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Abstract. The early to mid-Holocene thermal optimum
is a well-known feature in a wide variety of paleoclimate
archives from the Northern Hemisphere. Reconstructed sum-
mer temperature anomalies from across northern Europe
show a clear maximum around 6000 years before present
(6 ka). For the marine realm, Holocene trends in sea-surface
temperature reconstructions for the North Atlantic and Nor-
wegian Sea do not exhibit a consistent pattern of early to mid-
Holocene warmth. Sea-surface temperature records based
on alkenones and diatoms generally show the existence of
a warm early to mid-Holocene optimum. In contrast, sev-
eral foraminifer and radiolarian based temperature records
from the North Atlantic and Norwegian Sea show a cool mid-
Holocene anomaly and a trend towards warmer temperatures
in the late Holocene. In this paper, we revisit the foraminifer
record from the Vøring Plateau in the Norwegian Sea. We
also compare this record with published foraminifer based
temperature reconstructions from the North Atlantic and with
modelled (CCSM3) upper ocean temperatures. Model results
indicate that while the seasonal summer warming of the sea-
surface was stronger during the mid-Holocene, sub-surface
depths experienced a cooling. This hydrographic setting can
explain the discrepancies between the Holocene trends ex-
hibited by phytoplankton and zooplankton based temperature
proxy records.

Correspondence to:C. Andersson
(carin.andersson@uni.no)

1 Introduction

A prominent feature in a wide variety of paleoclimate
archives from the Northern Hemisphere is the existence of
a period of Holocene warmth, the so-called Holocene ther-
mal maximum (e.g. Kaufmann et al., 2004) or early to mid-
Holocene optimum (e.g. Jansen et al., 2008). The length of
the Early to mid-Holocene optimum varies in literature. In
its broadest sense the period between 11 000–5000 yrs before
present (11–5 ka) corresponds to a period of relative warmth
at high and middle latitudes of the Northern Hemisphere
(Renssen et al., 2009). It is clear that proxy based reconstruc-
tions show differences in both timing and magnitude of peak
Holocene warmth (Kaufmann et al., 2004; Renssen, et al.,
2009). From the western Arctic (0–180◦ W) there are clear
evidence of an average warming of 1.6◦C based on a large
compilation of different proxy records, terrestrial, ice-core
and marine. However, northwest Canada experienced a ther-
mal optimum between 11–9 ka, about 4000 years prior to the
thermal optimum in northeast Canada. The delay in warm-
ing in this region was likely caused by influences of the Lau-
rentide ice-sheet. In other regions, which were dominated by
orbital forcing, the thermal maximum occurred earlier (Kauf-
mann et al., 2004; Renssen et al., 2009). Reconstructed sum-
mer temperature anomalies from across a wide area of north-
ern Europe show a clear maximum around 6 ka (Davis et al.,
2003). For Scandinavia there are considerable evidence for
a mid-Holocene thermal optimum (Davis et al., 2003). For
the marine realm, Holocene trends in sea-surface tempera-
ture (SST) reconstructions for the North Atlantic and Norwe-
gian Sea do not exhibit a consistent pattern of early to mid-
Holocene warmth. Besides differences in the reconstruc-
tions that originate from local differences in oceanographic
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Figure 1

Fig. 1. Map showing the location of cores MD95-2011, MD99-2251, ODP 984 and RAPiD-12-1K. The position of Ocean Weather Station
(OWS) Mike is also shown.

settings between coring locations, there are results that point
towards proxy- related differences between the reconstruc-
tions. Proxies derived from photosynthesizing organisms,
i.e. diatom and alkenone based SST reconstructions do of-
ten exhibit an early to mid-Holocene optimum, whereas
zooplankton-based SST reconstructions do not. A compila-
tion of North Atlantic SST proxy data from alkenones (Kim
et al., 2004a, b) and foraminifers (transfer functions SST es-
timates) (Andersson, 2005) for 6 ka also show that the 6 ka
anomaly from these two SST proxies is quite different. The
6 ka anomalies from alkenone reconstructions are generally
positive, i.e. 6 ka were warmer than the pre-industrial period,
and there is also an indication of a polar amplification dur-
ing the 6 ka anomaly (Marchal et al., 2002; Rimbu et al.,
2003; Kim et al., 2004c; Lorenz et al., 2006). In comparison,
the North Atlantic 6 ka anomalies reconstructed using trans-
fer function SST estimates from planktic foraminifers are not
consistently positive and do not display any polar amplifica-
tion (Andersson, 2005). One explanation for this is that there
were a different evolution of surface ocean temperatures be-
tween the very sea-surface, occupied by phytoplankton, and
waters closer to the thermocline, depths occupied by zoo-
plankton throughout the Holocene in the North Atlantic and
Norwegian Sea (e.g. Jansen et al., 2008). Hence, differences
in depth habitat between zoo- and phytoplankton are respon-
sible for the differences in terms of presence/absence of a
Early to mid-Holocene optimum and the different long-term
trends in the SST reconstructions.

In this paper we revisit the Holocene record from the Nor-
wegian Sea and compare this record to more recently pub-
lished data from the North Atlantic in order to explore the
trends in the foraminifer record in more detail. We also
use model results for 6 ka to look into the differences be-
tween reconstructed phytoplankton-based and zooplankton-
based SST estimates for the Norwegian Sea and the northern
North Atlantic.

2 Material and methods

Core MD95-2011 is located under the easternmost limb of
the warm Norwegian Atlantic Current (the northern contin-
uation of the North Atlantic Current; NAC). The site was
originally cored during IMAGES campaign MD101, and a
17.49 m long core was recovered from 1048 m water depth
(66.97◦ N, 7.64◦ E) (Fig. 1) using a giant piston corer (CA-
LYPSO). Due to overpenetration of the giant piston corer,
a box core, JM97-948/2A, was later taken at the same po-
sition to sample the surface sediments lost during the pis-
ton coring. An age-depth model for the Holocene was de-
veloped using a combination of210Pb-dating and accelera-
tor mass spectrometer (AMS) radiocarbon dating techniques
(Andersson et al., 2003; Risebrobakken et al., 2003). Multi-
ple proxies for surface-ocean reconstructions have been de-
veloped for MD95-2011. Stable oxygen isotope records
from Neogloboquadrina pachyderma(dex) andNeoglobo-
quadrina pachyderma(sin) were published by Andersson et
al. (2003) and Risebrobakken et al. (2003). Census counts
and foraminifer-based SST estimates for the Holocene are
also published (Andersson et al., 2003; Risebrobakken et
al., 2003). The foraminifer SST estimates were originally
calculated using the modern analog technique. We have
used the same foraminifer census counts and recalculated
the foraminifer SST estimates using the Maximum Likeli-
hood technique (ter Braak and Looman, 1986; ter Braak and
Prentice, 1989; ter Braak and van Dam, 1989). Modern SST
values for 10 m water depth during summer (July, August,
September) for the calibration dataset were taken from the
World Ocean Atlas version 2 (WOA, 1998). In addition to
the foraminifer-based record, SST estimates for MD95-2011
are available from alkenones (Calvo et al., 2002; Jansen et
al., 2008), diatoms (Birks et al., 2002; Andersen et al., 2004),
and radiolarians (Dolven et al., 2002). Here, we compare
results from MD95-2011 with newly published foraminifer
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SST records from the northern North Atlantic. The locations
for sites discussed in this paper are shown in Fig. 1. Geno-
type studies have suggested a renaming ofN. pachyderma
(dex) toNeogloquadrina incomptawhen the percentage of
right coiling forms is between 3 and 97% (Darling et al.,
2006). In this study we continue to useN. pachyderma(dex)
to easily draw cross-references to the already published data
from the Norwegian Sea and the North Atlantic discussed in
this paper.

In this study we compare temperature proxy recon-
structions with model output that belongs to the Pa-
leoclimate Modelling Intercomparison Project Phase II
(PMIP2/MOTIF). The model used is the Community Climate
System Model 3.0 (CCSM3). The horizontal resolution in
the ocean has a nominal grid spacing of 0.4◦

×1.1◦ (lat×lon).
The ocean model has 40 levels with finer resolution near
the surface (15 levels in the first 250 m). Boundary condi-
tions for the pre-industrial (PI, 1750 AD) and mid-Holocene
(MH, 6 ka) follow the protocol established by PMIP2 (http:
//pmip2.lsce.ipsl.fr). In the PI simulations, the orbital config-
uration is set to 1950 AD values, the greenhouse gases corre-
spond to 1750 AD, and vegetation is suggested to represent
present day distribution. In the MH simulations, the orbital
configuration is set to 6 ka, when the summer insolation was
much higher in the Northern Hemisphere, whereas the winter
insolation was lower compared to the PI; the vegetation, the
ice-sheet extent and greenhouse gas concentrations (except
for the methane that are lower) are the same as in the PI. 100
years of monthly post-spin up ocean potential temperature
data for the Atlantic basin (30◦–85◦ N/90◦ W–45◦ E) are ana-
lyzed for both the MH and PI simulations. For further details
see Braconnot et al. (2007). Details of the CCSM3 ocean
component can be found in Smith and Gent (2004). The sea
ice component of CCSM3 is described in detail by Holland et
al. (2006). The polar climate of the twentieth and twenty-first
centuries in this model is discussed in Meehl et al. (2006) and
Holland et al. (2006). Comparisons of ocean temperatures at
different seasons and depths between CCSM3 and observa-
tions from World Ocean Atlas 98, are presented in Figs. 2, 3,
4, and 5.

We analyze North Atlantic sea-surface (10 m depth) and
sub-surface (100 m depth) ocean potential temperature for
winter (from January to March, JFM), summer (from July to
September, JAS) and annual average in both climate states.
We also consider the vertical profile for the four proxy loca-
tions.

3 Results and discussion

3.1 Holocene SSTs in the Norwegian Sea

The record from the Vøring Plateau (MD95-2011) is among
the Holocene records with the highest temporal resolution
from the Norwegian Sea. From the multiple SST proxy
records available for MD95-2011, it is clear that there is

Figure 2
Fig. 2. Comparisons of annual temperature between CCSM3 and
WOA98 at a transect 60◦ N. NODC WOA98 data were provided by
the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their
Web site athttp://www.esrl.noaa.gov/psd/.

a distinct difference between SST estimates derived from
phytoplankton based records, i.e. the diatom and alkenone
records, and zooplankton based records (foraminifers and ra-
diolarians) (Fig. 6). Most phytoplankton species of coccol-
iths and diatoms thrive in the upper photic zone correspond-
ing to the upper 50 m and bloom when nutrients and light
conditions in the upper mixed layer are favourable (Abrantes,
2007; Flores and Sierro, 2007). Zooplankton assemblages,
however, like those from foraminifers and radiolarians, con-
tain a combination of species with wide preferences in depth
habitat. Foraminifer assemblages often consist of both near-
surface (0–50 m) species and more deep-dwelling (>100 m)
species (Dowsett, 2007). Radiolarians have an even wider
range of depth habitats going from the upper few meters of
the surface layer to abyssal depths (Lazarus, 2005). This
means that SST estimates derived from foraminifers and ra-
diolarians contain an integration of environmental conditions
over a certain depth range.
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Figure 3

Fig. 3. Comparison of the mean annual temperature at 10 m and 100 m between CCSM3 and WOA98. NODC WOA98 data were provided
by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site athttp://www.esrl.noaa.gov/psd/.

Figure 4

Fig. 4. Comparison of the mean January, February, and March temperature at 10 m and 100 m between CCSM3 and WOA98. NODC
WOA98 data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site athttp://www.esrl.noaa.gov/psd/.

Figure 5

Fig. 5. Comparison of the mean July, August, and September temperature at 10 m and 100 m between CCSM3 and WOA98. NODC WOA98
data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site athttp://www.esrl.noaa.gov/psd/.
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The Holocene trends of the diatom and alkenone SSTs
correspond with the trend of decreasing summer insola-
tion throughout the Holocene. These data show a clear
trend of decreasing summer temperatures since the mid-
Holocene and indicate that summer temperatures were up
to 2◦C higher in the mid-Holocene in northern Scandinavia
compared to the present (Fig. 6b and c). A similar long-
term trend of decreasing temperature is also often seen in ter-
restrial temperature reconstructions such as the pollen-based
July SST reconstruction from northern Finland (Seppä and
Birks (2001) (Fig. 6a). The zooplankton-based records do
not display an early to mid-Holocene warmth and declin-
ing temperatures towards the late Holocene. The transfer
function based summer SST reconstruction from radiolarians
(Dolven et al., 2002) (Fig. 6e) and foraminifers (Andersson
et al., 2003; Risebrobakken et al., 2003) (Fig. 6d) exhibits
trends towards slightly higher temperatures towards the late
Holocene, in addition to a multi-decadal type of variability
with several cooling events throughout the records. Kucera
et al. (2005) point out that a level of disagreement between
different SST proxies must be expected because each ap-
proach reflects different past environmental conditions. At
the Vøring Plataeu the observed difference in SST trends be-
tween the two plankton types is so large that it seems likely
that these two proxies actually record quite different environ-
mental conditions due to different ecological preferences of
phyto-versus zooplankton. This difference is also too large
to be the result of any methodological biases coming from
different SST estimation techniques.

The Holocene foraminifer fauna in the eastern Norwegian
Sea is dominated byN. pachyderma(sin), N. pachyderma
(dex), andGlobigerina quinqueloba. Simstich et al. (2003)
found that in the Norwegian CurrentN. pachyderma(sin)
calcify at depth below the pycnocline (70–250 m) where tem-
peratures are generally lower by 2–3◦C compared to the sea-
surface. In polar waters the depth habitat ofN. pachyderma
(sin) appears to depend on the vertical stratification (Kohfeld
et al., 1996). Only in areas with a deep (>300 m) mixed
layer and minimal seasonal temperature changes wouldN.
pachyderma(sin) record surface ocean conditions. Thus,
it is likely that N. pachyderma(sin) is a deeper-dwelling
species that calcify below the thermocline. Based on the off-
set betweenN. pachyderma(dex) andN. pachyderma(sin)
in the stable oxygen isotope records (Risebrobakken et al.,
2003) and the Mg/Ca records (Nyland et al., 2005) it seems
likely that N. pachyderma(dex) calcify at shallower depth
(and/or during a warmer part of the year) relative toN. pachy-
derma(sin). North of IcelandN. pachyderma(dex) calcifies
throughout the year at water depth between 30 and 40 m (Os-
terman et al., 1999). However, North of IcelandN. pachy-
derma (sin) calcify at the same depth as N.pachyderma
(dex), which makes it open to discussion if the depth habitat
of N. pachyderma(dex) is the same in the eastern Norwe-
gian Sea. Ottens (1992) suggests thatN. pachyderma(dex)
calcifies at depth below 75 m in the northeast Atlantic, and
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Fig. 6. (A) Mean July temperature based on pollen from Tsuolbma-
javri, Finland (Sepp̈a and Birks, 2001).(B) Alkenone derived sea-
surface temperatures from the Vøring Plateau (MD95-2011) (Calvo
et al., 2002; Jansen et al., 2008).(C) Diatom-based sea-surface Au-
gust temperature estimates from MD95-2011 (Birks et al., 2002).
(D) Foraminiferal-based transfer function sea-surface temperature
estimates for summer (JAS) for MD95-2011 (Andersson et al.,
2003; Risebrobakken et al., 2003; this study).(E) Radiolarian-
based transfer function sea-surface summer temperature estimates
for MD95-2011 (Dolven et al., 2002).

according to Simstich et al. (2003) the calcification depth
of G. quinquelobais between 25 and 75 m, matching the
depth of the pycnocline. Recently, Fraile et al. (2009) used
a global foraminifer model (PLAFOM) to evaluate the sea-
sonal imprint on the sedimentary record. They found that for
N. pachyderma(sin), N. pachyderma(dex) andGlobigerina
bulloidesthe difference between the predicted value and the
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annual mean temperature was positive for all three species,
indicating a bias towards summer temperatures for these
species. Berstad et al. (2003) also suggested that calcifica-
tion of N. pachyderma(dex) occurs during summer (JAS) in
the eastern Norwegian Sea.

Other foraminifer records from the eastern Norwegian Sea
also share the Holocene trends in the foraminifer record SST
from the Vøring Plateau. Hald et al. (2007) published a
comparison between six published surface temperature proxy
records, including MD95-2011, along a S-N transect on the
Norwegian-Continental margin. This comparison shows that
records from the southern part of the transect (60–69◦ N)
have stable SSTs or slightly increasing SSTs throughout the
Holocene. The northernmost records (72–77.4◦ N) display
a pronounced warming in the early Holocene followed by a
long-term SST decrease and a subsequent weak warming in
the latest Holocene. The different trends between the south-
ern and northern transects were suggested to result from a
polar amplification of early Holocene warmth for the north-
ernmost records.

The lack of an early Holocene warm period in the south-
eastern Norwegian Sea was suggested to reflect the influ-
ence of cooler subsurface water masses possibly related
to increased seasonality caused by orbital forcing and in-
creased stratification due to freshening (Hald et al., 2007).
Risebrobakken et al. (2003) suggested that the long-term
Holocene trend, as seen in the foraminifer record at site
MD95-2011, is related to horizontal migration of the Arctic
water/Atlantic water interface (Arctic Front). The oceanog-
raphy of the Vøring Plateau is governed by the presence
of two water masses: the inflowing warm and saline North
Atlantic surface water and the less saline and cooler Arc-
tic intermediate water mass (see Risebrobakken, 2003, and
references therein). Risebrobakken et al. (2003) suggested
that the Arctic front and Arctic water masses were closer to
the site MD95-2011 during the early and mid-Holocene than
during the late Holocene. The stronger influence of Arc-
tic water during the early Holocene would result in cooler
sub-surface temperatures that would be recorded by planktic
foraminifers. This interpretation was based on two obser-
vations in the planktic record. Firstly, in Arctic water there
is no difference between the stable oxygen isotope composi-
tion in N. pachyderma(sin) andN. pachyderma(dex), while
the differences increase towards east in The Nordic Seas (Jo-
hannessen, 1992). Hence, the varying stable oxygen isotope
contrast betweenN. pachyderma(dex.) andN. pachyderma
(sin) can be used as an indicator of horizontal migration of
the Arctic water/Atlantic water interface. In MD95-2011
1δ18O values ofN. pachyderma(dex) andN. pachyderma
(sin) is lower during the early and mid-Holocene relative
to the late Holocene, indicating an eastward migration of
the Arctic Front. Secondly, high relative abundances ofG.
quinqueloba,a species strongly related to the Arctic Front
(Johannessen et al., 1994), between 8–4 ka also indicate a
more eastward location of the boundary between Arctic and

Atlantic waters before 4 ka. During recent decades, sub-
surface eastward migration of Arctic waters has been caused
by an increase in the strength of the westerlies (Blindheim
et al., 2000). Stronger influence of sub-surface Arctic wa-
ter could possibly also explain the observed difference be-
tween SSTs derived from phytoplankton and zooplankton at
the Vøring Plateau. The relatively deeper dwelling zooplank-
ton could have experienced cooler sub-surface conditions in
the early- and mid-Holocene compared to the late Holocene.

According to Jansen et al. (2008) the difference be-
tween different SST proxies (basically, between diatom and
alkenones SSTs and foraminifer and radiolarian SSTs) is due
to the seasonality of orbital forcing, the habitat of the dif-
ferent biological proxies, and the vertical structure of the
high-latitude ocean. A positive thermal anomaly during the
summer season and a small negative anomaly during winter
gave rise to enhanced seasonality during the early to mid-
Holocene. The observed difference between zooplankton
and phytoplankton SSTs can be explained as a response to
the seasonality of the forcing. The long-term orbital trends
during the Holocene could be reflected in both the phyto-
plankton SST records (summer insolation) and zooplankton
records (winter insolation). Jansen et al. (2008) suggests that
foraminifera living at or around the thermocline experience
temperatures unrelated to the summer season, which would
explain the observed difference between zooplankton and
phytoplankton SST records. At Ocean weather Station Mike
(Østerhus et al., 1996) (Figs. 1 and 7), there is a strong sum-
mer warming and stratification of the sea-surface. At 100 m
water depth mixing occurs during winter when the seasonal
thermocline breaks down. Hence, species living at this depth
would record a signal related to winter-ventilation. How-
ever, the seasonal variability is negligible below the ther-
mocline, which means that all seasons are close to the an-
nual mean temperature at this depth. As a result, although
the maximum production of foraminifera in general occurs
during spring and/or summer, deeper-dwelling species could
record temperatures more comparable to the annual mean.
In a modelling study of the upper ocean SST evolution and
its response to orbital forcing through the Holocene, Liu et
al. (2003) found negative mean annual temperature anoma-
lies in the early and mid-Holocene at 100–300 m water depth
for the mid-latitudes of the North Atlantic. However, this
modelling experiment does not give any insight to the sur-
face and sub-surface conditions of the Norwegian Sea.

3.2 North Atlantic versus Norwegian Sea SST record

SST records from the subpolar North Atlantic also share
the observed trend of a warming since the early and mid-
Holocene seen in the foraminifer SST records from the east-
ern Norwegian Sea. A recently published Mg/Ca SST record
from MD99-2251 (Farmer et al., 2008) (Figs. 1 and 8) dis-
plays many similarities to the foraminifer faunal SST record
from MD95-2011 for much of the last 9.5 ka. Both the
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overall trends as well as absolute SST values agree well
between the two records. As pointed out by Farmer et
al. (2008), mid-Holocene temperatures in MD99-2251 are
cooler (1.5◦C) than the average temperature for the last
3.5 ka (10.1◦C at 6 ka relative to 11.6◦C for the last 3.5 ka).
To be consistent with mid-Holocene paleomodel results we
define the mid-Holocene to be centred at 6 ka and calculated
averages from paleo proxy data are averages spanning the in-
terval 6±0.5 ka. The corresponding 6 ka average and the av-
erage for the last 3.5 ka in MD95-2011 are 10.7 and 11.6◦C,
respectively. A very important aspect of this comparison is
that the Mg/Ca-based SST record from MD99-2251 was de-
rived by analysis ofG. bulloides. This species is generally re-
garded as being a near-surface living species that reproduce
and calcify within the seasonal mixed-layer, hence the sig-
nal recorded byG. bulloidesshould be representative of the
mixed-layer. The depth habitat ofG. bulloidesis confined to
the upper 60 m of the water column at the location of MD99-
2251 (Farmer et al., 2008, and references therein). Hence,
the SST record fromG. bulloidesis expected to reflect SST
changes in the near-surface environment of the core local-
ity. This was used by Jansen et al. (2008) who proposed that
the more surface-dwelling species, likeG. bulloides, which
normally calcify above the seasonal thermocline, would re-
spond to changes in summer insolation and show the same
Holocene SST trends as phytoplankton-based SST proxies
with decreasing SSTs since the early and mid-Holocene.
This is apparently not the case with the SSTs from core
MD99-2251 (Fig. 8). Farmer et al. (2008) found it difficult
to reconcile the near-surface depth habitat and summer sea-
son reproduction ofG. bulloideswith the theory that winter-
time insolation changes should govern the long-term trends
in their SST record. Farmer et al. (2008) pointed out that this
reasoning implies a discrete separation between phyto- and
zooplankton communities. Assuming that the Mg/Ca record
from MD99-2251 does reflect near-surface temperatures, the
relatively cool 6 ka SST temperature average registered at
site MD99-2251 has to be interpreted as either significant
lower surface summer temperatures in the mid-Holocene or
a shift in the calcification/productivity season ofG. bulloides
(Farmer et al., 2008). Despite uncertainties in the productiv-
ity season ofG. bulloides, significantly lower 6 ka SSTs dur-
ing late spring/summer are difficult to reconcile with the neg-
ative 6 ka SST anomaly displayed by many North Atlantic
phytoplankton records. A change in the timing and/or com-
position of the phytoplankton bloom is as another possible
explanation. However, since the productivity ofG. bulloides
occurs during or shortly after phytoplankton bloom events
(Farmer et al., 2008), a shift in timing of these events to ear-
lier during spring or summer would result in a cooling in the
G. bulloidesas well as in the phytoplankton records if, for
example, alkenone synthesizingHaptophyceanspecies were
involved.
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50 years from Ocean Weather Station Mike in the upper 100 m of
the water column. Averages are based on the temperature records
presented in(B). From Nyland et al. (2006).

Other foraminifer temperature records from the sub-
polar North Atlantic, e.g. ODP 984 (Came et al., 2007)
and RAPiD-12-1K (Thornalley et al., 2009) (Fig. 1) and
NEAP 8K (Barker and Elderfield, 2002) (not shown), dis-
play the same lack of significant warmth in the early and
mid-Holocene as the cores MD95-2011 and MD99-2251.
Mg/Ca temperature data fromG. bulloidesand G. inflata
(RAPiD-12-1K) andN. pachyderma(dex) (ODP 984) are
shown in Fig. 8 along with MD95-2011 and MD99-2251.
The depth habitat ofG. inflata is considerably deeper (base
of seasonal thermocline) (Thornalley et al., 2009) compared
to the depth habitats ofG. bulloidesand N. pachyderma.
This discrepancy emphasizes the need to compare species
with different depth habitat to fully be able to reconstruct
changes in the upper water column. Long-term warming
trends are apparent in all records basedG. bulloidesand
N. pachyderma. In MD95-2011 and ODP 984 the increase
in temperature seems to start around 8 ka years ago, while
in MD99-2251 and RAPiD-12-1K the trends of increasing
warmth starts between 7–6 ka. There is also a marked shift
in the mode of variability in all four records taking place
around 4–3.5 ka (Fig. 8). The Mg/Ca temperature record
from ODP 984 is significantly cooler compared to the other
three records. However, this record is based on Mg/Ca ratios
in N. pachyderma(dex), which seems to have a calcification
habitat at depth somewhere between the preferred depths of
G. bulloidesandN. pachyderma(sin) (see discussion above)
and thus is expected to show somewhat cooler temperatures
relative toG. bulloides. From the comparison between North
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Fig. 8. Foraminiferal-based temperature records from the eastern
Norwegian Sea and the northern North Atlantic south of Iceland.
(A) Sea-surface temperature estimates for summer (JAS) for site
MD95-2011 (Andersson et al., 2003; Risebrobakken et al., 2003;
this study). (B) Mg/Ca sea-surface temperatures for MD99-2251
based onG. bulloides(Farmer et al., 2008).(C) Mg/Ca sea-surface
temperatures for ODP 984 based onN. pachyderma(dex) (Came et
al., 2007).(D) Mg/Ca sea-surface temperatures for RAPiD-12-1K
based onG. bulloides(Thornalley et al., 2008).(E) Mg/Ca sea-
surface temperatures for RAPiD-12-1K based onG. inflata (Thor-
nalley et al., 2008).

Atlantic and Norwegian Sea foraminifer SST records, it is
clear that they show no significant warmth during the early
and mid-Holocene regardless of species or methods used to
derive the SST records. With the existing data at hand it
is not possible to rule out adaptations in species ecology,
i.e. changes in depth habitat and/or shifts in seasonal pro-
ductivity, at any of the sites discussed.

Farmer et al. (2008) concluded from comparisons between
the Holocene trends in the Norwegian Sea and North Atlantic
records that despite differences in the locations, proxy meth-
ods and species used, there seem to be a common climate
linkage. All cores discussed in this study are located in the
path of the NAC and its extension, and are to some extent
expected to reflect changing properties of the inflowing rel-
atively warm and saline waters throughout the Holocene as
well as local changes in hydrography. Proposed theories to
explain the records of the Nordic Seas include changes in at-
mospheric forcing (Risebrobakken et al., 2003), differences
in ecology between zooplankton and phytoplankton com-
bined with changes in the seasonality of the orbital forcing
(Jansen et al., 2008) and stratification due to freshening (Hald
et al., 2007). Moros et al. (2004) suggested that the increase
in Northern Hemisphere winter insolation may have forced
a mean annual temperature rise in the North Atlantic region,
which could have led to stronger meriodional atmospheric
circulation, especially after about 4 ka. More frequent and
intense storm tracks would have led to relatively mild win-
ters, a situation resembling the modern positive mode of the
North Atlantic Oscillation (NAO) (Hurrell, 1995). In con-
trast, Risebrobakken et al. (2003) tied the increased influ-
ence of Arctic waters and stronger westerlies during the early
and mid-Holocene, to northward shifts in the Icelandic Low
and Atlantic jet stream, which may have an analogue in the
modern mode of positive NAO. Model analyses do show a
northward shift of the low-pressure system and jet stream in
the Atlantic from glacial to present day-like climate (e.g. and
Li and Battisti, 2008; Pausata et al., 2009). Comparisons
between Holocene alkenone-based SST trends in the north-
eastern Atlantic and western subtropical Atlantic suggest a
possible role for the NAO in generating millennial-scale SST
trends and that these trends may be related to continuous
weakening of a positive NAO pattern from the early to late
Holocene (Rimbu et al., 2003). The model result for the mid-
Holocene NAO suggests a small shift in mean state towards
a more positive NAO regime compared to PI climate (Glad-
stone et al., 2005). This is in agreement with the pollen re-
constructions (Davis et al., 2003) showing a more positive
NAO regime during the mid-Holocene. This change can be
interpreted as larger amplitude of the NAO variability with
more time spent in a positive phase or there may also have
been a shift in the mean state with no change in variabil-
ity. However, proxy records with higher temporal resolution
than those available are necessary in order to discriminate
between possible changes in the character of the NAO.

At the two sites ODP 984 and RAPiD-12-1K salinity
reconstructions are available for the Holocene (Came et
al., 2007; Thornally et al., 2009). A freshening of both
near-surface and sub-thermocline conditions is evident dur-
ing the early Holocene, ending at around the 8.2 ka event.
Dinocyst estimates of sea-surface salinities from the Reyk-
janes Ridge and the Faroe-Shetland Channel documents
lower sea-surface salinities before 6.5–7 ka BP than during
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the mid-late Holocene, suggesting dispersal of meltwater
through the North Atlantic Current (Solignac et al., 2008).
The records from ODP 984 and RAPiD-12-1K (based onN.
pachyderma(dex) andG. bulloides, respectively) agree well
and show a trend of increasing near-surface salinity since
about 9–8 ka. Several previous studies from the northeast-
ern and northwestern Atlantic, based on sea-surface salinity
estimates from dinocysts, suggest a trend towards increas-
ing surface salinities from mid to late Holocene (Solignac
et al., 2004, 2006, and 2008; de Vernal and Hillaire-Marcel,
2006). Came et al. (2007) explains the Holocene trend of
increasing temperature and salinity at Site 984 with a pos-
sible northward retreat of the boundary between polar and
North Atlantic water. Thornalley et al. (2009) suggested that
changes in salinity of the near-surface water were related
to changes in the position of the subpolar front, at least on
centennial to millennial time scales. Due to the proximity
of the subpolar front to the southern Icelandic region it is
likely that changes in the position of this front will affect
the near-surface hydrography of the southern Icelandic sites
(Thornalley, et al., 2009). Cooler and fresher subpolar wa-
ters would compete with water from the warmer and more
saline NAC. However, the sub-termocline temperature and
salinity records from RAPiD-12-1K, based on deep-dwelling
G. inflata, display periods that were significantly warmer
and more saline compared to the present. Thornalley et
al. (2009) suggested that changes in relative contribution of
waters drawn from the North Atlantic sub-polar gyre (SPG)
and sub-tropical gyre (STG) could explain Holocene changes
in sub-thermocline salinity and temperature south of Iceland.
At present, the salinity of the Atlantic inflow is linked to
the dynamics of the SPG on decadal time scales (Hátún et
al., 2005). When the gyre circulation is strong the volume
transport of relatively fresh and cool SPG water is high rel-
ative to the warm and saline water from the STG. High sub-
thermocline salinities and temperatures in the NAC will then
be the result of a weaker SPG circulation, which will al-
low a larger contribution of STG water to the NAC. Decadal
scale variations in salinity of the Atlantic Ocean have been
recorded over the past few decades (Curry et al., 2003; Hátún
et al., 2005). Over the most recent decade positive salinities
have been recorded in the inflow areas (Hátún et al., 2005).
These changes are related to changes in the dynamics of SPG
circulation, and have also been simulated using the Miami
Isopycnal Coordinate Ocean Model (Hátún et al., 2005). At
Selvogsbanki monitoring transect south of Iceland the mean
spring 0–50 m temperature and salinity increased during the
period 1990–2007 (Gislason et al., 2009). Furthermore, at
OWS Mike a warming and increase in salinity has also been
recorded over the past decade (Drange et al., 2005). These
changes are likely to be related to changes in the dynamics
of the SPG and STG gyres (S. Østerhus, personal commu-
nication, 2009). Moreover, at OWS Mike, it is clear that
the temperature and salinity increase is recorded in the en-
tire Atlantic water mass, also at near-surface depths of 50 m.

Hence, on shorter time-scales changes in SPG dynamics are
likely to be recorded by near-surface as well as sub-surface
dwelling foraminifers. However, on millennial time-scale
a decoupling between near-surface and sub-surface waters
south of Iceland has been suggested and that the near-surface
waters were influenced by a southward migration of subpolar
waters rather than changes in the gyre dynamics (Thornalley
et al., 2009). Recent results based on stable isotopes and din-
cysts on several sites in the North Atlantic clearly illustrate
the large spatial and temporal heterogenities in the surface
conditions in the North Atlantic (Solignac et al., 2004, 2006,
2008; de Vernal et al., 2006). Additional studies are needed
to resolve how the dynamics of the SPG and STG influence
the water column of the North Atlantic and Nordic Seas. Ex-
tensive use of proxy methods, such as Mg/Ca ratios, able to
reconstruct salinity for surface and sub-surface depths will
be necessary.

The cause of the thermal maximum in the phytoplankton
records were suggested by Jansen et al. (2008) to be related
to radiative forcing alone. A possible increase in advection
of North Atlantic waters into the Norwegian Sea was ruled
out as the thickness of Atlantic water in this area is 400–
600 m (Nilsen et al., 2008), and that the depth habitat of zoo-
plankton may extend to a few hundred meters (Bé, 1977).
Hence, an increase in advection would affect depths inhab-
ited by both phytoplankton and zooplankton resulting in a
positive anomaly in both plankton groups. However, this is
apparently not the case.

3.3 Modelling results versus data

To further investigate the differences in trends between
the Holocene phytoplankton and zooplankton records, the
PMIP2/MOTIF modelling results for the mid-Holocene
(6 ka) were taken into account (Braconnot et al., 2007). In
this preliminary study we use the CCSM3 model results.

For the Norwegian Sea, the model generally shows posi-
tive 6 ka sea-surface anomalies throughout the year, with a
particularly pronounced anomaly during the summer season
(Figs. 9, 10 and 11). This agrees well with the Holocene
trends of estimated SSTs based on alkenones (Calvo et
al., 2002; Jansen et al., 2008), and diatoms (Birks, 2000)
(Fig. 6). The CCSM3 results indicate no or a negative 6 ka
anomaly at 100 m depth along the Norwegian coast, go-
ing from Skagerrak to Lofoten (Figs. 9, 10 and 11). The
mid-Holocene modelled temperature depth profile for the
Vøring Plateau (MD95-2011) is warmer at all depths for all
seasons compared to PI values, except for a slightly cool
anomaly between approximately 40–75 m water depth in
summer (Fig. 12). By re-calibrating the foraminifer train-
ing data set using annual mean temperatures for 100 m wa-
ter depth, the estimated 6 ka annual 100 m foraminifer tem-
perature for MD95-2011 is 6.8◦C, which is slightly cooler
than both the corresponding modelled PI and 6 ka temper-
ature (Fig. 12). The resulting 6 ka 100 m annual anomaly
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Figure 9

Fig. 9. Ocean potential temperature differences between MH and
PI in CCSM3 for summer (JAS) at 10 m depth (upper panel) and
100 m depth (center). The lower panel shows the MH-PI anomaly
for the difference between 100 m and 10 m depth.

(6 ka minus core top) for MD95-2011 is−0.6◦C, whereas
the modelled 100 m annual anomaly is 0±0.25◦C (Fig. 11).
Considering the uncertainties linked to both the faunal tem-
perature estimates and the modelled temperatures, the model
shows a fairly good agreement with the estimated tempera-
ture from MD95-2011.

For the area south of Iceland, where cores MD99-2251,
ODP 984, and RAPiD-12-1K were retrieved, the model re-
sults indicate a strong positive summer temperature anomaly
at the sea-surface between the mid-Holocene and PI period

Figure 10

Fig. 10. 6k-0k CCSM3 model result for winter (JFM) temperature
for 10 m and 100 m as well as the 6k-0k anomaly for the difference
between 100 m and 10 m.

(Figs. 9 and 12), whereas it is negative in winter (Fig. 10). At
sub-surface depth the model shows a cooling throughout the
year and Fig. 12 shows that the temperature is cooler com-
pared to the PI for all sites south of Iceland at sub-surface
depth for all seasons.Given the uncertainties in foraminifer
depth habitats, the negative 6 ka anomaly for sub-surface
depths south of Iceland could explain the reconstructed tem-
perature trends based onN. pachyderma(ODP 984). Cal-
cification of N. pachydermain the cooler sub-surface wa-
ters deeper than ca. 30 m (Fig. 12) would lead to the ob-
served negative 6 ka anomaly in the proxy data. To explain
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Figure 11

Fig. 11. 6k-0k CCSM3 model result for the annual mean tempera-
ture for 10 m and 100 m as well as the 6k-0k anomaly for the differ-
ence between 100 m and 0 m.

the reconstructed temperature trends based onG. bulloides
(MD99-2251, and RAPiD-12-1K) on the background of
these modelling results, one may propose a somewhat deeper
depth habitat for this species or advocate for a shift in pro-
ductivity to earlier periods during summer or spring, as sug-
gested by Farmer et al. (2008). However, the model results
clearly show that the seasonal summer warming is restricted
to the upper ca. 30 m. Below 30 m, the mid-Holocene tem-
perature profile is cooler relative to the pre-industrial pro-
file (Fig. 12). Schiebel et al. (1997) suggested that the re-
production ofG. bulloidesis mostly restricted to the upper

60 m in the North Atlantic. Plankton tow results, with the
majority of the samples collected in May, June and August,
show that cytoplasma bearing tests ofG. bulloidesis present
down to 300 m, and that below 60 m (60–100 m) the average
number ofG. bulloidestests per cubic meter is about half of
that of the upper 60 m (Schiebel et al., 1997). The recon-
structed cool mid-Holocene anomaly for MD99-2251 can be
explained if we assume that the majority of theG. bulloides
population reside below ca. 30 m. If assuming a near-surface
depth habitat ofG. bulloidesa shift in the productivity to
cooler temperatures earlier during summer is only plausible
if this is not linked to shifts in bloom involving a large frac-
tion of the phytoplankton communities. For RAPiD-12-1K
the shift between a warm 6 ka anomaly at the surface to a
negative 6 ka anomaly at sub-surface depths takes place at
about 75 m water depth (Fig. 12), which is slightly deeper
relative to sites ODP 984 and MD99-2251. At RAPiD-12-
1K the 6 ka cooling is also slightly less pronounced relative
to the last 4–3.5 ka compared to MD99-2251 and MD95-
2011 (Fig. 8). One scenario that could explain this is thatG.
bulloidesat RAPiD-12-1K integrated a larger portion of the
warmer surface waters during calcification. However, during
the mid-Holocene the seasonal thermocline was more pro-
nounced due to the increase in summer warming relative to
at present. It is difficult to estimate the effect of this change
on the depth habitat of planktic foraminifers, but it cannot be
excluded that this may have had an effect on the preferred
depth habitat.

The comparison between foraminifer-based temperature
estimates and model results show that the Holocene trends
in the proxy data can be explained by changes in hydrog-
raphy at surface and sub-surface depths during the summer
season. Modelling results indicate that while the seasonal
summer warming of the sea-surface was stronger during the
mid-Holocene, sub-surface depth experienced a cooling be-
low 30–75 m (ODP 984, MD99-2251, and RAPiD-1-12K)
or over a certain depth range (40–75 m at MD95-2011)
(Fig. 12). This can explain the observed difference between
the Holocene trends in phytoplankton and zooplankton tem-
perature reconstructions. The sub-surface cool anomaly is
registered at depth intervals occupied by both near-surface
and deeper dwelling foraminifer species. There are no
large differences in trend between reconstructions from near-
surface and deeper-dwelling foraminifer species, which is
contrary to the suggestion by Jansen et al. (2008) that a
cool mid-Holocene anomaly would be recorded by deeper-
dwelling species only. Our explanation does not exclude the
possibility of smaller shifts in reproductive season (towards
cooler months) or shifts in depth habitat (towards deeper
depths), in addition to changes in hydrography, to explain
the mid-Holocene anomaly in the proxy records.
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Fig. 12. Average annual and seasonal temperature profiles 0–300 m depth for site MD95-2011, MD99-2251, ODP 984, and RAPiD-12-1K
from the CCSM3 model results.

4 Conclusions

Foraminifer temperature proxy records from the eastern
Norwegian Sea (MD95-2011), and the North Atlantic
south of Iceland (MD99-2251, ODP 984, and RAPiD-12-
1K) show Holocene trends of increasing temperature from
early/mid Holocene to late Holocene, in contrast to the
early to mid-Holocene thermal maximum exhibited by many
phytoplankton-based SST records (i.e. diatom and alkenone
records). Based on comparisons between foraminifer tem-
perature proxy data and CCSM3 model results the following
results of local and regional importance are suggested:

1. Both records based on foraminifers with near-surface
(G. bulloides) and deeper dwelling (N. pachyderma)
habitat share the trend towards warmer late Holocene
temperatures. The trend is also evident in records based
on faunal assemblage changes as well as geochemical
temperature proxies.

2. CCSM3 modelling results show a distinct 6 ka sum-
mer (JAS) warming of the sea-surface in the North At-
lantic and Norwegian Sea. Modelling results for the

area south of Iceland suggests negative 6 ka anomalies
for all seasons but summer and for sub-surface depth
(100 m) throughout the year. For the Norwegian Sea,
the model generally shows positive 6 ka sea-surface
anomalies throughout the year, an anomaly that is par-
ticularly pronounced during the summer season.

3. Model summer temperature profiles for site MD99-
2251, ODP 984, and RAPiD-12-1K display cool 6 ka
sub-surface anomalies. The strong summer warming
appears to be restricted to the upper 30–75 m. For site
the MD95-2011, the model temperature profile exhibits
a cool anomaly between 40–75 m water depth.

4. The relatively cool mid-Holocene foraminifer-based
temperatures can be explained by the presences of cool
sub-surface waters during summer (JAS). This explana-
tion does not exclude the possibility of shifts in produc-
tivity season or changes in depth habitat between 6 ka
and the late Holocene. More extensive data-model com-
parisons are needed to test this hypothesis.

5. Several different suggestions have been made to explain
the observed trends in the foraminifer records from the
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North Atlantic and Norwegian Sea. Changes in the dy-
namics of the subpolar gyre have recently been shown
to have a great influence on the inflow of Atlantic wa-
ter (Hátún et al., 2005). Changes in the supolar gyre
circulation affect all the different branches of the At-
lantic inflow, and could possibly be the common source
of the temperature trends seen in the studied foraminifer
records. However, the influence of the subpolar gyre cir-
culation on the Atlantic inflow has only been examined
on decadal time scales. Studies of proxy records with
high temporal resolution are needed to examine how the
dynamics of the subpolar gyre operates on longer time
scales.
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