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Abstract. One basic premise of dendroclimatology is that
tree rings can be viewed as climate proxies, i.e. rings are as-
sumed to contain some hidden information about past cli-
mate. From a statistical perspective, this extraction prob-
lem can be understood as the search of a hidden variable
which represents the common signal within a collection of
tree-ring width series. Classical average-based techniques
used in dendrochronology have been applied to estimate the
mean behavior of this latent variable. Still, depending on
tree species, regional factors and statistical methods, a pre-
cise quantification of uncertainties associated to the hidden
variable distribution is difficult to assess. To model the error
propagation throughout the extraction procedure, we propose
and study a Bayesian hierarchical model that focuses on ex-
tracting an inter-annual high frequency signal. Our method is
applied to black spruce(Picea mariana)tree-rings recorded
in Northern Quebec and compared to a classical average-
based techniques used by dendrochronologists (Cook and
Kairiukstis, 1992).

1 Introduction

1.1 Dendrochronology

In our changing climate, the search for accurate informa-
tion about the past remains essential to understand and link
past, present and future climate variations. Direct measure-
ments are missing beyond the length of instrumental records
and proxies are necessary to reconstruct chronologies of
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past temperatures and precipitation for a given region and/or
period for which direct observations are unavailable. One of
the most widely known proxy consists in tree-ring widths that
possess good skill in representing climate information at the
interannual to decadal time scale. An overview on this topic
can be found inCook and Kairiukstis(1992). The fundamen-
tal assumption in dendroclimatology is that a climatic signal
can be hidden into tree-ring growths. Since the pioneering
work of Douglass(1936), dendrochronologists have devel-
oped various methods to extract such common signals for dif-
ferent species. A required step in dendrochronology, called
standardization, is classically needed to transform ring-width
series, that are non-stationary due to tree aging processes,
into relative tree-ring indices with unit mean and a constant
variance. This can be accomplished by dividing each mea-
sured ring width by its expected value, i.e. the growth trend
is modelled as a regression function of tree ages. Then a
common signal is derived by averaging the ensemble of such
tree-ring indices across series for each year. Several meth-
ods exist to calculate indices averages (e.g.,Melvin et al.,
2007). Esper et al.(2002) noticed that the low-frequency
climate component can be highly sensitive to the standard-
ization method. Recently,Nicault et al.(2009) proposed a
neural network approach to remove the age effect and to esti-
mate regional growth curve via explanatory variables such as
tree age and their productivity. They developed a standard-
ization procedure to preserve long-term fluctuations.

In contrast with these past methods, our goal in this paper
is neither to reconstruct a series of temperatures or precip-
itation, nor to propose novel regression schemes based on
well-chosen explanatory variables as inNicault et al.(2009).
We prefer to focus on the problem of extracting a common
inter-annual high frequency signal from a given tree species
and region, without regressing on possible predictants. One
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reason for such a choice is based on the intrinsic difficulties
in linking tree-ring growths to specific explanatory variables
and in interpreting these relationships. Depending on the tree
species under study, it is not always clear to dendrochronol-
ogists, even today, what are the precise contributions of pre-
cipitation, temperatures, soil and hydrological characteris-
tics, competition and other factors, to tree-ring growths. This
is particularly true for black spruces in Northern Quebec.
Long and reliable instrumental records of precipitation and
temperature are not available for this region. By bypassing
this selection, our strategy is to let the raw data “speak” for
themselves. Of course, our extracted common signal could
be interpreted with respect to local measurements of temper-
atures, precipitation and other hydroclimatological variables,
whenever such information would be available. Hence, inde-
pendently of the estimation step, explanatory variables could
be employed in a validation scheme. To some extent, our
extraction strategy could be thought within a “blind experi-
ments” framework. The latter is classically used in medical
studies to remove the experimenter bias. In dendrochronol-
ogy, the “experimenter” could be viewed as the dendroclima-
tologist who can select his/her favorite explanatory variables
(precipitation, temperatures, soil information, etc.). In our
statistical modeling, neither climatological nor environmen-
tal data (besides tree rings) are used in the analysis. Con-
sequently, our hidden signal should not be influenced by the
choice of the “experimenter”. Ideally, the extracted common
signal should be then linked to climate variables by indepen-
dent researchers who did not participate in our data analysis.
Such a reasoning about design experiments is very common
in many research fields (medical studies, nuclear physics,
etc.) but it is rarely a topic of interest in climatology. Here we
believe that our blind extraction represents an advantage be-
cause it can reduce the subjective link between the extracted
common tree signal and the climate.

1.2 Bayesian Hierarchical Modeling

Assessing uncertainties in any statistical dendrochronologi-
cal procedure has to be carefully addressed. To tackle this
important statistical issue, we opt to work within a Bayesian
Hierarchical Modeling (BHM) framework. The main idea
of BHMs is to statistically model a complex process and its
relationships to observations in several simple components
throughout a hierarchy of layers. BHMs handle efficiently
the uncertainty assessment of each layer by clearly identify-
ing prior and posterior distributions of underlining processes.
Schematically, the prior corresponds to a probability distri-
bution representing knowledge or belief about an unknown
quantity a priori, that is, before any data have been observed.
Then, in the light of relevant data, the prior probability is
updated via Bayes’ theorem and becomes the posterior. For
an introduction to such models, see e.g.Gelman et al.(2003).
In environmental sciences, BHM has become more and more
popular during the last two decades. For example,Berliner

et al.(2000) studied long-lead predictions of Pacific Sea Sur-
face Temperatures via Bayesian Dynamic Modeling.Cooley
et al.(2005) implemented a BHM to infer glacial retreats in
Bolivia using lichen growths as a proxy.Cooley et al.(2007)
estimated extreme precipitation return levels by combining
BHM and extreme value theory. Concerning dendrochronol-
ogy, Hooten and Wikle(2007) recently investigated with a
BHM shifts in the spatio-temporal growth dynamics of short-
leaf pine.

The uncertainty in BHM is spread over different layers,
usually three. The base level, called thedata layer, character-
izes observations, e.g. tree ring areas in our case. The second
level in the hierarchy, called theprocess layer, models the la-
tent process that drives the growth of such rings, tree-to-tree
and regional variations. In this second layer, one can start in-
corporating temporal processes, e.g. the tree memories. The
third level, called theparameter layer, consists of the infor-
mation concerning prior parameters distributions that control
the latent process.

What is the interest of BHMs for dendrochronologists?
The choice of the Bayesian paradigm allows the use of un-
observed variables in a hierarchical structure, while easily
modeling uncertainties at each different level of this struc-
ture. In particular, expert information can be integrated via
probability densities (the priors). In other words, past knowl-
edge, even diffuse or imperfect, from scientists can be taken
advantage of. More precisely, each parameter of a Bayesian
hierarchical model can be viewed as a random variable and
hence, a dialogue with dendrochronologists can be engaged
to set the prior distribution of this random variable. If the
expert has no prior knowledge then the distribution is set to
be very wide (a diffuse prior), otherwise the uncertainty of
the parameter can be reduced by using knowledge from past
studies. In a following step, the incoming data (tree-ring ar-
eas here) are used to update all the parameters of our model.
The Bayes’ theorem provides the mathematical formula to
perform this updating, i.e. to derive the posterior distribu-
tions. In summary, one can see the above Bayesian strategy
as an assembly of elementary parts. Its modular character
makes it possible to replace prior uncertainty knowledge (set
by experts) by posterior distributional information, through-
out the incoming data. In this sense, it is an evolutionary
construction.

The paper is organized as follows. Section2 describes the
data and the regional characteristics of the site under study.
The details of our latent model are presented in Sect.3. A
short discussion about our application is proposed in Sect.4.
Perspectives are given in the conclusion.

2 Data and region of interest

To extract a common tree signal, the dendrochronologist
has to make a series of important decisions about the tree
species, the region of interest and the sampling procedure
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This site has the advantages to belong to a climatic homoge-
nous region and of being far away from most human activ-
ities. The black spruce (Picea mariana) was selected be-
cause it is a widespread species in northern Quebec. Fifteen
trees covering a period of 158 years were sampled. These
trees were carefully chosen by an expert who removed sin-
gular individuals (sick trees, dominated trees, etc.). Each tree
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Fig. 1. The upper panel corresponds to northern Quebec. The lower
panel is a zoom near the Caniapiscau region and the red star called
HM-1 represents the site from which fifteen trees have been sam-
pled.

provided a ring width series from which annual growth ring
areas were estimated. This transformation from ring width to
ring area diminishes the geometrical effect impact, basically
older trees have thiner rings. The last ring of all sampled
trees, albeit missing rings, should correspond to the calendar
year. Hence the youngest tree determines the common period
length of all trees.

To illustrate the type of dendrochronological times series
under study, Figure 2 shows the temporal behavior of three
ring area series, randomly chosen from fifteen trees. The
right panels represent those three ring area series. From these
three right panels, it is clear that each tree has a different
trend and it seems difficult to find a common hidden signal in
the low frequency domain. In addition, the variability around
the cubic-spline trend in the right panels seems to be stronger
after 1880 for trees 1 and 2. This example illustrates the high
complexity of separating tree ring areas into their individual
growth component and their common hidden component in
the low frequency part of these signals. Different techniques
(e.g. working with residuals after fitting a reference growth
curve) exist to deal with this important issue. In this paper we
do not address directly this issue. Instead we apply a simple
non-parametric transformation to remove trends and to work
with stationary time series. This implies that we only focus
on inter-annual high frequencies in tree rings. The simple
non-parametric transformation is defined as

Yts = logXts − logXt−1,s, (1)

with t = 2, . . . , T and s = 1, . . . , S and where Xts repre-
sent the measured annual ring area produced during year t by
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Fig. 2. Temporal behavior of three ring area time series (randomly
chosen from a set of fifteen trees) over the period 1846-2003. The
left panels correspond to the measured tree ring areas with a fitted
cubic spline trend. The right panels indicate the log difference of
the same ring areas, see Equation (1).

tree s and T is the length of the temporal sequence and S the
number of trees. Transformation (1) is extensively used in fi-
nance (Gencay et al., 2002). Besides its simplicity of imple-
mentation, this log-difference has the advantage of remov-
ing any smooth (i.e. polynomial) trend, see the right panels
of Figure 2. In addition the change of variability aforemen-
tioned in trees 1 and 2 is less pronounced in the right panels
of Figure 2. The drawbacks of using (1) are that, if present,
the low frequency part of a possible common signal has been
removed and that the time unit t in Yts does not correspond
to a year anymore but to a one-year increment. The latter has
to be kept in mind when interpreting our results. The former
implies that our model described below will only focus on
the high frequency part of a possible common signal.

Concerning the interpretation of Yts defined as a log-
difference between two consecutive ring area values, the fol-
lowing simple facts need to be recalled. Whenever the rela-
tive ratio of two inter-annual consecutive ring areas from the
same tree is close to one, then Yts is close to zero. If this rel-
ative ratio is very large (ie the ring area from year t is much
larger than the one formed during year t − 1), then Yts has
to strongly positive. Conversely, a negative Yts represents a
large decrease in ring areas between two consecutive years.
As exemplified by Figure 3, working with Yts instead of the
raw ring areas Xts allows us to remove long-term trends, to
focus on the inter-annual relative variability and to work with
time series that can be assumed to be stationary and Gaus-
sian. One drawback is that we have lost the absolute value of
Xts, ie working with the couple (Xts, Xt−1,s) is equivalent
to analyzing the couple (aXts, aXt−1,s) for any a > 0, inde-
pendently of the value of a. Keeping in mind this drawback
and those advantages, the correlation meaning in Yts and Zt
can be viewed as the short term memory in the relative log-

Fig. 1. The upper panel corresponds to Northern Quebec. The lower
panel is a zoom near the Caniapiscau region and the red star called
HM-1 represents the site from which fifteen trees have been sam-
pled.

(e.g.,George et al., 2008). Concerning the region choice,
Hydro-Quebec, one of the founding agencies involved in this
project, has had a strong interest in Northern Quebec be-
cause of its hydro-electrical capacities. With this constraint
in mind, a mesic site, i.e. with a moderate supply of mois-
ture, close to lake Hurault (54◦15′ N, 70◦47′ W) was chosen,
see the red star called HM-1 in the right panel of Fig.1. This
site has the advantages to belong to a climatic homogenous
region and of being far away from most human activities.
The black spruce(Picea mariana)was selected because it
is a widespread species in Northern Quebec. Fifteen trees
covering a period of 158 years were sampled. These trees
were carefully chosen by an expert who removed singular
individuals (sick trees, dominated trees, etc.). Each tree pro-
vided a ring width series from which annual growth ring ar-
eas were estimated. This transformation from ring width to
ring area diminishes the geometrical effect impact, basically
older trees have thiner rings. The last ring of all sampled
trees, albeit missing rings, should correspond to the calendar
year. Hence the youngest tree determines the common period
length of all trees.

To illustrate the type of dendrochronological times series
under study, Fig.2 shows the temporal behavior of three ring
area series, randomly chosen from fifteen trees. The right
panels represent those three ring area series. From these three
right panels, it is clear that each tree has a different trend
and it seems difficult to find a common hidden signal in the
low frequency domain. In addition, the variability around the
cubic-spline trend in the right panels seems to be stronger
after 1880 for trees 1 and 2. This example illustrates the high
complexity of separating tree ring areas into their individual
growth component and their common hidden component in
the low frequency part of these signals. Different techniques
(e.g. working with residuals after fitting a reference growth
curve) exist to deal with this important issue. In this paper we
do not address directly this issue. Instead we apply a simple
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Fig. 2. Temporal behavior of three ring area time series (randomly
chosen from a set of fifteen trees) over the period 1846-2003. The
left panels correspond to the measured tree ring areas with a fitted
cubic spline trend. The right panels indicate the log difference of
the same ring areas, see Equation (1).
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Fig. 2. Temporal behavior of three ring area time series (randomly
chosen from a set of fifteen trees) over the period 1846–2003. The
left panels correspond to the measured tree ring areas with a fitted
cubic spline trend. The right panels indicate the log difference of
the same ring areas, see Eq. (1).

non-parametric transformation to remove trends and to work
with stationary time series. This implies that we only focus
on inter-annual high frequencies in tree rings. The simple
non-parametric transformation is defined as

Yts = logXts − logXt−1,s , (1)

with t=2, . . ., T ands=1, . . ., S and whereXts represent the
measured annual ring area produced during yeart by trees
andT is the length of the temporal sequence andS the num-
ber of trees. Transformation (1) is extensively used in finance
(Gencay et al., 2002). Besides its simplicity of implementa-
tion, this log-difference has the advantage of removing any
smooth (i.e. polynomial) trend, see the right panels of Fig.2.
In addition the change of variability aforementioned in trees
1 and 2 is less pronounced in the right panels of Fig.2. The
drawbacks of using (1) are that, if present, the low frequency
part of a possible common signal has been removed and that
the time unitt in Yts does not correspond to a year anymore
but to a one-year increment. The latter has to be kept in mind
when interpreting our results. The former implies that our
model described below will only focus on the high frequency
part of a possible common signal.

Concerning the interpretation ofYts defined as a log-
difference between two consecutive ring area values, the fol-
lowing simple facts need to be recalled. Whenever the rela-
tive ratio of two inter-annual consecutive ring areas from the
same tree is close to one, thenYts is close to zero. If this rel-
ative ratio is very large (i.e. the ring area from yeart is much
larger than the one formed during yeart−1), thenYts has
to strongly positive. Conversely, a negativeYts represents a
large decrease in ring areas between two consecutive years.
As exemplified by Fig. 3, working withYts instead of the
raw ring areasXts allows us to remove long-term trends, to
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focus on the inter-annual relative variability and to work with
time series that can be assumed to be stationary and Gaus-
sian. One drawback is that we have lost the absolute value of
Xts , i.e. working with the couple(Xts, Xt−1,s) is equivalent
to analyzing the couple(aXts, aXt−1,s) for anya>0, inde-
pendently of the value ofa. Keeping in mind this drawback
and those advantages, the correlation meaning inYts andZt
can be viewed as the short term memory in the relative log-
transfom rate between two consecutive ring areas.

Before closing this section we would like to emphasize
that our detrending choice represented by (1) is not unique
and others techniques could be used to provide stationary sig-
nals. For example, we could have worked with the residuals
obtained from the cubic spline fit shown in the left panels of
Fig. 2.

3 An additive latent model

The random variableYts defined by Eq. (1) is assumed to
follow an additive model with a latent variableZt

Yts = µs + λsZt + εst , (2)

with t=2, . . ., T ands=1, . . ., S, and whereµs corresponds
to the mean level of trees, Zt represents the hidden regional
signal common to all trees andεst describes local fluctua-
tions of trees during yeart . Tree-to-tree variations captured
by εst can be due to reserves accumulated by trees and other
factors that are not directly linked to environmental causes,
the latter ones should be represented byZt . For each calen-
dar yeart , the productλsZt measures how the hidden factor
Zt contributes to the growth of trees. We assume thatZt and
εst are independent processes. With respect to the BHMs de-
scribed in Sect.1.2, the random variablesYts corresponds to
the data layer andZt belongs to the process layer.

Before describing the probabilistic structure withinZt and
εst , it is advantageous to rewrite model (2) with obvious vec-
torial notations

Ys = µs1 + λsZ + εs, (3)

where 1 is the unit vector of lengthT−1. Each trees
may have a temporal memory that should depend on the hy-
drological stress or other conditions that are particular to
this tree location. Although these tree-to-tree effects can
be complex, to keep the inference simple and the risk of
over-parametrization low, we opt for a simple zero-mean
Gaussian auto-regressive process of order one forε, i.e.
εs=φsε−s+Vs . The notationε−s corresponds toεs shifted
by one year, i.e.ε−s =

(
εs1, . . ., εs(T−1)

)′, φs represents the
auto-regressive coefficient of trees, and the random vector
Vs of lengthT−1 follows a zero-mean multivariate Gaus-
sian distribution withprecisionηs×I whereI is the identity
matrix of sizeT−1. In other words, all components of vector
Vs correspond to a standardized normal independent random
noise.

To allow the common regional factorZt to have a short
year-to-year memory, we assume that the latentZt can be
modeled as a zero-mean Gaussian auto-regressive process
of order one, i.e.Z=ρZ−+U whereZ−=

(
Z1, . . ., Z(T−2)

)′

andU represents a zero-mean multivariate normal vector of
lengthT−1 with precisionτ×I .

Our full model counts 2+4S parameters, namely(ρ, τ )
and θ s= (λs, µs, φs, ηs) with s=1,2, . . ., S. We assume
that the priors distributions[ρ, τ ], [θ1] , . . ., and [θS ] are
mutually independent. By writing the joint distribution as
a product of conditional distributions with a marginal dis-
tribution, the prior for(ρ, τ ) can take the following form
[ρ, τ ] = [ρ|τ ] [τ ] . In a classical way, we assume that the pre-
cision parameterτ follows a gamma distribution with two
hyperparameters that must be fixed to reflect prior beliefs. In
our application, a diffuse prior is chosen by setting the two
gamma parameters to zero.

The choice of the auto-regressive coefficient prior[ρ|τ ] is
more delicate. Classically, it is assumed that auto-regressive
processes are a priori stationary. This implies that auto-
regressive coefficients have to belong to the interval[−1,1].
As Bayesian statisticians, we defend the idea that the under-
lying characteristics of the hidden processZt should not be
imposed but arise form the data via the Bayes’ rule or via
prior knowledge. For this reason, we assume that[ρ|τ ] fol-
lows a zero-mean Gaussian distribution with a precision pro-
portional toτ . This multiplicative factor must be fixed be-
tween zero and one, mainly to degrade the precision a little.
In our application, we work with a diffuse prior by equaling
the multiplicative factor to zero.

Concerning the prior of the random vector
θ s= (λs, µs, φs, ηs), we assume conditional independence,
i.e. [θ s ] = [λs |ηs ] [µs |ηs ] [φs |ηs ] [ηs ] where the variableηs
follows a gamma distribution with two hyperparameters (set
to zero in our application). The distributions[λs |ηs ], [µs |ηs ]
and [φs |ηs ] are assumed to be diffuse Gaussian priors in
this paper. As for the auto-regressive coefficient ofZt , this
means that the auto-regressive coefficient ofεst are not a
priori assumed to be in the interval[−1,1].

To compute the posteriors of the latent vectorZt and of
the 2+4S parameters, we implement the Gibbs sampler de-
scribed in the Appendix. The Bayesian inference was carried
out with the open source R statistical software (R Develop-
ment Core Team, 2009). Our programs are available upon
request.

4 Results and discussion

The solid line in Fig.3 shows the estimated posterior me-
dian value of the common factorZt over the period 1846-
2003. The shaded area corresponds to the 90% credible re-
gions (CR). Note that the value ofZt andλs are estimated
up to a constant because it is always possible in (2) to multi-
ply Zt by a constant and divide theλs by the same constant

Clim. Past, 5, 607–613, 2009 www.clim-past.net/5/607/2009/
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and Kairiukstis, 1992). Up to a constant (this explains the
two different scales for the y-axis), the classical tree-growth
index behaves similarly to Zt by staying in the CR over a
long time period. From about 1875 to 1900, there is a dis-
crepancy between Zt and the classical tree-growth index, the
latter producing higher values during this period. Although
fairly localized in time, this difference indicates that this clas-
sical technique by not providing confidence intervals shows
its limitations. Still, this comparison between the two ex-
tracted signals makes us believe that our BHM approach is
capable of providing meaningful outputs for dendrochronol-
ogists because they do not contradict past results and offer
another statistical approach to this community of scientists.
Concerning the memory within Zt, the posterior distribution
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Fig. 3. The solid line corresponds to the estimated posterior me-
dian value of the common signal Zt from (2) over the period 1846-
2003. The shaded area corresponds to the 90% credible regions.
The dashed line represents the so-called tree-growth index which is
an arithmetic mean of ratios over all trees. Each ratio is derived by
dividing ring thickness over a temporally smoothed tree signal for
each tree (e.g., Cook and Kairiukstis, 1992).

of the autoregressive coefficient ρ indicates a negative cor-
relation because its 25%, 50% and 75% posterior quantiles
are equal to −0.40, −0.36 and −0.32, respectively. In ad-
dition to CRs, our methods allow the practitioner to derive a
finer analysis of her/his tree ring data. For example, an anal-
ysis tree-by-tree can be undertaken. For each of the fifteen
trees, Figure 4 displays the posterior mean and 90% CRs of
the parameters µs, λs and φs, respectively. The mean pos-
terior value of µs mostly oscillates around zero for all trees.
Overall, each tree but tree 2 appears to have a mild negative
inter-annual memory, all autoregressive coefficients (but tree
2) shown in the bottom panel of Figure 4 have a φs poste-
rior median around -0.4. The central panel clearly points out
tree 1 which seem to contribute the most to Zt. To check the
quality of our estimation, Figure 5 displays for trees 1, 2 and
3 (shown in Figure 2), the observed Yts versus the naive esti-
mate Ŷts obtained by plugging our median posterior parame-
ter values in (2) without noise. As expected, the relationships
appear to be linear. The same result holds for the other trees.
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Fig. 4. For each of the fifteen trees, the posterior mean of µs, λs and
ρs are represented by circles in the top, middle and bottom panels,
respectively. Vertical bars correspond to the 90% credible regions.
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Fig. 5. For each of the three randomly chosen trees described in
Figure 2, the observed Yts versus its estimator from model (2) is
plotted.

Fig. 3. The solid line corresponds to the estimated posterior me-
dian value of the common signalZt from (2) over the period 1846–
2003. The shaded area corresponds to the 90% credible regions.
The dashed line represents the so-called tree-growth index which is
an arithmetic mean of ratios over all trees. Each ratio is derived by
dividing ring thickness over a temporally smoothed tree signal for
each tree (e.g.,Cook and Kairiukstis, 1992).

without being able to identify this multiplicative factor. In
Fig. 3, we compare our BHM results with a classical tech-
nique employed by dendrochronologists. The output of this
procedure is represented by the dashed line, a so-called tree-
growth index which is an arithmetic mean of ratios over all
trees. Each ratio is derived by dividing ring thickness over
a temporally smoothed tree signal for each tree (e.g.,Cook
and Kairiukstis, 1992). Up to a constant (this explains the
two different scales for the y-axis), the classical tree-growth
index behaves similarly toZt by staying in the CR over a
long time period. From about 1875 to 1900, there is a dis-
crepancy betweenZt and the classical tree-growth index, the
latter producing higher values during this period. Although
fairly localized in time, this difference indicates that this clas-
sical technique by not providing confidence intervals shows
its limitations. Still, this comparison between the two ex-
tracted signals makes us believe that our BHM approach is
capable of providing meaningful outputs for dendrochronol-
ogists because they do not contradict past results and offer
another statistical approach to this community of scientists.

Concerning the memory withinZt , the posterior distribu-
tion of the autoregressive coefficientρ indicates a negative
correlation because its 25%, 50% and 75% posterior quan-
tiles are equal to−0.40, −0.36 and−0.32, respectively. In
addition to CRs, our methods allow the practitioner to de-
rive a finer analysis of her/his tree ring data. For example,
an analysis tree-by-tree can be undertaken. For each of the
fifteen trees, Fig.4 displays the posterior mean and 90% CRs
of the parametersµs , λs andφs , respectively. The mean pos-
terior value ofµs mostly oscillates around zero for all trees.
Overall, each tree but tree 2 appears to have a mild negative
inter-annual memory, all autoregressive coefficients (but tree
2) shown in the bottom panel of Fig.4 have aφs posterior
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and Kairiukstis, 1992). Up to a constant (this explains the
two different scales for the y-axis), the classical tree-growth
index behaves similarly to Zt by staying in the CR over a
long time period. From about 1875 to 1900, there is a dis-
crepancy between Zt and the classical tree-growth index, the
latter producing higher values during this period. Although
fairly localized in time, this difference indicates that this clas-
sical technique by not providing confidence intervals shows
its limitations. Still, this comparison between the two ex-
tracted signals makes us believe that our BHM approach is
capable of providing meaningful outputs for dendrochronol-
ogists because they do not contradict past results and offer
another statistical approach to this community of scientists.
Concerning the memory within Zt, the posterior distribution
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Fig. 3. The solid line corresponds to the estimated posterior me-
dian value of the common signal Zt from (2) over the period 1846-
2003. The shaded area corresponds to the 90% credible regions.
The dashed line represents the so-called tree-growth index which is
an arithmetic mean of ratios over all trees. Each ratio is derived by
dividing ring thickness over a temporally smoothed tree signal for
each tree (e.g., Cook and Kairiukstis, 1992).

of the autoregressive coefficient ρ indicates a negative cor-
relation because its 25%, 50% and 75% posterior quantiles
are equal to −0.40, −0.36 and −0.32, respectively. In ad-
dition to CRs, our methods allow the practitioner to derive a
finer analysis of her/his tree ring data. For example, an anal-
ysis tree-by-tree can be undertaken. For each of the fifteen
trees, Figure 4 displays the posterior mean and 90% CRs of
the parameters µs, λs and φs, respectively. The mean pos-
terior value of µs mostly oscillates around zero for all trees.
Overall, each tree but tree 2 appears to have a mild negative
inter-annual memory, all autoregressive coefficients (but tree
2) shown in the bottom panel of Figure 4 have a φs poste-
rior median around -0.4. The central panel clearly points out
tree 1 which seem to contribute the most to Zt. To check the
quality of our estimation, Figure 5 displays for trees 1, 2 and
3 (shown in Figure 2), the observed Yts versus the naive esti-
mate Ŷts obtained by plugging our median posterior parame-
ter values in (2) without noise. As expected, the relationships
appear to be linear. The same result holds for the other trees.
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Fig. 4. For each of the fifteen trees, the posterior mean of µs, λs and
ρs are represented by circles in the top, middle and bottom panels,
respectively. Vertical bars correspond to the 90% credible regions.
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Fig. 5. For each of the three randomly chosen trees described in
Figure 2, the observed Yts versus its estimator from model (2) is
plotted.

Fig. 4. For each of the fifteen trees, the posterior mean ofµs , λs and
ρs are represented by circles in the top, middle and bottom panels,
respectively. Vertical bars correspond to the 90% credible regions.

median around−0.4. The central panel clearly points out
tree 1 which seem to contribute the most toZt .

To check the quality of our estimation, Fig.5 displays for
trees 1, 2 and 3 (shown in Fig.2), the observedYts versus the
naive estimatêYts obtained by plugging our median poste-
rior parameter values in (2) without noise. As expected, the
relationships appear to be linear. The same result holds for
the other trees.

5 Conclusions

To summarize our findings, we have implemented a hierar-
chical Bayesian model to estimate a common hidden sig-
nal in high frequency component of trees. This latent signal
should be viewed as a representation of the regional pressure
affecting black spruce trees over our studied area in Northern
Quebec. The hierarchical structure provides another way to
model the temporal structure associated to tree memories at
the regional and tree-to-tree levels. This model attempts to
quantify the contribution of a high frequency common hid-
den signal to each tree growth. This could help selecting
trees with regard to a possible climatological interpretation
in a reconstruction context. Compared with past approaches,
our hidden signal was strongly correlated to the estimate ob-
tained with the most traditional procedure. This confirms a
past method derived by dendrochronologists, while bringing
the benefits of a BHM approach. As a further step in this
analysis, it would be of interest to integrate low frequency

www.clim-past.net/5/607/2009/ Clim. Past, 5, 607–613, 2009
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and Kairiukstis, 1992). Up to a constant (this explains the
two different scales for the y-axis), the classical tree-growth
index behaves similarly to Zt by staying in the CR over a
long time period. From about 1875 to 1900, there is a dis-
crepancy between Zt and the classical tree-growth index, the
latter producing higher values during this period. Although
fairly localized in time, this difference indicates that this clas-
sical technique by not providing confidence intervals shows
its limitations. Still, this comparison between the two ex-
tracted signals makes us believe that our BHM approach is
capable of providing meaningful outputs for dendrochronol-
ogists because they do not contradict past results and offer
another statistical approach to this community of scientists.
Concerning the memory within Zt, the posterior distribution

1850 1900 1950 2000

!
0

.4
!

0
.2

0
.0

0
.2

0
.4

year

e
x
tr

a
c
te

d
 s

ig
n

a
l

year

e
x
tr

a
c
te

d
 s

ig
n

a
l

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Fig. 3. The solid line corresponds to the estimated posterior me-
dian value of the common signal Zt from (2) over the period 1846-
2003. The shaded area corresponds to the 90% credible regions.
The dashed line represents the so-called tree-growth index which is
an arithmetic mean of ratios over all trees. Each ratio is derived by
dividing ring thickness over a temporally smoothed tree signal for
each tree (e.g., Cook and Kairiukstis, 1992).

of the autoregressive coefficient ρ indicates a negative cor-
relation because its 25%, 50% and 75% posterior quantiles
are equal to −0.40, −0.36 and −0.32, respectively. In ad-
dition to CRs, our methods allow the practitioner to derive a
finer analysis of her/his tree ring data. For example, an anal-
ysis tree-by-tree can be undertaken. For each of the fifteen
trees, Figure 4 displays the posterior mean and 90% CRs of
the parameters µs, λs and φs, respectively. The mean pos-
terior value of µs mostly oscillates around zero for all trees.
Overall, each tree but tree 2 appears to have a mild negative
inter-annual memory, all autoregressive coefficients (but tree
2) shown in the bottom panel of Figure 4 have a φs poste-
rior median around -0.4. The central panel clearly points out
tree 1 which seem to contribute the most to Zt. To check the
quality of our estimation, Figure 5 displays for trees 1, 2 and
3 (shown in Figure 2), the observed Yts versus the naive esti-
mate Ŷts obtained by plugging our median posterior parame-
ter values in (2) without noise. As expected, the relationships
appear to be linear. The same result holds for the other trees.
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Fig. 4. For each of the fifteen trees, the posterior mean of µs, λs and
ρs are represented by circles in the top, middle and bottom panels,
respectively. Vertical bars correspond to the 90% credible regions.
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Fig. 5. For each of the three randomly chosen trees described in
Figure 2, the observed Yts versus its estimator from model (2) is
plotted.

Fig. 5. For each of the three randomly chosen trees described in
Fig. 2, the observedYts versus its estimator from model (2) is plot-
ted.

in Eq. (2). One possibility is to bypass transformation (1)
by making the termµs in (2) varying in time. For example,
µts could be modeled by Bayesian splines. Besides the com-
plexity of such an approach, the main difficulty is our limited
sample size (fifteen trees). Another aspect is the handling of
missing values and consequently avoid the limitation brought
by the age of the youngest tree. In addition, ongoing field
trips should provide a much larger sample of tree rings and
allows us to extend our BHM procedure in future research. In
this context, our present work should rather be viewed as an
addition of a simple statistical procedure to the mathematical
toolbox of dendroclimatologists rather than a comprehensive
study of black spruce trees in Northern Quebec.

The combination of the additive model described by (2)
and the Bayesian paradigm allows the practitioner to easily
generate the full posterior distribution of the hidden signal,
and consequently it is possible to simulate realizations of the
relative log-transform ratio between two consecutive ring ar-
eas. Such simulations could help simulating the way tree
growth in response to climatic forces that drives the com-
mon inter-annual variations. Another interesting perspective
of the Bayesian approach resides in the possibility to com-
pute predictive posterior densities for future years. Since we
can derive the posterior density of the extracted signal, the
predictive posterior[zt+1|yt , θ] for an unobserved yeart+1
can obtained by computing the hidden state posterior density
at timet+1.

Appendix A

Gibbs sampling procedure

– Step 0:Initialize the vectorZ|ρ, τ, z0 of lengthT from
multivariate normal distribution with meanz0B0 and
varianceτ−1BBT where

Bt0 ≡

[
ρ, ρ2, . . . , ρT

]
andB =


1 0 0 . . . 0
ρ 1 0 . . . 0
ρ2 ρ 1 . . . 0
...

...
...

...
...

ρT ρT−1 . . . ρ 1


– Step 1: Draw the precision τ |z, z0, ρ from a

gamma distribution with parametersa+T+1
2 and

(b+1
2

T∑
t=1

(zt−ρzt−1)
2)−1 wherea andb are prior pa-

rameters (e.g.a=b=0)

– Step 2:Draw the correlation coefficientρ|z, z0, τ from

a normal distribution with mean
kρmρ+

T∑
t=1

zt−1zt

kρ+
T∑
t=1

z2
t−1

and pre-

cision

[
τ

(
kρ+

T∑
t=1

z2
t−1

)]−1/2

wherekρ andmρ are

prior parameters (e.g.kρ=mρ=0)

– Step 3:For s=1,2, . . . , S.

– Step 3.1: Let ψs representµs , λs or ϕ. Draw
ψs |ys, z, z0, y0s from a normal distribution with

meankψmψ+fTs gs
kψ+gTs gs

and correlation[kψ+gTs gsηs]−1/2

wherekψ etmψ are prior parameters which are in-
variant from tree to tree (e.g.kψ=mψ=0). The vec-
torsfs andgs depend on handling parameters.

– Step 3.2: Draw precision
ηs |µs, λs, ϕs, ys, z, z0, y0s from a gamma distri-
bution with parametersc+T+3

2 and [d+0.5v′v]
−1

wherec andd are prior parameters (e.g.c=d=0)

– Step 4.:Draw vectorU|τ, ηs,L s,Rs from a multivariate
normal distribution with meanω and covariance�−1

and setz=z0B0+Bu. The meanω and matrix�−1 re-
late vectorL and matrixR which depend on previous
parameters.

– Step 5:Return to step 1.

Note that when the Gamma hyper parameters are theoreti-
cally equal to zero, this means that they are set to a very small
value in real computations, e.g.a=b=.001 in our case.
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