this particular abrupt cli-
mate event, we identify which climatic change is most likely
linked to water isotope change – changes in local precipita-
tion amount, monsoon intensity, water vapour source distri-
butions or precipitation seasonality. We categorise individual
sites according to the climate variability that water isotope
changes are most closely associated with, and find that the
dominant isotopic controls are not consistent across the trop-
ics – simple local explanations, in particular, fall short of ex-
plaining water isotope variability at all sites. Instead, the best
interpretations appear to be site specific and often regional in
scale.

Correspondence to:S. C. Lewis
(sophie.lewis@anu.edu.au)

1 Introduction

1.1 Heinrich event expression inδ18O records

The last glacial period was punctuated by successive Hein-
rich (H) events, short-lived abrupt cool episodes around the
North Atlantic (Heinrich, 1988). These events are defined by
distinct foraminifera-free zones within ice-rafted debris lay-
ers in oceanic sediment cores; they are thought to result from
massive, periodic iceberg discharges into the North Atlantic
basin. Heinrich events were accompanied by strong sea sur-
face temperature (SST) and salinity reductions in the North
Atlantic (Bond et al., 1992).

In the North Atlantic, Heinrich events usually occur to-
wards the end of a cycle of progressively cooler interstadi-
als (Dansgaard-Oeschger cycles), which culminate in a pro-
longed cold period during which a Heinrich event occurs
(Bond et al., 1993). Conversely, H events in the Antarc-
tic are contemporaneous with warmer conditions, suggestive
of a “bipolar seesaw” connection between the hemispheres
(Broecker, 1998). During H events, regional sea surface den-
sity gradient changes likely resulted in a substantial decrease
in the production of North Atlantic Deep Water (NADW)
(Keigwin and Lehman, 1994). Significant regional climatic
changes during H events are near-global in extent (Hemming,
2004).

In the low-latitudes, speleothem-based climate reconstruc-
tions show the monsoon regions respond abruptly during
Heinrich events (Fig. 1). Oxygen isotope reconstructions
from the East Asian monsoon (EAM) region demonstrate
an anti-correlation with Greenland ice core records (Wang
et al., 2001; Wang et al., 2008; Zhou et al., 2008). In China,
enrichedδ18Ocalcite values (δ in permil units, ‰, of the sub-
scripted value relative to a known standard) coincident with
H events have been interpreted as a weakening of the EAM
(Wang et al., 2001). Brazilian speleothemδ18O records are
characterised by a sequence of wet conditions synchronous
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Fig. 1. Spatial pattern of climatic andδ18O changes during Heinrich events from selected proxy records.
High-latitude sites (squares):
1. GRIP (Bond et al., 1993) – H1, H2, H3;
2. Byrd (Blunier et al., 1998) – H1, H2;
3. Taylor Dome (Inderm̈uhle et al., 2000; Grootes et al., 2001) – H3, H4;

Low-latitude speleothem sites (circles):
4. Hulu cave, China (Wang et al., 2001) – H1, H2, H3, H4;
5. Songjia cave, China (Zhou et al., 2008) – H1; 6. Sanbao cave, China (Wang et al., 2008) – H1;
7. Snail Shell and Bukit Assam caves, northern Borneo (Partin et al., 2007) – H1;
8. Liang Luar cave, Indonesia (Lewis et al., 2010) – H2, H3;
9. Moomi cave, Socotra, Yemen (Shakun et al., 2007) – H1, H5;
10. Soreq cave, Israel (Bar-Matthews et al., 1999) – H1, H2, H5;
11. Lake Tanganyika, East Africa (Tierney et al., 2008) – H1, H4;
12. Rio Grande do Norte, northeastern Brazil (Cruz et al., 2009) – H1, H2;
13. Toca da Boa Vista, northeastern Brazil (Wang et al., 2004) – H1, H4, H5, H6;
14. Santana cave, southern Brazil (Cruz et al., 2006b) – H1, H3, H4, H5, H6;
15. Botuveŕa cave, southern Brazil (Wang et al., 2006) – H2, H3 and (Cruz et al., 2006) – H1, H4, H5;
16. Cave of the Bells, Arizona, US (Wagner et al., 2010) – H4;
17. Poleva Cave, southwest Romania (Constantin et al., 2007) – H4.

Values indicate average change between Heinrich and baselineδ18O for all identifiable Heinrich events. The position of modern ITCZ during
January and July is indicated.

with cold Heinrich events in the North Atlantic and periods
of weak East Asian summer monsoon circulation in China
(Wang et al., 2004, 2006; Cruz et al., 2006b; Cruz et al.,
2009). Wang et al. (2006) propose a north-south precipita-
tion anti-phasing across the hemispheres during H events un-
der a southward shift of the intertropical convergence zone
(ITCZ). Collectively, however, proxy reconstructions indi-
cate a complex spatial pattern of hydrological changes be-
yond coherent north-south anti-phasing (Tierney et al., 2008;
Wagner et al., 2010; Lewis et al., 2010). This study investi-
gates the coherence of spatial patterns of tropical hydrologi-
cal changes during H events.

A remaining uncertainty in the interpretation of tropical
variability during H events is in the “monsoonal” climate
change, which is widely used in palaeoclimatic literature to
describe a variety of phenomena, including a seasonal rever-
sal of upper or lower level zonal winds, the strong seasonal-
ity of tropical precipitation or hydrological changes resulting
from ITCZ shifts. We aim to resolve, in part, this ambigu-
ity in the meaning of climatic interpretations by describing
which parts of the monsoon system are impacted by H events.
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1.2 Previous modelling work

Prior modelling studies have consistently demonstrated that
freshwater input to the North Atlantic, analogous to iceberg
discharge, reduces NADW formation and drives a regional
cooling (Manabe and Stouffer, 2000; Stouffer et al., 2006).
The simulated thermohaline circulation (THC) rapidly weak-
ens following a freshwater perturbation, resulting in a reduc-
tion in northward heat and salt transport in the North At-
lantic. The greatest temperature anomalies occur over the
northern North Atlantic, with some cooling over Greenland,
Europe and North America and a mild warming over parts
of the Antarctic, as an expression of the bipolar seesaw.
Prior studies also indicate significant modelled water iso-
tope anomalies following an abrupt, though smaller, North
Atlantic freshwater forcing (e.g. LeGrande et al., 2006). Wa-
ter isotope responses include depletion in precipitation across
the North Atlantic and southern subtropics, with enrichment
to the north.

In the tropics, the impact of a simulated reduction in
THC intensity includes a southward shift in precipitation
bands and in the ITCZ over the tropical oceans (Dong and
Sutton, 2002; Zhang and Delworth, 2005). Furthermore,
a freshwater-forced reduction in the Atlantic meridional
overturning circulation and expanded northern ice coverage
drive extensive remote responses, including an El Niño-like
SST pattern in the southeastern tropical Pacific. Overall,
a freshwater-forced southward ITCZ shift, particularly over
the Atlantic Ocean, is a robust response across multiple mod-
els (Stouffer et al., 2006).

1.3 Sources ofδ18O variability

The δ18O in precipitation (δ18Op) integrates changes in at-
mospheric circulation from source to the site of rainout
(Noone, 2008). The dominant controls onδ18O are variable
between proxy sites and include local precipitation amount
variability together with changes in regional hydrology, the
initial evaporative source, degree of rain-out during transit
and atmospheric mixing.

Tropical δ18O variability is often interpreted as an alter-
ation in local precipitation. This inference is based on simple
Rayleigh distillation models that predict that isotope ratios
in precipitation are correlated to local rainfall amount (the
“amount effect” relationship) (Dansgaard, 1964; Araguás-
Aragúas et al., 1998). In general circulation models (GCMs),
however, mixing plays an important role and these mod-
elling results indicate that the spatial amount effect relation-
ship is strongest only over the tropical oceans, rather than the
land surface where speleothem archives occur (Tindall et al.,
2009), and on intraseasonal timescales or longer (Risi et al.,
2008). Additionally, observational studies show the amount
effect is most applicable at coastal locations (Rozanski et al.,
1993).

Furthermore, modern spatial isotope-climate gradients be-
tween multiple sites may not be good predictors of tempo-
ral gradients (Schmidt et al., 2007; LeGrande and Schmidt,
2009). As such, simpleδ18O interpretations based on this
amount effect relationship alone are unlikely to be robust for
all sites and the dominantδ18Op control is likely to be spa-
tially variable and site specific. In some casesδ18Op changes
might be more accurately interpreted in terms of regional hy-
drological changes (Vuille et al., 2005; Schmidt et al., 2007;
LeGrande and Schmidt, 2009).

Source region effects are also an importantδ18Op control,
through changes in initial vapour source composition and air
mass transport distance (Rozanski et al., 1993). The relative
amount of continental recycling is a determinant ofδ18Op, as
plant evapo-transpiration is non-fractionating and retains the
composition of local groundwater, resulting in enriched val-
ues relative to oceanic derived precipitation (Zimmermann
et al., 1967). Also, the location of the source region in-
fluences the extent of condensation undergone by a vapour
parcel in transit to the site of precipitation. Locally derived
vapour is typically relatively enriched, experiencing less con-
densation en route than water vapour transported over long
distances (Rozanski et al., 1993). There have been various
interpretations ofδ18O variability in terms of source region
effects (Jouzel and Koster, 1996; Masson-Delmotte et al.,
2005).

As the relative contribution of vapour sources cannot be
directly measured, model studies have demonstrated the im-
portance of source region changes onδ18Op (e.g. Koster et
al., 1986; Cole et al., 1999). Studies incorporating back tra-
jectory modelling of air mass parcels have shown the sig-
nificance of source regions for seasonalδ18Op composi-
tions (Griffiths et al., 2009; Sjostrom and Welker, 2009).
Also, source tracers from pre-specified regions (“painted wa-
ter”) have been employed as a GCM diagnostic tool in hy-
drological studies (Joussaume et al., 1986; Koster et al.,
1986; Druyan and Koster, 1989) and in palaeotemperature
reconstructions (Johnsen et al., 1989; Jouzel et al., 1997).
Noone (2008), for example, considered the impact of mul-
tiple drivers of δ18Op variability (initial source, transport
pathway and atmospheric mixing) and showed that Antarctic
isotopic records reflect changes in mid-latitude circulation.
Precipitation source region tracers provide a useful diagnos-
tic for identifying and classifying sites where isotopic vari-
ability is characterised by controls other than a clear local
amount effect. In particular, source tracers provide a means
of recognising both regional, nonlocal amount effect domi-
nated localities and those whereδ18Op is controlled by dis-
tinct shifts in precipitation source.

In this study, we examine the relationship between trop-
ical and high-latitude regions during Heinrich events, us-
ing a fully coupled water isotope-enabled atmosphere-ocean
GCM. For speleothem sites within the Australian, Indian,
EAM and South American (SM) monsoon regions we also
use a novel set of Vapour Source Distribution (VSD) tracers,
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as well as water isotope tracers, as a set of diagnostic tools
to assess the nature ofδ18Op changes during abrupt climatic
excursions (i.e. “hosing”), analogous to an H event. We in-
vestigate whether the spatial pattern of modelledδ18Op dur-
ing Heinrich-like simulations can be attributed to changes in
local precipitation amount, monsoon intensity (defined by
zonal wind shear), precipitation source regions, or the sea-
sonality of precipitation. Finally, we categorise proxy sites
by type, according to the dominant controls on simulated iso-
topic variability.

2 Methods

2.1 Model description

Simulations were made using the coupled atmosphere-ocean
GISS (Goddard Institute for Space Studies) ModelE-R. The
horizontal resolution is 4◦×5◦ with 20 vertical levels up to
0.1 hPa in the atmosphere (Schmidt et al., 2006) and a 13
layer Russell ocean model of the same horizontal resolu-
tion (Hansen et al., 2007). Atmospheric advection uses the
quadratic upstream scheme, with 9 moments advected in ad-
dition to mean quantities. The ocean component is non-
Boussinesq, mass conserving and uses “natural” boundary
conditions at the free surface. The addition of freshwater in-
creases the free surface and reduces salinity through dilution.
No equivalent salt fluxes or flux adjustments are used.

Water isotope tracers (1H16
2 O, “normal” water;2H1H16O

or HDO, reported asδD; and1H18
2 O, δ18O) are incorporated

into the atmosphere, land surface, sea ice and ocean. Wa-
ter isotopes are tracked through all stages of the hydrologic
cycle and are advected like water throughout the model, but
at each phase change, a fractionation is applied, explicitly
determining equilibrium fractionation and with parameteri-
sations accounting for kinetic fractionations (Schmidt et al.,
2005).

2.2 Water vapour source distribution tracers

The water source tracer methodology employed here is a gen-
eralisation of the regional source tracers (“painted water”)
approach (Koster et al., 1986) but requires no prior definition
of regions (Kelley, 2003). We define a suite of VSD trac-
ers in the model, and atmospheric transport and condensa-
tion processes alter these analogously to a non-fractionating
water isotope tracer. The VSD is the integrated mass of wa-
ter vapour in each model cell, expressed as an area integral
of evaporative input unique to that cell. The VSD can be
represented as a weighted sum of basis functions that are or-
thogonal to one another over the earth’s surface. The sur-
face source of a given member of this new suite of tracers
is equal to the evaporation field multiplied by its associated
basis function. The sources of water vapour are traced back
through any cloud processes to the site of surface evapora-
tion. The precipitation source distribution is a subset of the
VSD, defined where vapour condenses to liquid.

This study uses spherical harmonics as VSD basis func-
tions as these are not anchored to any particular geographic
boundary and require no prior definition of regions. The
“painted water” approach can be seen as a special case of
the VSD tracers using binary basis functions at each grid-
box. It should be noted that factors such as land-sea contrasts
cause real-world precipitation source distributions to not vary
smoothly over planetary scales. As such, the smooth shapes
of VSDs cannot be interpreted literally. We include 144 trac-
ers and resolve distributions to wavenumber 11, providing an
effective horizontal resolution of vapour sources to approxi-
mately 8◦×10◦.

VSD tracers cannot be employed in a comprehensively
quantitative manner for tropical water isotopes, given that
convection and mixing processes diminish the validity of a
Lagrangian parcel-style approach to isotopic interpretation.
Rather, the utility of the VSDs is as a vapour and precipita-
tion weighted circulation diagnostic.

2.3 Experiment design

The VSD tracers utilised here are computationally expensive,
slowing the model by a factor of 10. Thus, we present wa-
ter isotope results from the coupled model and VSD trac-
ers from atmosphere-only model simulations driven by sur-
face conditions (SST and sea ice) determined from the cou-
pled simulation. A pre-industrial coupled, atmosphere-ocean
VSD-enabled simulation was conducted to test the validity
of atmosphere-only simulations, indicating only small dif-
ferences in precipitation source distributions.

Hosing simulations were completed as part of the Paleo-
climate Modelling Intercomparison Project (PMIP) experi-
ment to test the sensitivity of the THC to an external source
of freshwater (Stouffer et al., 2006). Although hosing ex-
periments are highly idealised and not representative of a
particular climatic event, they are useful in examining the
response of tropical precipitation to abrupt cooling in the
North Atlantic. Following the PMIP protocol (Stouffer et al.,
2006), this study applies a freshwater flux (T 0◦C; S 0 psu)
of 1 Sv (1 Sv=106 m3/s) uniformly over the Atlantic between
50◦ and 70◦ N over 100 model years. Water isotopes are
included in these experiments, and thus the freshwater has
a specified depletion (δ18O−30‰) consistent with observa-
tional estimates of the composition of ice discharge during H
events (Hemming, 2004). A control (0 k) simulation, with no
freshwater perturbation, was run in parallel with all bound-
ary conditions and atmospheric composition appropriate to
the pre-industrial period (ca. 1880).

Comparable control and hosing simulations were con-
ducted in atmosphere-only mode with VSD tracers enabled.
Initial conditions for the VSD-enabled hosing simulation
were determined from anomalies calculated from the cou-
pled simulations. Monthly SST and sea ice anomalies were
defined as the difference of hosing model years 81 to 100
(where year 1 is the first hosing year) and pre-industrial
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Table 1. Summary of site types defined in terms of hydrological controls onδ18Op.

Type Definition

Type-1 Local precipitation andδ18Op changes consistent with local amount effect

Type-2 Regional hydrological changes (monsoon intensity) upwind consistent with nonlocalδ18Op amount effect

Type-3 No amount effect operating, significant vapour source shifts dominateδ18Op changes

Type-4 Large shifts in the seasonality of precipitation produce corresponding annualδ18Op changes
Type-5 No explanation for isotopic signals in terms of precipitation, VSDs or seasonality changes

model years 41 to 140. These date ranges coincide with
anomalies reported in the PMIP study. Anomalies were ap-
plied to observed SST and sea ice fields as surface boundary
conditions for the atmosphere-only simulation. The atmo-
sphere only, VSD-enabled model was run for six years, with
the final five years’ results reported here.

2.4 Definitions

Model results are used to categorise tropical water iso-
topes sites in terms of regional hydrological and circulation
changes. Specifically, we define five site types (Table 1)
where,

1. Local precipitation and isotope changes are consistent
with the amount effect, wherebyδ18Op is inversely cor-
related to local rainfall amount. Local precipitation
changes are part of a coherent regional pattern and the
site is reasonably distant from contours of zero precipi-
tation changes.

2. Not all circumstances of Type-1 occur, but regional
hydrological changes upwind are consistent with a
nonlocal amount effect characterised by upwind pre-
fractionation (i.e. upwind isotopic fractionation pro-
cesses occurring prior to rain-out over specified region).
In Type-2 cases, local and upwind precipitation changes
are not coherent. Hydrological changes are linked to
monsoon intensity variability, as defined below.

3. No amount effect seems to be operating, but signifi-
cant vapour source shifts can plausibly explain isotopic
changes. Also, the source shift is consistent with ex-
pected circulation changes.

4. Shifts in the seasonality of precipitation produce cor-
responding changes in annual mean isotope signals. In
this case, VSDs may be useful in explaining control iso-
topic seasonality due to the co-seasonality of isotopic
changes and VSDs.

5. There is no explanation for isotope signals in terms of
precipitation, VSDs or seasonality changes.

The classification of some sites is complex and most sites
exhibit multipleδ18Op controls and hence secondary effects

are also identified. The categorisation of sites is suggested
for hosing-drivenδ18Op changes only. As potentially differ-
ent isotopic controls exist for climatic changes on different
timescales (e.g. orbitally driven changes), generalisations of
controls are not made.

As mentioned above, “monsoon” is often used to describe
a variety of climatic phenomena. In order to examine re-
gional hydrological changes, we define monsoon intensity
using the zonal wind shear Webster-Yang (WY) index (Web-
ster and Yang, 1992). The WY index is defined as the west-
erly wind shear anomaly between 850 hPa and 200 hPa pres-
sure surfaces for June–August (JJA). The strength of the ver-
tical shear is proportional to the strength of convective activ-
ity and associated latent heat released during the monsoon
season as precipitation. During strong monsoon seasons,
the upper air easterly and low-level westerly winds inten-
sify. Conversely, during weak monsoon periods, zonal wind
fields relax. This intensity definition from the Asian region
is broadened to describe changes in monsoon strength over
the South American monsoon area during the austral sum-
mer (DJF). We adopt the SM domain definition of Vuille and
Werner (2005), which they identify as the centre of mon-
soonal convection in the region and consider dynamically
consistent to the approach of Webster and Yang (1992). Dy-
namical monsoon indices have been employed previously
as a measure of large-scale monsoon intensity changes and
to characterise monsoon-isotope relationships (Brown, 2004;
Vuille et al., 2005).

3 Results

The GISS ModelE-R simulation is part of the PMIP hos-
ing experiment described by Stouffer et al. (2006). In gen-
eral, mean GISS climatologies reside within the ensemble
range of participating models. For all comparisons, cli-
matic changes are reported as hosing anomalies relative to
pre-industrial values. Specifically, anomalies are determined
from mean values in control years 41 to 140 and hosing years
81 to 100. All anomalies reported are greater than 95% sig-
nificant given the control decadal variability about the 100-
year mean.
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Fig. 2. Comparison of simulated average annual hosing1δ18O and
reconstructed Heinrich1δ18O from selected proxy sites shown in
Fig. 1 (R2=0.88). Reconstructed1δD from Lake Tanganyika (Tier-
ney et al., 2008) is presented as a1δ18O equivalent approximated
using the Global Meteoric Water Line (Rozanski et al., 1993). The
solid line indicates 1:1 relationship between modelled and observa-
tional values.

3.1 Modelδ18Op validation

Comparisons of simulated hosing-drivenδ18Op anomalies
and measuredδ18O records of H events are presented in Ta-
ble 2 and Fig. 2. For consistency,δ18Op excursions were
averaged across all identifiable Heinrich events and esti-
mated as the difference between average composition before
an event and the extreme value during an event. Although
North Atlantic oceanic sediment layers associated with H3
and H6 are considered geochemically unusual, with a con-
trasting provenance (Hemming, 2004), they are included
here as their climatic expressions are comparable. In cases
where values are reported from single gridboxes, these are
coherent with changes over a broader area. Annual and sea-
sonalδ18O hosing anomalies are shown in Fig. 3. The simu-
lated hosing1δ18O spatial pattern is broadly consistent with
proxy records (Fig. 2).

In the high latitudes, we simulate depleted precipitation
(ANN 1δ18Op −3.9‰; JJA1δ18Op−2.8‰; DJF1δ18Op

−9.2‰) over Greenland, consistent with H events docu-
mented in the GRIP record (1δ18O−2.3‰; Bond et al.,
1993; GRIP Members, 1993). The addition of highly iso-
topically depleted freshwater to the region and associated
changes in the isotopic composition of surface seawater
(δ18Osw) contribute to comparatively light regionalδ18Op.
Further decreases inδ18Osw result from the reductions in
northward transport of tropical surface water into the region
(Fig. 3). Isotopic enrichments over Antarctica are an or-

der of magnitude lower than those in the high-latitudes of
the Northern Hemisphere (NH). In the Southern Hemisphere
(SH) high-latitudes, there are minimal hosing-drivenδ18Op

changes. At Byrd ice core site, no statistically significant
annual averageδ18Op change is simulated, compared to the
∼0.7‰ reconstructed Heinrich shift (Blunier et al., 1998).
Conversely, over Taylor Dome, the modelledδ18Op change
is a−0.6‰ depletion, which is similar to the∼−1.2‰δ18O
shift estimated from proxy data covering H events (Grootes
et al., 2001).

In the mid-latitudes, European speleothems covering ma-
rine isotope stage 3 are sparse and existing records are typ-
ically limited by low calcite growth rates. At Poleva cave
in Romania (44◦4′ N, 21◦5′ E), aδ18O excursion (∼−2.0‰)
recorded around H4 is similar to the simulated hosing change
(ANN 1δ18Op −2.9‰), although this stadial is constrained
by only four geochemical data points over∼5 kyr (Con-
stantin et al., 2007).

Across the tropics, a broadly anti-phasedδ18Op pattern is
modelled across the hemispheres. Depletedδ18Op values are
simulated across the tropical southern Pacific, Atlantic and
Indian Oceans, the West Pacific Warm Pool, eastern South
America and southern Africa. Conversely, enriched values
are modelled over most of southern Asia and central Africa,
corresponding to increased precipitation associated with the
southward migration of the ITCZ. Proxy records from the
East Asian and Indian monsoon domains consistently exhibit
enrichedδ18Ocalcitevalues during H events and generally en-
riched precipitation is modelled over China (ANN1δ18Op

0.6‰) and India (ANN1δ18Op 1.4‰). Simulated hosing
δ18Op enrichment is largest during the boreal summer (China
JJA1δ18Op 0.6‰; India JJA1δ18Op 2.4‰). Anomalies in
this region are spatially complex with a seasonally robust
hosing zero1δ18Op front transecting China, with positive
anomalies to the south and negative to the north. The corre-
spondence of modelled and reconstructedδ18O anomalies is
variable. Excursions in simulatedδ18Op are consistent with
reconstructed values at Songjia cave (Zhou et al., 2008), al-
though modelledδ18O enrichments are lower than proxy ex-
cursions at Sanbao (31◦4′ N, 110◦3′ E; Wang et al., 2008)
and Moomi cave in Yemen (31◦4′ N, 110◦3′ E; Shakun et al.,
2007).

Over Brazil, modelled isotopically depleted precipitation
(ANN 1δ18Op −2.7‰; JJA1δ18Op−1.7‰; DJF1δ18Op

−3.1‰) is consistent with H event reconstructions. At Rio
Grande do Norte (31◦4′ N, 110◦3′ E; Cruz et al., 2009) and
Santana (31◦4′ N, 110◦3′ E; Cruz et al., 2006b) caves, simu-
lated annual1δ18Op is greater than the reconstructed aver-
ageδ18O change over H events. This discrepancy in1δ18O
magnitude may relate to the method of averaging proxy ex-
cursions, which excluded extremeδ18Ocalcite values repre-
sented by a single data point. Further agreement between re-
constructed and modelled isotopic values occurs over Borneo
(4◦ N, 114◦E; Partin et al., 2007) and at Lake Tanganyika,
Africa (6◦4′ S, 29◦5′ E; Tierney et al., 2008).
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Table 2. Comparisons of isotopic proxy records with annual average modelledδ18Op and precipitation hosing anomalies at relevant grid-
boxes. Proxy data excursions are estimated from average baselineδ18O values prior to the timing of a Heinrich event and averaged across
all identifiable excursions.

Modelled annual1Hosing

Location Site lat,long Data1δ18O δ18O PRECIP
(‰) (‰) (mm/day)

GRIP 72◦ N, 37◦ W −2.3 −3.9 −0.1
Byrd 80◦0′ S, 119◦3′ W 0.7 0.0 0.1
Taylor Dome 77◦5′ S, 158◦4′ E −1.2 −0.6 0.1
Hulu cave 32◦3′ N, 119◦1′ E 1.4 0.0 0.2
Songjia cave 32◦2′ N, 107◦1′ E 1.4 1.0 −1.0
Sanbao cave 31◦4′ N, 110◦3′ E 1.2 0.4 0.6
Borneo 4◦ N, 114◦E 0.8 0.6 −0.5
Liang Luar cave 8◦3′ S, 120◦3′ E Hiatus −0.7 0.8
Moomi cave 12◦3′ N, 54◦2′ E 0.9 0.2 −0.1
Soreq 31◦3′ N, 35◦0′ E 0.5 −1.2 0.0
Lake Tanganyika 6◦4′ S, 29◦5′ E 14.5 (δD) 1.3, 11.9 (δD) 0.0
Rio Grande do Norte 5◦4′ S, 37◦4′ W −1.6 −2.8 1.2
Toca da Boa Vista 10◦1′ S, 40◦5′ W Growth periods −3.5 2.4
Santana cave 24◦3′ S, 48◦4′ W −0.8 −3.2 0.3
Botuveŕa cave 27◦1′ S, 49◦1′ W −1.1 −1.5 0.1
Cave of the Bells 31◦4′ N, 110◦5′ W −0.8 −1.2 0.4
Poleva cave 44◦4′ N, 21◦5′ E −2.0 −2.9 −0.4
China region 26–34◦ N, 105–120◦E 1.3 0.6 0.2
Brazil region 4-30◦ S, 40–50◦ W −1.2 −2.9 1.1

ΔHosing ANN δ18Op (per mil) ΔHosing JJA δ18Op (per mil)

ΔHosing DJF δ18Op (per mil)ΔHosing ANN δ18Osw (per mil)

Fig. 3. Annual average hosingδ18Op and δ18Osw changes and seasonalδ18Op anomalies for boreal summer (JJA) and winter (DJF).
All values reported are greater than 95% significant (student’s t-test) given the decadal variability about the 100-year mean. Global mean
anomalies are given at the top right of each panel.
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˚

˚

˚

Fig. 4. Annual and seasonal (JJA and DJF) average hosing anomalies for SAT (◦C, left) and precipitation (mm/day, right). All values reported
are greater than 95% significant (student’s t-test) given the decadal variability about the 100-year mean. Global mean anomalies are given at
the top right of each panel.

There are also simulated isotopic shifts that do not di-
rectly compare with proxy records. At Hulu cave (32◦3′ N,
119◦1′ E), modelled δ18Op shows no significant hosing
change compared to a∼1.4‰ reconstructed enrichment
(Wang et al., 2001). Here, modelled modernδ18Op and
precipitation are similar to Global Network of Isotopes
in Precipitation (GNIP; IAEA/WMO, 2006; Bowen, 2009)
and Climate Prediction Centre Merged Analysis of Precipi-
tation data (CMAP; Xie and Arkin, 1996). Hulu lies close to
the zeroδ18Op anomaly line and the coarse model resolution
utilised may be inadequate.

In southwestern USA at Cave of Bells (31◦4′ N, 110◦3′ E;
Wagner et al., 2010), the reconstructed (1δ18Ocalcite−0.8‰)
and simulated (ANN1δ18Op −1.2‰; JJA1δ18Op; −2.5‰;
DJF1δ18Op 0‰) excursion is comparable. However, con-
temporary monitoring indicates calcite precipitates only dur-
ing the winter months (DJF) due to high summer evapora-
tion and runoff. Modelled winter precipitation anomalies
indicate insignificantδ18Op changes, in contrast with re-

constructed values. This discrepancy may indicate that the
large-scale changes in hydrology occurring during abrupt
changes may allow a calcite deposition regime to transpire
that is significantly different from the modern. In this case,
a comparison of annual average hosing values with modern
winter average may be more valid, although this indicates
a 1δ18Openrichment of∼0.8‰. Alternatively, this discrep-
ancy may result from model inadequacies around this com-
paratively high altitude site (1700 m a.s.l.) or a seasonal bias
in modelled precipitation fields.

At Soreq cave (31◦3′ N, 35◦E), reconstructed Heinrich
1δ18Ocalcite values indicate a 0.5‰ enrichment, while mod-
elled δ18Op values record a 1.2‰ depletion (Bar-Matthews
et al., 1999). Modelled modern precipitation values at Soreq
are similar to CMAP data, althoughδ18Op is relatively en-
riched (∼2‰) compared to GNIP and dripwater observations
(Matthews et al., 2000). The relative enrichment of modelled
precipitation to observed is likely because the model does
not adequately resolve the Strait of Gibraltar, resulting in
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Fig. 5. Modelled 850−200 mb zonal winds (m/s, WY monsoon intensity index) for JJA (top) and DJF (bottom) seasons for control run (left)
and hosing anomalies (right). Rectangular boxes indicate Asian (5◦

−20◦ N, 40◦–110◦ E) and South American (2.5◦ S–7.5◦ N, 20–45◦ W)
monsoon region (defined by Vuille and Werner, 2005). Solid white shading indicates areas of high model topography. Global mean values
are given at the top right of each panel.

enrichedδ18Osw composition (∼2‰) in the Mediterranean
compared with observed values (∼1.3−1.7‰; Gat, 1996;
Paul et al., 2001). Rainfall over Soreq is dominated by
Mediterranean storm fronts (Bar-Matthews et al., 1996) and
modelled rainfall is susceptible to bias in Mediterranean
δ18Osw. As simulated hosingδ18Op changes contradict re-
constructed isotopic values from Soreq cave and Cave of
Bells speleothems, classification of the dominant control of
simulatedδ18Op at these sites is not attempted.

3.2 Large-scale climate changes

There are significant simulated global climatic changes fol-
lowing North Atlantic freshwater injection. The mean con-
trol NADW formation (Atlantic overturning streamfunction
at 48◦ N and 900 m depth) is 13 Sv and the long-term mean
simulated THC intensity and decadal-scale variability are
within the PMIP ensemble range of 12−25 Sv (Stouffer et
al., 2006). In this study, THC collapse occurs after∼50 years
and intensity increases steadily after the forcing is elimi-
nated.

Diminished NADW decreases SSTs and is associated with
significant global SAT changes (ANN−1.1◦C; JJA−0.7◦C;
DJF−1.5◦C, Fig. 4), near the ensemble mean annual cooling
of ∼1◦C (Stouffer et al., 2006). The most significant cool-
ing (ANN −8.9◦C) occurs over the North Atlantic, with the
entire Northern Hemisphere cooling annually by∼2.4◦C;

a small annual warming occurs over the Antarctic (ANN
0.2◦C; JJA 0.3◦C; DJF 0◦C). Southern Hemisphere warm-
ing (ANN 0.2◦C) is an expression of the bipolar seesaw
(Broecker, 1998).

Sea surface temperature anomalies broadly match ensem-
ble results, with a modelled annual average global cooling
of 0.4◦C. It should be noted that many participating PMIP
models utilise a “rigid lid” ocean (which “add” freshwater
via equivalent salt fluxes), whereas the GISS model incorpo-
rates a free surface, where added freshwater has the physical
property of 0◦C, limiting the non-physical distortion of the
coupling over the gridboxes where freshwater is added. Sea
ice extent increases following the NADW shutdown, and the
majority of the North Atlantic north of 50◦ N is ice-covered
in wintertime.

The simulated perturbation of the SST gradient across the
hemispheres following hosing results in a southward shift
in the ITCZ by 1–2 gridboxes (∼4–8◦ in latitude, Fig. 4).
There is a global annual average 0.1 mm/day decrease in
precipitation, characterised by an increase in the southern
tropics (ANN 0.2 mm/day) and a decrease in the northern
tropics (ANN −0.4 mm/day). Precipitation anomalies are
seasonally variable. The strongest precipitation decreases
around the North Atlantic occur during the winter months
(DJF−1.1 mm/day), whilst through the tropics and particu-
larly over Asia, larger precipitation changes occur during the
boreal summer.
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Fig. 6. Control precipitation source distributions (Ok), and hosing and modern seasonal precipitation source region anomalies for China
(26–34◦ N, 105–120◦ E, DJF–JJA) and Brazil (4–30◦ S, 40–50◦ W, JJA–DJF). Solid rectangular boxes indicate the location of end member
precipitation and dashed boxes indicate Bay of Bengal source region to China. Note that seasonal and hosing anomalies are plotted on
different scales. VSDs are unitless probability density functions, normalised by the maximum probability density.

There are significant hosing-driven changes in modelled
oceanic and atmospheric heat transport that impact water
vapour transport and the distribution of heavy isotopes in pre-
cipitation. The maximum simulated northward heat transport
in the Atlantic Ocean is 0.82 PW (1 PetaWatt=1015Watts),
within the multi-model ensemble range of 0.7–1.1 PW
(Stouffer et al., 2006). There is a decrease in northward heat
transport in the Atlantic following freshwater perturbation to
0.16 PW at 20◦ N (near the ensemble mean of 0.13 PW), and
an overall reduction in total oceanic heat transport during the
hosing simulation. Total northward atmospheric heat trans-
port, integrated throughout the atmosphere, generally in-
creases in the hosing simulation from the SH tropics through
to the northern mid-latitudes. Hosing-driven increases in at-
mospheric heat transport do not entirely account for the de-
crease in northward oceanic heat transport, with a∼0.3 PW
deficit simulated.

Using the WY index (Webster and Yang, 1992) to de-
fine monsoon intensity, the simulated seasonal zonal wind
shear indicates a freshwater-forced increase in convergence
and monsoon intensification over the South American region
(Fig. 5). Conversely, only a small hosing-driven decrease
in zonal flow (monsoon intensity) in the Asian monsoon
domain in modelled. Also, significant freshwater-forced
changes in the amount of water vapour transported landward
from oceanic source are simulated, due to changes in both
atmospheric wind profiles and humidity. Generally, there is
a decrease in transport of water vapour westward into East
Asia under weakened monsoon circulation. Reductions in
landward water vapour fluxes are strongest in the boreal sum-
mer, with a large reduction in meridional transport from the
tropical west Pacific. Conversely, increases in the landward
transport of water vapour from the tropical Atlantic over
equatorial South America occur during hosing simulations.
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3.3 Precipitation amount and seasonality changes

Over China (shown in Fig. 6), we simulate an overall in-
crease in precipitation (ANN 0.2 mm/day; JJA 0.1 mm/day;
DJF 0.9 mm/day). There is a distinct seasonality of con-
trol precipitation over the EAM region (defined by Li and
Zeng (2002), with∼45% of precipitation occurring dur-
ing the summer months (JJA) and∼5% during winter, with
an average seasonal isotopic difference of∼−4.3‰. How-
ever, Chinese speleothem sites occur largely outside the peak
area of EAM rainfall and experience a subdued seasonality,
with ∼26% occurring during summer (JJA) and∼15% dur-
ing winter (DJF). There are minimal simulated seasonality
changes of∼4% increase in Chinese winter rainfall to the
annual total. The greatest hosing-driven change in precipi-
tation seasonality occurs at Songjia cave, where there is an
overall decrease in precipitation (ANN−1.0 mm/day; JJA
−1.2 mm/day; DJF 0.3 mm/day). At Sanbao cave, simulated
increases in local precipitation (ANN 0.6 mm/day; JJA 0.7
mm/day; DJF 1.1 mm/day) result in an increase in the rela-
tive contribution of winter rainfall to the annual total. Over
Hulu cave, where no significant annual precipitation amount
change is modelled, there is an increase in the relative contri-
bution of winter precipitation to the annual total, consistent
with coastal sedimentary records (Yancheva et al., 2007).

Throughout the Brazil region (Fig. 6), there is a season-
ally robust hosing-driven increase in simulated precipita-
tion (ANN 1.1 mm/day; JJA 0.7 mm/day; DJF 1.3 mm/day).
There is also a decrease (by∼22%) in the proportion of win-
ter (JJA) rainfall from∼33% of the annual simulated control
total. Generally, the seasonality of precipitation is greater
over Brazil following hosing. The decrease in the contribu-
tion of hosing winter precipitation, which is enriched relative
to summer precipitation (1δ18Op ∼5.3‰), is also associated
with depletedδ18Op (ANN 1δ18Op −2.7‰; JJA1δ18Op

−1.7‰; DJF1δ18Op −3.1‰).
Around the Warm Pool, there is an annual average

decrease in precipitation modelled over Borneo (ANN
−0.5 mm/day; JJA 0.9 mm/day; DJF−2.4 mm/day). Further
south at Liang Luar cave, southern Indonesia, hosing sim-
ulations indicate robust year-round precipitation increases
(ANN 0.8 mm/day; JJA 0.8 mm/day; DJF 0.6 mm/day). The
seasonality of precipitation over Borneo is weak, with warm
SSTs driving year-round atmospheric deep convection (Cobb
et al., 2007). At both sites, there is a decrease in the sea-
sonality of precipitation after freshwater perturbation. For
example, over Borneo∼19% of simulated control rainfall
occurs during JJA (1Hosing∼4%) and∼37% throughout
DJF (1Hosing∼−6%).

At Lake Tanganyika, seasonally variable hosing-driven
precipitation changes (ANN 0 mm/day; JJA 0.1 mm/day;
DJF−0.9 mm/day) are simulated. Although no statistically
significant annual average precipitation amount changes are
modelled, regional SH increases associated with the ITCZ
shift are simulated. The seasonality of precipitation is si-

milar in both control and hosing simulations. Over Moomi
cave, Yemen, year-round decreases in hosing precipitation
are simulated (ANN−0.1 mm/day; JJA−0.2 mm/day; DJF
−0.1 mm/day), together with a slight decrease in the contri-
bution of winter (JJA) rainfall to the annual total by∼5%.

3.4 Vapour source distributions

For proxy locations detailed in Fig. 1, we identify hosing pre-
cipitation source region changes (Table 3). We define recy-
cled water as water with a continental, rather than oceanic
source. It should be noted that GCMs can overestimate the
extent of regional recycling in the hydrological cycle, relative
to advective moisture sources (Ruiz-Barradas and Nigam,
2006). Mean water vapour transport distances (TD) are cal-
culated as the distance between the mean location of the pre-
cipitation source distribution and the proxy site. This pro-
vides a lower estimate of overall air mass TD as curved par-
cel trajectories cannot be accounted for. The initial source
δ18O composition (δ18Osource) is calculated as the average
surfaceδ18O within the simulated source region, including
both land and ocean gridboxes.

Over China, modelled annual control precipitation con-
sists of∼50% recycled water vapour from continental Asia.
Approximately 25% of rainfall is sourced from the northwest
Pacific and continental Asia,∼ 40% from the Warm Pool re-
gion and southern continental China and∼20% from the Bay
of Bengal (Fig. 6). Compared with winter (DJF), during the
summer months (JJA) there is an increase in the transport
of vapour from the Indian Ocean (∼27%) and decrease in
Pacific-sourced precipitation (∼25%). Mean modelled pre-
cipitation source pathways to China are 380 km more local
during winter than summer. Overall, modelled sources are
consistent with observations indicating that winter precip-
itation is sourced under different conditions from summer
rainfall, with a change to more local western Pacific sources
(Aragúas-Aragúas et al., 1998). The pattern of hosing-driven
source region changes to China is dominated by an increase
in precipitation with a provenance in the Bay of Bengal
(shown in Fig. 6). It should be noted, however, that the sea-
sonal cycle in the control simulation does not clearly repre-
sent an analogue for hosing-driven changes over this region,
as the changes associated with hosing are an order of magni-
tude smaller than those occurring between the seasons, par-
ticularly over the East China Sea.

Hosing source region changes are also simulated over ar-
eas of eastern Brazil (Fig. 6). Here, 22% of modelled pre-
cipitation is locally recycled, with the bulk of precipitation
sourced from the Atlantic Ocean and minimal long distance
transport of vapour. Compared with winter (JJA), during the
summer months (DJF) there is a greater proportion of precip-
itation recycling (26%), a northward shift in the mean source
location and the mean transport distance of water vapour is
∼260 km greater. The modelled source pattern is consis-
tent with observed modern rainfall observations indicating
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that winter rainfall incorporates a larger fraction of Atlantic
Ocean derived moisture than summer (DJF) rainfall, which is
associated with enhanced convective activity over the Ama-
zon (Cruz et al., 2006a). The spatial pattern of mean an-
nual VSD hosing anomalies is similar to the simulated sea-
sonal source shift of the seasonal cycle in the control simula-
tion. Both instances involve a southward ITCZ migration, al-
though the magnitude of seasonal source anomalies changes
is greater by a factor of∼2 than those simulated following
freshwater injection.

Significant hosing-driven source region changes to in-
dividual tropical sites are also simulated (Fig. 7), largely
due to freshwater-forced alterations in SSTs and resulting
shifts in the mean ITCZ location. Over Borneo, there is
a small hosing-driven reduction in modelled precipitation
transported from the Pacific. This is accompanied by an
increase in precipitation sourced from southern Indonesia
around the Java Sea, which is strongest during the boreal
summer, and a shift to more local precipitation sources
(∼100 km). The overall size of the source region in the con-
trol simulation is larger. Around Lake Tanganyika, there is a
distinct change in the source of precipitation, from an Indian
Ocean dominated source to a strongly continental and At-
lantic influenced source. The mean hosing TD is∼820 km
less than during the control simulation. In addition, there
is an increase in the proportion of recycled non-fractionated
vapour by∼6%.

Analyses of VSDs to other sites, including Moomi cave
in Yemen (Fig. 7), and Liang Luar cave, southern Indonesia,
indicate relatively local precipitation sources with minimal
hosing impact on VSDs.

4 Site classifications

Given the impact of hosing on climate in these simulations,
we attempt to classify each site into one of five categories
(Table 1) by which mechanism is most closely associated
with δ18Op variability for the abrupt, H-type events simu-
lated here. Secondaryδ18Op effects are also identified. It
is possible that these characterisations could be different for
different timescales and for different types of variability.

These categorisations include Type-1, where local precip-
itation and isotopic changes are consistent with the amount
effect relationship. Type-2 sites occur where regional up-
wind hydrological changes, such as in monsoon intensity, are
consistent with a nonlocal amount effect. For Type-2 sites,
hydrological changes are not equally important throughout
the entirety of the VSD and variations on the upwind fringes
are less significant as little vapour reaching the site of rainout
passes through the precipitation events on the upwind VSD
periphery. Alternatively, Type-3 sites are characterised by
significant vapour source shifts, rather thanδ18Op amount
effect variability. Type-4 localities are defined where large
shifts in the seasonality of precipitation produce correspond-
ing δ18Op changes. Sites are classified as Type-5 where there

is no explanation for isotope signals in terms of precipitation,
VSDs or seasonality changes. Finally, model results are used
to indicate whether the measured isotopic changes are repre-
sentative of a broader climatic region in which they lie.

4.1 China

Chinese speleothemδ18O variability is commonly inter-
preted as primarily controlled by rainfall seasonality and
changes in the intensity of the summer season rainfall (Wang
et al., 2001, 2008; Zhou et al., 2008), analogous to the Type-
4 category. Local amount effect changes are considered to be
a secondary driver ofδ18Op (Wang et al., 2001; Zhou et al.,
2008).

The simulated large-scale hydrological changes in the
EAM region, together with the modelled spatial complexity
of nearby zero precipitation andδ18Op contour lines indi-
cate Chinese sites are best classified as Type-2, withδ18Op

variability consistent with nonlocal amount effects such as
upwind regional hydrological changes that alterδ18O pre-
fractionation.

There is a small decrease in hosing-driven Asian monsoon
intensity (defined by the zonal wind shear WY index) during
the summer months (JJA). This is associated with relatively
local precipitation sources and enriched precipitation. There
is a seasonally robust enrichment in incomingδ18Ov(δ

18O
water vapour) to the region (ANN1δ18Ov ∼1.9‰, JJA
1δ18Ov ∼0.2‰, DJF1δ18Ov ∼1.3‰), relative to esti-
mate controlδ18Ov of −15‰. Summer monsoon weakening
is accompanied by a decrease inδ18Ov transported landward
from oceanic sources, with a reduction in transport from the
tropical west Pacific. There is a hosing-driven decrease in re-
gional incoming water vapour in summer by∼78×106 kg/s
(or ∼4%). During the summer months, the vapour originat-
ing from the Indian Ocean sector traverses the area of signif-
icant precipitation decreases over Bangladesh and Southeast
Asia (Fig. 4), resulting in less pre-fractionation.

Simulated source region shifts to China (Fig. 6), particu-
larly vapour increases from the Bay of Bengal, may indicate
also that the VSD has a secondary influence at these sites
(Type-3). The gain in Bay of Bengal sourced vapour during
hosing is greatest in the winter season. Conversely, decreases
from this source are simulated in summer, although larger
source reductions from the East China Sea occur. The VSD
shift is associated with slight evaporative source enrichment
relative to control (ANNδ18Osource∼0.3‰).

The spatial complexity of regional precipitation amount
andδ18Op changes indicates that Chinese sites are not typi-
cally Type-1, local amount effect dominated. Modelledδ18O
changes are not singularly consistent with changes in the
relative seasonal proportions of rainfall over these regions
and hence these sites are not considered typically Type-4,
seasonality driven. In addition, the modern seasonal cycle
does not seem to be a good analogue for hosing-driven VSD
changes over China, and this is likely also the case forδ18Op

variability.
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Table 3. Summary of modelled hosing precipitation source region impacts on ultimateδ18Op, (control, 0k, and hosing anomalies,1Hosing),
including estimated initial source region composition (δ18Osource), fraction of precipitation derived from continental recycling, hosing
change in mean precipitation source latitude and longitude, mean vapour transport distance and suggested site classifications including
primaryδ18Op controls and secondary effects.

Initial source Continental Mean vapour transport
δ18Osource(‰) recycling (%) distance (km)

Location 1δ18Op 0k 1Hosing 0k 1Hosing 0k 1Hosing 1Hosing precip Site
(‰) source mean lat,lon classification

GRIP −3.9 −2.5 −4.2 27 9 3035 7 −0◦3′, −1◦3′

Byrd 0.0 −7.1 −0.1 27 −1 3206 262 0◦3′, 10◦5′

Taylor Dome −0.6 −6.8 −0.1 23 0 2323 −28 −0◦4′, −2◦5′

Hulu cave 0.0 1.5 0.0 38 −1 1143 −51 0◦1′, 0◦3′ Type-2/3
Songjia cave 1.0 1.4 0.5 57 1 1250 17 −0◦1′, −0◦1′ Type-2/3
Sanbao cave 0.4 1.6 0.2 48 0 1073 30 −0◦2′, −0◦3′ Type-2/3
Borneo 0.6 −1.0 0.2 25 2 479 −102 −0◦1′, −1◦ Type-1/3
Liang Luar cave −0.7 0.0 −0.1 20 −1 108 195 0◦1′, −1◦5′ Type-1
Moomi cave 0.2 2.0 0.3 18 3 296 −235 0◦4′, −2◦9′ Type-1/2
Soreq cave −1.2 4.8 −1.5 55 −3 903 43 0◦5′, 0◦1′

Lake Tanganyika 1.3 0.9 0.3 62 6 1154 −819 0◦1′, −7◦3′ Type-3
Rio Grande do Norte −2.8 1.0 −1.8 15 0 1339 12 1◦3′, 0◦1′ Type-1
Toca da Boa Vista −3.5 2.4 −2.1 27 2 1179 27 0◦5′, 0◦4′ Type-1
Santana cave −3.2 6.9 −2.6 0 957 54 0◦2′, 0◦3′ Type-1
Botuveŕa cave −1.5 4.8 −1.5 28 0 411 34 0◦9′, 0◦2′ Type-1
Cave of the Bells −1.2 1.7 −0.3 30 2 1259 −187 −2◦1′, −5◦1′

Poleva cave −2.9 2.1 −2.6 46 −2 783 38 −1◦, −2◦2′

China region 0.6 1.5 0.3 50 0 1261 5 0◦1′, −0◦6′

Brazil region −2.9 2.1 −1.8 23 1 1312 41 0◦5′, 0◦9′ Type-1

Ultimately, sites within China present a complex spatial
pattern of precipitation changes. The Chinese VSD is com-
plex and straddles an area of variable hosing-driven precip-
itation changes across both China and the west Pacific. It
should also be noted that the small magnitude of isotopic
changes occurring near the coast suggests that cave sites
may not necessarily be representative of regional processes.
Similarly, proxy sites are situated outside the area of peak
EAM influence and are not necessarily indicative of broader
changes to the south or west.

4.2 Brazil

Interpretations from Rio Grande do Norte, Santana and Bo-
tuveŕa caves in South America predominantly employ the
amount effect relationship (Type 1) (Wang et al., 2006; Cruz
et al., 2009). Additionally, the seasonality of precipitation
is cited as a secondaryδ18Op driver, through associated
changes in the evaporative origin of precipitation (Cruz et
al., 2005, 2006a).

In agreement with these interpretations, simulated hos-
ing precipitation increases and depletedδ18Op over Brazil
are consistent with categorisation as Type-1 sites. Re-
gional precipitation changes are associated with the simu-
lated hosing southward ITCZ shift, which is most prevalent

over the Atlantic and impact eastern tropical South America
precipitation.

Although caves within the Brazil region are the clearest
examples of Type-1, local amount effect dominated sites,
regional hosing-driven increases in the landward transport
of water vapour are also simulated. Using the broadened
WY wind shear index, monsoon intensification is mod-
elled over the SM region (Fig. 5), impacting both precipi-
tation amount andδ18Op. Increases in vapour flux under a
strengthened monsoon system also correspond to generally
light δ18O values (1δ18Ov ∼−1.5‰, compared to control
δ18Ov ∼−16‰) in vapour transported from the relatively
depleted tropical Atlantic landward into northeastern South
America. The relative depletion of the Atlantic source re-
gion (1δ18Osource∼−1.9‰), from the injection of isotopi-
cally light surface waters also contributes to anomalously de-
pleted precipitation in the region.

South American cave sites are situated along the Atlantic
coast, removed from the peak of monsoonal rainfall and are
not necessarily regionally representative. Opposite-signed
hosing-driven isotopic and precipitation anomalies (Figs. 3
and 4) are simulated directly west of the Rio Grande do
Norte, Santana and Botuverá cave sites. This regional anti-
phasing is related to the location of the ITCZ, which is dis-
placed during the hosing simulation.
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Fig. 7. Control precipitation source distributions (Ok) and hosing source region precipitation anomalies for Borneo (top, Partin et al., 2007),
Lake Tanganyika (middle, Tierney et al., 2008) and Moomi cave, Yemen, (bottom, Shakun et al., 2007) proxy sites. Solid rectangular boxes
indicate the location of end member precipitation. VSDs are unitless probability density functions, normalised by the maximum probability
density.

4.3 Borneo

Isotopic enrichment in Borneo speleothems during H events
is interpreted as rainfall amount changes (Type-1) driven by
fluctuations in the mean position and intensity of the ITCZ
(Partin et al., 2007). Simulated average decreases in pre-
cipitation (ANN −0.5 mm/day; JJA 0.9 mm/day; DJF−2.4
mm/day) andδ18Op enrichment (ANN1δ18Op 0.6‰; JJA
1δ18Op 0‰; DJF1δ18Op 0.6‰) over the northern Warm
Pool region are broadly consistent with interpretations of re-
gionally coherent drying during H events under the amount
effect. As precipitation and isotopic anomalies are consistent
with the amount effect, Borneo is classified as Type−1.

In these hosing simulations, Borneo lies close to the zero
hosing precipitation andδ18O contours, particularly in sum-
mer (JJA) and may have secondary, nonlocalδ18Op controls.
The VSD indicates precipitation to Borneo has a relatively

local source, which does not support Type-2 categorisation
(Fig. 7). There may be a secondary effect of transport dis-
tance changes on Borneoδ18Op (Type-3, source region in-
fluenced) as mean TD decreases by∼100 km, likely result-
ing in less rain-out of heavy isotopes during transport and
yielding enrichedδ18Op. Similarly, the simulated source
shift tends to bring moisture from a sector of enriched vapour
(1δ18Osource∼−0.2‰). Furthermore, the difference in the
direction of precipitation amount changes between summer
and winter during the hosing simulation highlights possible
Type-4 seasonality effects.

Overall, Borneo is predominantly a Type-1 site, with
changes in TD (Type-3) a secondary contributor to
variability.
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4.4 Lake Tanganyika

The amount effect is cited as the primary control on isotopic
variability in the Lake Tanganyika isotope record, with mois-
ture source origin and transport history a lesser considera-
tion (Tierney et al., 2008). Here, we simulate enrichment
in annual average local precipitation (ANN1δ18Op 1.3‰;
JJA1δ18Op; 0.1‰; DJF1δ18Op 2.4‰), together with sea-
sonally variable precipitation changes (ANN 0 mm/day; JJA
0.1 mm/day; DJF−0.9 mm/day). Although annually this
site lies on a front of zero precipitation changes and aver-
age simulated rainfall amount within the overlying gridbox
is unchanged, regional increases associated with the ITCZ
shift are simulated (ANN 0.2 mm/day; JJA 0.3 mm/day; DJF
−0.1 mm/day). Overall, modelled hosing-driven precipita-
tion changes are inconsistent with site interpretations of dry
H events.

The significant westward shift of the VSD during the hos-
ing simulation suggests that Lake Tanganyika is a Type-3
site, whereby source shifts are most strongly associated with
δ18Op changes (Fig. 7). The mean vapour TD is reduced
by ∼800 km during the hosing simulation, which diminishes
rain-out and pre-fractionation, with the mean longitude of
the VSD shifting∼7.5◦ westward. Also, there is an overall
increase in the proportion of non-fractionated recycled con-
tinental vapour by∼6%. The estimated initial composition
of the hosing source to Lake Tanganyika is∼0.3‰ more en-
riched relative to the control. Simulated transport and VSD
changes are associated with enriched water vapour composi-
tion and likely dominate the hosing-drivenδ18Op anomaly.
Modern observations also indicate that enriched moisture
originating from the Congo Basin contributes to compara-
tively high observedδ18Op values over eastern equatorial
Africa (Levin et al., 2009).

The increased contribution of the western continental and
Atlantic source during hosing is regionally robust through-
out SH tropical eastern Africa and likely results from the in-
crease in SST in the south Atlantic, which is an ensemble-
wide hosing feature (Stouffer et al., 2006). VSD shifts and
associated simulated changes inδ18Op do not support sug-
gestions that the source region to sites dominated by moisture
from the Indian Ocean were insensitive to H-event climatic
changes (Verschuren et al., 2009).

4.5 Moomi cave, Yemen

Oxygen isotopic variability at Moomi cave is interpreted in
terms of rainfall amount, driven by changes in the latitu-
dinal position of the ITCZ and the intensity of ITCZ con-
vection (Shakun et al., 2007). The interpretation ofδ18Op

enrichment at this site as an abrupt drying event is consis-
tent with simulated decreases in hosing precipitation (ANN
−0.1 mm/day; JJA−0.2 mm/day; DJF−0.1 mm/day). Fur-
thermore, the modelledδ18Op enrichment (ANN1δ18Op

0.2‰; JJA1δ18Op 0.4‰; DJF1δ18Op 0.1‰) is consistent
with local amount effect (Type-1).

Moomi cave resides near zero anomaly lines for hos-
ing precipitation andδ18Op, isotopic variability may record
more regional amount effects (Type-2). There is a decrease in
rainfall occurring within the Moomi VSD during the hosing
simulation, potentially reducing the degree of isotopic pre-
fractionation occurring and increasingδ18Op enrichment.
The simulated VSD indicates precipitation sources are rel-
atively local (Fig. 7).

4.6 Liang Luar cave, Indonesia

In southern Indonesia, the coincidence of growth hiatuses
with H2 and H3 may not reflect a suggested local drying
(Lewis et al., 2010). Hosing simulations indicate robust year-
round precipitation increases at this site (ANN 0.8 mm/day;
JJA 0.8 mm/day; DJF 0.6 mm/day), in consistent with wet
events reported from northeastern Australia (Muller et al.,
2008) and Indonesia (Westaway et al., 2007). Precipitation
increases may lead to changes in cave hydrology that pre-
clude deposition of calcite (Fairchild et al., 2006).

Generally, the simulated rainfall increases and concomi-
tant δ18Op depletion (ANN1δ18Op −0.7‰; JJA1δ18Op

−0.8‰; DJF1δ18Op −0.7‰) are consistent with a Type-1,
local amount effect classification. Furthermore, the VSD in-
dicates local evaporative sources, with minimal long distance
vapour transport. Although this site lies nearby to hosing
contours of zeroδ18Op and precipitation changes, it is rep-
resentative of regional SH hydrological changes, including
increased, isotopically depleted rainfall under an intensified
Australian summer monsoon.

5 Discussion

Simulated hosing climatic changes over different proxy sites
indicate a range ofδ18Op controls that occur on a variety
of spatial scales. It should be noted that the characterisation
of sites might vary for different types of climatic changes
occurring on other timescales. The categorisation of sites
indicates that for those residing within the tropical weather
regime year-round, such as those situated around the Warm
Pool region (Borneo and Liang Luar cave), Moomi cave in
Yemen and within northeastern Brazil, simulatedδ18Op re-
sponds primarily to local rainfall amount changes. Although
the distinction between Type-1 and Type-2 sites is at times
subtle, Type-2 classification is adopted for those influenced
by more regional hydrological changes, such as monsoon in-
tensification or weakening.

We distinguish between local precipitation amount and
monsoon intensity using the WY index of zonal wind shear
changes. The WY index for the Asian region is more closely
associated with regional precipitation changes and is more
useful than local precipitation changes alone for describing
δ18Op changes over China. In this region, local precipitation
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amount and monsoon intensity are not necessarily synony-
mous. Over China, simulated local precipitation andδ18Op

exhibit a complex spatial pattern of changes during hosing
and hydrological responses are seasonally and spatially vari-
able. However, modelledδ18Op enrichment is associated
with monsoonal upwind changes within the VSD and local
rainfall over the defined Chinese region (Fig. 6) is likely in-
fluenced by nonlocal pre-fractionation.

In addition, speleothems do not directly recordδ18Op vari-
ability. Though incorporating water isotopes tracers brings
ModelE a step closer to allowing model-proxy comparisons,
there are multiple processes impactingδ18Ocalcite that can be
site specific. These includeδ18Op and cave temperature vari-
ability, and internal cave hydrological dynamics (Fairchild
et al., 2006). Changes in the epikarst and cave environ-
ment are usually minorδ18Ocalcite drivers, however, some
monsoon-influenced sites undergo a>5◦C (equivalent to
>∼1‰ δ18Ocalcite) seasonal temperature cycle (Johnson et
al., 2006), which complicate primary climatic signals. Also,
at sites with erratic monitoring programmes, it may be un-
clear if calcite growth integrates an annual or seasonal signal,
making model comparisons difficult. Site-specific forward
models incorporating calcite precipitation processes could
further improve proxy-model1δ18O comparisons.

The experimental design here represents a very idealised
version of a Heinrich event. We apply a uniform freshwa-
ter injection across a large Atlantic area, which is not nec-
essarily representative of iceberg discharge into the North
Atlantic (Hemming, 2004), though it does create a similar
scenario where the North Atlantic region cools by about the
right amount. Modelledδ18Op excursions are not consis-
tent with proxy changes in all records, and may occur over
areas characterised by steep topography or where the simu-
lation of precipitation fields is poor. Mismatches over sites
such as Hulu and Soreq caves and Cave of Bells are attributed
to inadequacies in the coarse model resolution utilised. Site
δ18Op categorisation is only attempted for tropical locations
where simulated and measured isotopic values broadly agree.

This study is enhanced by the incorporation of general
VSD tracers into the model. However, in order to diag-
nose comprehensively the relative contributions of different
controls onδ18Op, specific H18

2 O source distribution tracers
are required. With additional VSD tracers for the isotopes
themselves, the impact of TD and source region changes on
precipitation composition could be addressed more quantita-
tively. However, these tracers are prohibitively expensive to
run. Additions to VSD tracers may allow the cause of mis-
matches between simulated and reconstructedδ18O changes
to be identified. Also, site classifications in this study do
not explicitly account for the mixing of air from spatially
disperse evaporative sources along the transport route. The
degree of mixing encountered by an air mass en route from
evaporative source to the site of precipitation is also an im-
portant control onδ18Op, although this is difficult to con-
strain. Previously, the impact of circulation strength changes

on δ18Op has been better constrained through model sensi-
tivity studies (Noone, 2008), and future analyses adopting
similar approaches may clarify the impact of mixing during
transport onδ18Op and provide a further type categorisation.

6 Conclusions

We simulate a shutdown of the THC after freshwater injec-
tion to the North Atlantic, as an analogue to a Heinrich event.
Modelled hosing precipitation fields demonstrate a distinct
fingerprint of climatic change, including a southward shift
in the ITCZ, in agreement with PMIP multi-model results
(Stouffer et al., 2006). Simulated hosing climatic perturba-
tions include a pattern of depletedδ18Op values across the
tropical southern Pacific, Atlantic and Indian Oceans, the
West Pacific Warm Pool, eastern South America and south-
ern Africa. Conversely, enriched isotopic values are mod-
elled over most of southern Asia and central Africa, corre-
sponding to increased precipitation around the ITCZ. Fur-
thermore, changes in monsoon intensity and associated water
vapour fluxes are modelled, including a SM intensification
and a small reduction in Asian monsoon. The dynamical
index utilised here (WY index of zonal wind shear anoma-
lies) is useful in diagnosing monsoon changes. Quantifying
monsoonal changes in this way disambiguates the use of this
term and reinforces that monsoon changes do not necessarily
equate to local rainfall amount variability.

Water isotopes archives demonstrate a fairly coherent pat-
tern of isotopic changes during Heinrich events, where spa-
tially proximate measurement sites show congruent signals.
Comparisons of reconstructed Heinrich eventδ18O and simu-
lated hosingδ18Op excursions indicate areas of broad model-
data agreement, particularly over China and Brazil. To the
extent that simulated patterns of change agree with proxy re-
constructions, model results can confirm whether the mea-
sured isotope changes are representative of a broader climatic
region in which they lie. Also, this spatial representation pro-
vides another way to constrain modelled NADW responses
(e.g. LeGrande et al., 2006).

As δ18Op integrates a complete air mass history, from
source to rain-out, speleothems record a complex history of
climatic change and require detailed interpretations. Site-
specific VSDs are shown to be a valuable circulation diag-
nostic and should be considered when interpreting hydro-
logical changes from water isotope proxy records. We at-
tempt to categorise proxy sites according to the dominant in-
fluences on simulatedδ18Op variability, including changes
in local and nonlocal rainfall amount, precipitation season-
ality and VSDs. Site classification is complicated in some
instances and most sites exhibit multiple influences and sec-
ondaryδ18Op effects are identified.

For coastal sites or tropical areas associated with the ITCZ
rains, such as around northeastern Brazil and the Warm
Pool, isotopic variability likely reflects local rainfall intensity
changes by the amount effect (Type-1). Other sites, such as
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within China, lie near contours of zero hosingδ18Op or pre-
cipitation changes and record a nonlocal amount effect due
to upwind changes (Type-2). Modelled VSDs are useful in
identifying nonlocal amount effect influences onδ18Op. Fi-
nally, Lake Tanganyika is categorised as Type-3, where sig-
nificant westward hosing-driven precipitation source shifts
control δ18Op variability through changes in the degree of
pre-fractionation and the relative enrichment of the non-
fractionating continental moisture source. No sites are pri-
marily characterised by seasonalityδ18Op changes (Type-4),
which has been utilised in proxy interpretations.
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