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Abstract. One basic premise of dendroclimatology is that past temperatures and precipitation for a given region and/or
tree rings can be viewed as climate proxies, i.e. rings are agperiod for which direct observations are unavailable. One of
sumed to contain some hidden information about past cli-the most widely known proxy consists in tree-ring widths that
mate. From a statistical perspective, this extraction prob{possess good skill in representing climate information at the
lem can be understood as the search of a hidden variablmterannual to decadal time scale. An overview on this topic
which represents the common signal within a collection of can be found il€ook and Kairiuksti1992. The fundamen-
tree-ring width series. Classical average-based techniquel assumption in dendroclimatology is that a climatic signal
used in dendrochronology have been applied to estimate thean be hidden into tree-ring growths. Since the pioneering
mean behavior of this latent variable. Still, depending onwork of Douglass(1936, dendrochronologists have devel-
tree species, regional factors and statistical methods, a preped various methods to extract such common signals for dif-
cise quantification of uncertainties associated to the hiddetrierent species. A required step in dendrochronology, called
variable distribution is difficult to assess. To model the error standardization, is classically needed to transform ring-width
propagation throughout the extraction procedure, we proposseries, that are non-stationary due to tree aging processes,
and study a Bayesian hierarchical model that focuses on exnto relative tree-ring indices with unit mean and a constant
tracting an inter-annual high frequency signal. Our method isvariance. This can be accomplished by dividing each mea-
applied to black sprucéPicea mariana}ree-rings recorded sured ring width by its expected value, i.e. the growth trend
in Northern Quebec and compared to a classical averagas modelled as a regression function of tree ages. Then a
based techniques used by dendrochronologiStsok and  common signal is derived by averaging the ensemble of such
Kairiukstis 1992). tree-ring indices across series for each year. Several meth-
ods exist to calculate indices averages (eMglvin et al,
2007). Esper et al(2002 noticed that the low-frequency
climate component can be highly sensitive to the standard-
ization method. Recentlyicault et al.(2009 proposed a
neural network approach to remove the age effect and to esti-
mate regional growth curve via explanatory variables such as

| hanai limate. th hf te inf tree age and their productivity. They developed a standard-
t'n ourbc ??hgmg ctlma €, he searg | tor a((:jcuratl € (;n Or(;nl‘?"'l(zation procedure to preserve long-term fluctuations.

lon about the past remains essential to understand and ink- ., 5 nwrast with these past methods, our goal in this paper
past, present and future climate variations. Direct measure

S X is neither to reconstruct a series of temperatures or precip-
ments are missing beyond the length of instrumental recordq-l

1 Introduction

1.1 Dendrochronology

and proxies are necessary to reconstruct chronologies ation, nor to propose novel regression schemes based on
proxi y u 9! ell-chosen explanatory variables adNitault et al.(2009.

We prefer to focus on the problem of extracting a common
@ Correspondence tal.-J. Boreux inter-annual high frequency signal from a given tree species
(jj.boreux@ulg.ac.be) and region, without regressing on possible predictants. One
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reason for such a choice is based on the intrinsic difficultieset al.(2000 studied long-lead predictions of Pacific Sea Sur-
in linking tree-ring growths to specific explanatory variables face Temperatures via Bayesian Dynamic Modeli@goley

and in interpreting these relationships. Depending on the treet al. (2005 implemented a BHM to infer glacial retreats in
species under study, it is not always clear to dendrochronolBolivia using lichen growths as a proxgooley et al(2007)
ogists, even today, what are the precise contributions of preestimated extreme precipitation return levels by combining
cipitation, temperatures, soil and hydrological characteris-BHM and extreme value theory. Concerning dendrochronol-
tics, competition and other factors, to tree-ring growths. Thisogy, Hooten and Wiklg(2007) recently investigated with a

is particularly true for black spruces in Northern Quebec.BHM shifts in the spatio-temporal growth dynamics of short-
Long and reliable instrumental records of precipitation andleaf pine.

temperature are not available for this region. By bypassing The uncertainty in BHM is spread over different layers,
this selection, our strategy is to let the raw data “speak” forusually three. The base level, called tieta layer character-
themselves. Of course, our extracted common signal couldzes observations, e.g. tree ring areas in our case. The second
be interpreted with respect to local measurements of tempetevel in the hierarchy, called th@ocess laygrmodels the la-
atures, precipitation and other hydroclimatological variables,tent process that drives the growth of such rings, tree-to-tree
whenever such information would be available. Hence, inde-and regional variations. In this second layer, one can start in-
pendently of the estimation step, explanatory variables couldorporating temporal processes, e.g. the tree memories. The
be employed in a validation scheme. To some extent, outhird level, called theparameter layerconsists of the infor-
extraction strategy could be thought within a “blind experi- mation concerning prior parameters distributions that control
ments” framework. The latter is classically used in medicalthe latent process.

studies to remove the experimenter bias. In dendrochronol- What is the interest of BHMs for dendrochronologists?
ogy, the “experimenter” could be viewed as the dendroclima-The choice of the Bayesian paradigm allows the use of un-
tologist who can select his/her favorite explanatory variablesobserved variables in a hierarchical structure, while easily
(precipitation, temperatures, soil information, etc.). In our modeling uncertainties at each different level of this struc-
statistical modeling, neither climatological nor environmen-ture. In particular, expert information can be integrated via
tal data (besides tree rings) are used in the analysis. Corprobability densities (the priors). In other words, past knowl-
sequently, our hidden signal should not be influenced by the=dge, even diffuse or imperfect, from scientists can be taken
choice of the “experimenter”. Ideally, the extracted commonadvantage of. More precisely, each parameter of a Bayesian
signal should be then linked to climate variables by indepen-hierarchical model can be viewed as a random variable and
dent researchers who did not participate in our data analysishence, a dialogue with dendrochronologists can be engaged
Such a reasoning about design experiments is very commotd set the prior distribution of this random variable. If the

in many research fields (medical studies, nuclear physicsexpert has no prior knowledge then the distribution is set to
etc.) butitis rarely a topic of interest in climatology. Here we be very wide (a diffuse prior), otherwise the uncertainty of
believe that our blind extraction represents an advantage behe parameter can be reduced by using knowledge from past
cause it can reduce the subjective link between the extractegtudies. In a following step, the incoming data (tree-ring ar-

common tree signal and the climate. eas here) are used to update all the parameters of our model.
The Bayes’ theorem provides the mathematical formula to
1.2 Bayesian Hierarchical Modeling perform this updating, i.e. to derive the posterior distribu-

tions. In summary, one can see the above Bayesian strategy
Assessing uncertainties in any statistical dendrochronologias an assembly of elementary parts. Its modular character
cal procedure has to be carefully addressed. To tackle thisnakes it possible to replace prior uncertainty knowledge (set
important statistical issue, we opt to work within a Bayesianby experts) by posterior distributional information, through-
Hierarchical Modeling (BHM) framework. The main idea out the incoming data. In this sense, it is an evolutionary
of BHMs is to statistically model a complex process and its construction.
relationships to observations in several simple components The paper is organized as follows. Sectbdescribes the
throughout a hierarchy of layers. BHMs handle efficiently data and the regional characteristics of the site under study.
the uncertainty assessment of each layer by clearly identify-The details of our latent model are presented in SR\
ing prior and posterior distributions of underlining processes.short discussion about our application is proposed in ect.

Schematically, the prior corresponds to a probability distri- Perspectives are given in the conclusion.
bution representing knowledge or belief about an unknown

quantity a priori, that is, before any data have been observed.

Then, in the light of relevant data, the prior probability is 2 Data and region of interest

updated via Bayes’ theorem and becomes the posterior. For

an introduction to such models, see &glman et al(2003. To extract a common tree signal, the dendrochronologist
In environmental sciences, BHM has become more and moréas to make a series of important decisions about the tree
popular during the last two decades. For examplliner species, the region of interest and the sampling procedure
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Fig. 1. The upper panel corresponds to Northern Quebec. The lower

panel is a zoom near the Caniapiscau region and the red star called

HM-1 represents the site from which fifteen trees have been sam-

pled. Fig. 2. Temporal behavior of three ring area time series (randomly
chosen from a set of fifteen trees) over the period 1846-2003. The
left panels correspond to the measured tree ring areas with a fitted

) ) ) cubic spline trend. The right panels indicate the log difference of
(e.g.,George et a).2008. Concerning the region choice, the same ring areas, see Et). (

Hydro-Quebec, one of the founding agencies involved in this

project, has had a strong interest in Northern Quebec be-

cause of its hydro-electrical capacities. With this constraintnon-parametric transformation to remove trends and to work
in mind, a mesic site, i.e. with a moderate supply of mois-with stationary time series. This implies that we only focus

ture, close to lake Hurault (845 N, 70°47 W) was chosen, on inter-annual high frequencies in tree rings. The simple
see the red star called HM-1 in the right panel of BigThis non-parametric transformation is defined as

site has the advantages to belong to a climatic homogenous

region and of being far away from most human activities. s = 109 Xrs =109 X1—1, @)

The black sprucgPicea mariana)was selected because it y;in t=2,...,T ands=1, ..., S and whereX,, represent the

is a widespread species in Northern Quebec. Fifteen treesyaasured annual ring area produced during yésr trees
covering a period of 158 years were sampled. Thes_e treesndr is the length of the temporal sequence arttie num-
were carefully chosen by an expert who removed singulatyer of trees. Transformationis extensively used in finance
mdmdua}s (spk trees3 dommated_ trees, etc.). Each t_ree PrO(Gencay et a).2002. Besides its simplicity of implementa-
vided a ring width series from which annual growth ring ar- o this log-difference has the advantage of removing any
eas were estimated. This transformation from ring width 05t (i.e. polynomial) trend, see the right panels of Eig.
ring area diminishes the geometrical effect impact, basically|, aqdition the change of variability aforementioned in trees
older trees have thiner rings. The last ring of all sampled 544 2 is less pronounced in the right panels of Bigrhe
trees, albeit missing rings, should corr_espond to the Cale”qatﬂrawbacks of usingl) are that, if present, the low frequency
year. Hence the youngest tree determines the common perlo[gart of a possible common signal has been removed and that
length of all trees. the time unitr in Y, does not correspond to a year anymore
To illustrate the type of dendrochronological times seriesbut to a one-year increment. The latter has to be kept in mind
under study, Fig2 shows the temporal behavior of three ring when interpreting our results. The former implies that our
area series, randomly chosen from fifteen trees. The righinodel described below will only focus on the high frequency
panels represent those three ring area series. From these thngart of a possible common signal.
right panels, it is clear that each tree has a different trend Concerning the interpretation df;; defined as a log-
and it seems difficult to find a common hidden signal in the difference between two consecutive ring area values, the fol-
low frequency domain. In addition, the variability around the lowing simple facts need to be recalled. Whenever the rela-
cubic-spline trend in the right panels seems to be strongetive ratio of two inter-annual consecutive ring areas from the
after 1880 for trees 1 and 2. This example illustrates the higlsame tree is close to one, thEn is close to zero. If this rel-
complexity of separating tree ring areas into their individual ative ratio is very large (i.e. the ring area from ye#& much
growth component and their common hidden component inarger than the one formed during yearl), thenY;; has
the low frequency part of these signals. Different techniquego strongly positive. Conversely, a hegati¥g represents a
(e.g. working with residuals after fitting a reference growth large decrease in ring areas between two consecutive years.
curve) exist to deal with this importantissue. In this paper weAs exemplified by Fig. 3, working witlY;; instead of the
do not address directly this issue. Instead we apply a simpleaw ring areasX,, allows us to remove long-term trends, to
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focus on the inter-annual relative variability and to work with ~ To allow the common regional factdf; to have a short

time series that can be assumed to be stationary and Gaugear-to-year memory, we assume that the laéntan be

sian. One drawback is that we have lost the absolute value afhodeled as a zero-mean Gaussian auto-regressive process
X5, i.e. working with the coupléX,,, X;_1 ;) is equivalent  of order one, i.eZ=pZ_+U whereZ _= (Zl, e Z(T,g))/

to analyzing the couplér X5, aX;_1 ) for anya>0, inde- andU represents a zero-mean multivariate normal vector of
pendently of the value af. Keeping in mind this drawback length7T —1 with precisionz x1.

and those advantages, the correlation meaningiand Z, Our full model counts 24 S parameters, namelfp, 7)
can be viewed as the short term memory in the relative log-and 8,= (A, us, ¢5, ns) With s=1,2,...,S. We assume
transfom rate between two consecutive ring areas. that the priors distribution§p, ], [#1]...., and[fs] are

Before closing this section we would like to emphasize mutually independent. By writing the joint distribution as
that our detrending choice represented byi¢ not unique  a product of conditional distributions with a marginal dis-
and others techniques could be used to provide stationary sigribution, the prior for(p, r) can take the following form
nals. For example, we could have worked with the residualg p, ] =[p|z][7]. In a classical way, we assume that the pre-
obtained from the cubic spline fit shown in the left panels of cision parameter follows a gamma distribution with two
Fig. 2. hyperparameters that must be fixed to reflect prior beliefs. In
our application, a diffuse prior is chosen by setting the two
gamma parameters to zero.

The choice of the auto-regressive coefficient pfigt] is
more delicate. Classically, it is assumed that auto-regressive
processes are a priori stationary. This implies that auto-
regressive coefficients have to belong to the intefvdl, 1].

Yis = ps + A5 Zs + €51, 2 As Bayesian statisticians, we defend the idea that the under-
lying characteristics of the hidden procegsshould not be
imposed but arise form the data via the Bayes’ rule or via
prior knowledge. For this reason, we assume [pét] fol-

lows a zero-mean Gaussian distribution with a precision pro-
portional tot. This multiplicative factor must be fixed be-
tween zero and one, mainly to degrade the precision a little.
1n our application, we work with a diffuse prior by equaling
the multiplicative factor to zero.

3 An additive latent model

The random variabld;; defined by Eg. 1) is assumed to
follow an additive model with a latent variab®

with r=2, ..., T ands=1, ..., S, and whereu; corresponds
to the mean level of treg Z, represents the hidden regional
signal common to all trees ang, describes local fluctua-
tions of trees during year. Tree-to-tree variations captured
by &,; can be due to reserves accumulated by draed other
factors that are not directly linked to environmental causes
the latter ones should be representedzby For each calen-
dar year, the product; Z, measures how the hidden factor Concerning the prior of the random vector
Z; cont_ributes to the growth oftree_We assume th&; and 0,= (hs, s, b5, n5), We assume conditional independence,
&gt _are |r_1dependent processes. Wl_th respect to the BHMs d%fe. 10,1 = [As 751 [ts|ns] [85 1] [1s] Where the variabley,
fﬁélzzgalﬁ]aigfgﬁ%ﬂ tgilganngdsog t‘;}i'g%ﬁ;;gﬁfponds 0 follows a gamma distribution with two hyperparameters (set
Before describing the probabilistic structure wittipand to zero in our application). The distributiofis ns], [us|:]

o . ) , and [¢s|ns] are assumed to be diffuse Gaussian priors in
€st, iLis advantageous to rewrite modg) (with obvious vec- e paper. As for the auto-regressive coefficienZpf this
torial notations

means that the auto-regressive coefficienkgfare not a
Y, = pusl+AZ + e, (3)  Priori assumed to be in the interviat1, 1].

To compute the posteriors of the latent veciyrand of
where 1 is the unit vector of lengti’—1. Each trees  the 2+4 5 parameters, we implement the Gibbs sampler de-
may have a temporal memory that should depend on the hyscribed in the Appendix. The Bayesian inference was carried
drological stress or other conditions that are particular togut with the open source R statistical softwaRe@evelop-

this tree location. A|th0Ugh these tree-to-tree effects Canment Core Tear,‘nzoog Our programs are available upon
be complex, to keep the inference simple and the risk ofrequest.

over-parametrization low, we opt for a simple zero-mean

Gaussian auto-regressive process of order onee fare.

e;=¢,€_s+V;. The notatiore _; corresponds te, shifted 4 Results and discussion

by one year, i.ee _; = (exl, s Ss(T—l))/, ¢s represents the

auto-regressive coefficient of tregeand the random vector The solid line in Fig.3 shows the estimated posterior me-
Vi of length T—1 follows a zero-mean multivariate Gaus- dian value of the common factdf; over the period 1846-
sian distribution withprecisionn; x| wherel is the identity = 2003. The shaded area corresponds to the 90% credible re-
matrix of sizeT —1. In other words, all components of vector gions (CR). Note that the value & and A are estimated

Vs correspond to a standardized normal independent randorap to a constant because it is always possibl@)jnd multi-
noise. ply Z; by a constant and divide the by the same constant
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Fig. 3. The solid line corresponds to the estimated posterior me- g

dian value of the common signd} from (2) over the period 1846— o | % % % %
2003. The shaded area corresponds to the 90% credible regions: ” % +

The dashed line represents the so-called tree-growth index which is 3 + % % % % + % %
an arithmetic mean of ratios over all trees. Each ratio is derived by ¢ |

dividing ring thickness over a temporally smoothed tree signal for 1 . ¢ & : & 7 s 5 1 1t © © u s
each tree (e.gCook and Kairiukstis1992). tree abel

Fig. 4. For each of the fifteen trees, the posterior meanoh.; and
without being able to identify this multiplicative factor. In  , “are represented by circles in the top, middle and bottom panels,
Fig. 3, we compare our BHM results with a classical tech- respectively. Vertical bars correspond to the 90% credible regions.
nigue employed by dendrochronologists. The output of this
procedure is represented by the dashed line, a so-called tree-
growth index which is an arithmetic mean of ratios over all median around-0.4. The central panel clearly points out
trees. Each ratio is derived by dividing ring thickness overtree 1 which seem to contribute the mos#o
a temporally smoothed tree signal for each tree (€gok To check the quality of our estimation, Figidisplays for
and Kairiukstis 1992. Up to a constant (this explains the trees 1, 2 and 3 (shown in Fig), the observed, versus the
two different scales for the y-axis), the classical tree-growthnajve estimate’,, obtained by plugging our median poste-
index behaves similarly t&, by staying in the CR over a rior parameter values ir2] without noise. As expected, the

long time period. From about 1875 to 1900, there is a dis-relationships appear to be linear. The same result holds for
crepancy betweef; and the classical tree-growth index, the the other trees.

latter producing higher values during this period. Although
fairly localized in time, this difference indicates that this clas-
sical technique by not providing confidence intervals showss conclusions
its limitations. Still, this comparison between the two ex-

tracted signals makes us believe that our BHM approach isto summarize our findings, we have implemented a hierar-
capable of providing meaningful outputs for dendrochronol- chical Bayesian model to estimate a common hidden sig-
ogists because they do not contradict past results and offeig] in high frequency component of trees. This latent signal
another statistical approach to this community of scientists. should be viewed as a representation of the regional pressure
Concerning the memory withiéd,, the posterior distribu-  affecting black spruce trees over our studied area in Northern
tion of the autoregressive coefficientindicates a negative Quebec. The hierarchical structure provides another way to
correlation because its 25%, 50% and 75% posterior quanmodel the temporal structure associated to tree memories at
tiles are equal ta-0.40, —0.36 and—0.32, respectively. In  the regional and tree-to-tree levels. This model attempts to
addition to CRs, our methods allow the practitioner to de-quantify the contribution of a high frequency common hid-
rive a finer analysis of her/his tree ring data. For example,den signal to each tree growth. This could help selecting
an analysis tree-by-tree can be undertaken. For each of thigees with regard to a possible climatological interpretation
fifteen trees, Figd displays the posterior mean and 90% CRs in a reconstruction context. Compared with past approaches,
of the parameterg;, A, andg;, respectively. The mean pos- our hidden signal was strongly correlated to the estimate ob-
terior value ofu, mostly oscillates around zero for all trees. tained with the most traditional procedure. This confirms a
Overall, each tree but tree 2 appears to have a mild negativpast method derived by dendrochronologists, while bringing
inter-annual memory, all autoregressive coefficients (but treehe benefits of a BHM approach. As a further step in this
2) shown in the bottom panel of Fig.have a¢, posterior  analysis, it would be of interest to integrate low frequency
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Fig. 5. For each of the three randomly chosen trees described in
Fig. 2, the observed; versus its estimator from model)(is plot-
ted.

in Eg. ). One possibility is to bypass transformatiat) (

by making the termu; in (2) varying in time. For example,
ss could be modeled by Bayesian splines. Besides the com-
plexity of such an approach, the main difficulty is our limited
sample size (fifteen trees). Another aspect is the handling of
missing values and consequently avoid the limitation brought
by the age of the youngest tree. In addition, ongoing field
trips should provide a much larger sample of tree rings and
allows us to extend our BHM procedure in future research. In
this context, our present work should rather be viewed as an
addition of a simple statistical procedure to the mathematical
toolbox of dendroclimatologists rather than a comprehensive
study of black spruce trees in Northern Quebec.

The combination of the additive model described by (2)
and the Bayesian paradigm allows the practitioner to easily
generate the full posterior distribution of the hidden signal,
and consequently it is possible to simulate realizations of the
relative log-transform ratio between two consecutive ring ar-
eas. Such simulations could help simulating the way tree
growth in response to climatic forces that drives the com-
mon inter-annual variations. Another interesting perspective
of the Bayesian approach resides in the possibility to com-

J.-J. Boreux et al.: Extracting a common signal in tree-rings

Appendix A

Gibbs sampling procedure

Step O:Initialize the vectoiZ|p, t, zg of lengthT from
multivariate normal distribution with meagyBg and
variancer ~1BB” where

1 0 0...0
o 1 0...0
2
Bgs[p,pz,...,pT]andB= p= p 1...0
el pT=1. ... p1
Step 1: Draw the precisionz|z, zg,p from a

T+1

> and

gamma distribution with parametera+

T

(b+% 3 (zr—pz-1)?)~* wherea andb are prior pa-
r=1

rameters (e.qu=b=0)

Step 2:Draw the correlation coefficient|z, zo, T from
T
kpmp+ Y 7121
a normal distribution with mear——=-—— and pre-
kot 2y
t=1

T ~1/2

cision [r (kp+ > zlzl)} wherek, andm, are
t=1

prior parameters (e.g,=m,=0)

Step 3:Fors=1,2,...,S.

— Step 3.1: Let y representu,, Ay or ¢. Draw
¥slYs, Z, zo, yos from a normal distribution with

kym +fSTgS . _
mean"kw‘ﬁw and correlatiorky +g! gyn,1~Y2
whereky, etm., are prior parameters which are in-
variant from tree to tree (e.gy =my=0). The vec-

tors f; andg, depend on handling parameters.

— Step 3.2: Draw precision
Nslits, As, @5, Ys, Z, 20, Yos from a gamma distri-
bution with parameters+232 and[d+0.5v'v]~?

wherec andd are prior parameters (e.g=d=0)

Step 4..Draw vectolU|t, n,, L, Ry from a multivariate
normal distribution with meam and covariance&2—1
and setz=zoBo+Bu. The mean» and matrixQ 1 re-
late vectorL and matrixR which depend on previous
parameters.

Step 5:Return to step 1.

pute pre_dictive poster?or densi_ties for future years. _Since We Note that when the Gamma hyper parameters are theoreti-
can derive the posterior density of the extracted signal, the.a|ly equal to zero, this means that they are set to a very small
predictive posteriofz; +1ly;, 6] for an unobserved year-1  \51ye in real computations, eg=b=.001 in our case.

can obtained by computing the hidden state posterior density

at timer+1.
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