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Abstract. We use measurements of recent decades, 1500-yr
proxy data, and millennium model simulations with a vari-
ety of climate facings to study the temporal and spatial vari-
ability of summer precipitation over eastern China. Spec-
tral analysis of the proxy data using multi-taper method re-
veals three statistically significant bidecadal (15–35-yr), pen-
dadecadal (40–60-yr), and centennial (65–170-yr) oscillation
bands. The results of wavelet filtering show that the am-
plitudes of these bands vary substantially through time de-
pending on the temperature regimes. Weak centennial os-
cillation and strong pentadecadal oscillation occur in warm
conditions, whereas both the centennial and pentadecadal os-
cillations are strong in cold conditions. A model/data inter-
comparison suggests that pentadecadal and bidecadal oscilla-
tions could be associated with internal variability of the cli-
mate system. It is also found that the increased frequency
of drought-in-north/flood-in-south spatial pattern over east-
ern China during the last two decades is unusual in the past
five centuries.

1 Introduction

The Earth’s climate has significantly warmed in the last few
decades, most likely due to anthropogenic forcing (Folland
et al., 2001; Jones et al., 2001; Hegerl et al., 2007). In
order to assess the impacts of climate change under global
warming on the human societies and natural ecosystems and
to develop suitable adaptation and mitigation policies, a bet-
ter understanding of climate variability under “natural” and
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“anthropogenic” conditions and accurate climate change pre-
dictions are needed at the global and, more importantly, the
regional and local scales (Bradley et al., 2003; Jones and
Mann, 2004; Giorgi, 2005). Changes in globally average
climate are primarily determined by the radiative budget of
the coupled atmosphere-ocean-land system and modulated
by internal non-linear feedbacks (Stocker et al., 2001; Giorgi,
2005). A positive global radiative forcing such as green-
house effect generally causes global warming and an increase
of global precipitation as a consequence of increased evapo-
ration from the warmer land and ocean surfaces (Allen and
Ingram, 2003). However, climates, especially precipitation,
are primarily controlled by circulation regimes and modes
of internal modes of variability at the regional scale. For
example, the Asian monsoon and its interactions with the
El Nino/Southern Oscillation (ENSO) and extratropical cir-
culations are the major sources of interannual variability of
summer precipitation over Asia (Wang, 2006). Therefore,
the study of variability in seasonal precipitation on the re-
gional scale is vital to providing detailed picture we need in
our research for an unambiguous “fingerprint” of the climate
response to increasing greenhouse gas emissions (Barnett et
al., 1999; Jones et al., 2001).

Eastern China is located in the monsoonal Asia, which
is vulnerable to small changes in the timing and intensity
of monsoon precipitation. The vulnerability is likely to in-
crease in the future with continued population growth and
intensified land-use (Feddema et al., 2005; Zhao et al., 2006;
Pielke et al., 2007). The monsoon system is highly vari-
able over a broad range of timescales from days to millen-
nia. We have come to know a great deal about Asian mon-
soon dynamics on seasonal to interannual time scales due to
an increased wealth of new data from satellite observations
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and field experiments, and the advances in computing power
and mathematical representations of coupled climate sys-
tem (Wang, 2006). For example, It has been known that
the ENSO event and Quasi-biennial Oscillation (QBO) have
been the primary source of the precipitation over East Asia
on seasonal to interannual time scales (Ding, 1991; Waliser,
2006; Yang and Luo, 2006). It is also known that astronom-
ical variations in seasonal insolation have been the primary
pacemaker of the Asian monsoon on glacial-interglacial time
scales (e.g. Clemens et al., 2003; Wang et al., 2005), and so-
lar activities have been hypothesized as the driver of a 1500-
yr cycle in Holocene monsoon dynamics (e.g. Gupta et al.,
2005; Wang et al., 2005). However, the patterns and causes
of decadal-centennial variability are not well understood due
to the limits in the length of observational records and rel-
atively coarse resolution of proxy data. Although work to
date has revealed many strong hints of decadal to quasi-
centennial oscillations in the summer precipitation over east-
ern China using relatively short observational data and proxy
data (e.g. Zhu and Wang, 2002; Ding et al., 2007), the be-
havior of decadal to centennial variability in time and space
is still unclear in the context of millennia. In this study, we
analyze the 1500-yr proxy data of summer precipitation to
examine long-term variability with a focus on decadal to cen-
tennial oscillations.

Some studies using observational and modeled data
have indicated an increase in the frequency of drought-in-
north/flood-in-south over eastern China during the last few
decades (Xu, 2001; Ding et al., 2007). It has been as-
cribed to the response of summer precipitation to anthro-
pologic forcing (Xu, 2001; Menon et al., 2002; Fu, 2003).
However, question is how unusual this variability of sum-
mer precipitation in the last few decades in the millennium
context of climate. The last millennium is an epoch includ-
ing Medieval Warm Period (AD 800–1100 in China, Yang
et al., 2002) with climate as warm as the last century. It
also encompasses the period before large-scale contamina-
tion of the global atmosphere by human activities and global-
scale changes in land-surface condition (Bradley et al., 2003;
Jones and Mann, 2004). Therefore, the study of the vari-
ability in summer precipitation over eastern China during the
time interval longer than observational record is essential for
assessing the temporal and spatial variability of summer pre-
cipitation under “natural” and “anthropogenic” condition and
for understanding the role of anthropogenic forcing in future
precipitation variations. In this study, we analyze observa-
tional, proxy, and modeled data to examine the occurrence
probability of different spatial patterns over eastern China
during the instrumental and historical times.

Theoretical models of the climate system driven with ex-
ternal forcing can provide important insights into the fac-
tors governing climate changes in the past (Jones and Mann,
2004). Simulations of climate changes over the last mil-
lennium have been performed using energy balance models
(EBMs, e.g. Crowley, 2000), two-dimensional climate mod-

els (e.g. Bauer et al., 2003), and general circulation mod-
els (GCMs, e.g. Ammann et al., 2007). However, studies
of model/data intercomparison mainly focused on temper-
ature. There has been little attempt to test climate models
with precipitation proxy data or interpret such proxy data us-
ing model simulations (Yoshimori et al., 2006). In this study,
the millennium simulations driven with natural and anthro-
pogenic focrcing and fixed forcing (control run) using Com-
munity Climate System Model (CCSM, version 2.0.1) are
used to analyze the variability of summer precipitation over
eastern China during the last millennium. The comparisons
of modeled, observed, and proxy data are conducted to as-
sess the performance of CCSM2.0.1 in simulating the spa-
tial patterns and temporal variability of summer precipitation
over eastern China, and to provide some potential insights
into the factors influencing temporal and spatial variability
of summer precipitation over eastern China during the last
millennium.

2 Data and methods

The data used in this study include observational, modeled,
and proxy data of summer precipitation (May–September)
over eastern China (Table 1). Observational precipitation
data we analyze are from the Beijing Climate Center (BCC)
and the Climate Research Unit of the University of East An-
glia. The former is a data set of precipitation from 1951 to
2000 at 160 stations over China, and the latter is a data set
of land-only precipitation in a 3.75◦×2.5◦ resolution cover-
ing a period of 1901–2000. Proxy data used in this study is
a dataset of the dryness/wetness index (DWI), a proxy data
of summer rainfall, over eastern China from 1470 to 2000,
derived from Chinese historical documents and instrumental
measurements (CNMA, 1981; Zhang et al., 2003). Addition-
ally, two 1500-yr time series of regional DWI covering two
regions, i.e. North China (NC, 34–41◦ N, 107–120◦ E) and
the middle-lower Yangtze River Valley (MLYRV, 26–34◦ N,
109–122◦ E) over eastern China (Zheng et al., 2006) are also
analyzed. This dataset is also derived from Chinese historical
documents.

Model data are three millennium simulations of
CCSM2.0.1 developed by the National Center for At-
mospheric Research (NCAR; Kiehl and Gent 2004). The
model comprises four components of the climate system:
the atmosphere, ocean, land surface, and sea ice. These
components are linked via a flux coupler without flux
corrections. The atmospheric component is a primitive
equation model with T31 in horizontal resolution (∼3.75◦

in latitude and longitude) and 26 hybrid-coordinate levels in
the vertical. The land component has the same horizontal
grid as the atmosphere and includes 5 different surface types
(glacier, lake, wetland, urban, and vegetated) with 4 to 16
different vegetation types. The ocean component is the
NCAR implementation of POP (Parallel Ocean Program)
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Table 1. Observed, modeled, and proxy data of summer precipitation over eastern China.

Data Sets Spatial resolution Temporal resolution Length Reference

BCC dataset point Monthly 1951–2000 http://bcc.cma.gov.cn
UK CRU Land Surface 3.75×2.5 Monthly 1850–2000 Hulme, 1992, 1994
D/W index Point Seasonal 1570–2000 CNMA, 1981
Regional D/W index Area Seasonal 505–1995 Zheng et al., 2006
NCAR-CCSM 2.0.1 T31L26 monthly 1000–1999 This study

and has a longitudinal resolution of∼3.6◦ and variable
latitudinal resolutions of∼1.8◦ and up to∼0.9◦ in the Trop-
ics. The sea-ice component is a dynamic-thermodynamic
model with same horizontal grid as the ocean component.
Three simulations including a control run, a run with orbital
and solar forcing, and another run with full forcing are
conducted. Forcing time series used in runs include the
global and seasonal change of the orbital insolation (Berger,
1978), the solar variation and volcanic eruption (Crowley et
al., 2003), and the greenhouse gases (Ammann et al., 2007).

In this study, principal components analysis (PCA) is em-
ployed to reveal the spatial patterns of summer precipitation
over eastern China. Multi-taper method (MTM) (Ghil et al.,
2002) and wavelet analysis (Torrence and Campo, 1998) are
applied to detect decadal to centennial oscillations of sum-
mer precipitation and their temporal evolution during the pat
1500 years over eastern China.

3 Results and discussion

3.1 Variability of summer precipitation in observational
data

Eastern China is located in the East Asian monsoon region.
The summer monsoon brings about 70% of the total annual
precipitation to this region. On average, the summer mon-
soon onset occurs in early to mid-May when heavy con-
vective rainfall develops over southern China along the pre-
Meiyu front. It is then followed by abrupt northward shifts of
the summer monsoon, causing an elongated rain belt referred
to as Meiyu or “Plum Rains”, a regional rainy season in June
and July over the Yangtze River Valley in eastern China. The
summer monsoon then shifts to northern China in July, trig-
gering the rainy seasons of northern China. At the end of
August, the summer monsoon begins to withdraw southward
(Ding, 1991; Samel et al., 1999; Chang et al., 2000). Follow-
ing this summer monsoon northward penetration, the sum-
mer precipitation over eastern China exhibits a significant
gradient from south to north.

Beijing Climate Center has developed a dataset of monthly
temperature and precipitation from 1951 to the present. It
consists of 160 stations, covering the most land areas of
China. Here we selected a subset of summer precipitation
consisting 80 stations over eastern China to conduct PCA.

North et al. (1982) test were applied to determine whether
the PCs are separable. Results (Fig. 1) show that the first four
PCs can be separated according to North et al. (1982)’s rule
of thumb. The first three PCs explain 18.3%, 13.7, and 8.4%
of the total variance in this dataset. PC1 indicates a three-
belt mode of spatial pattern, in which NC and southeastern
coast (SEC) have negative or little loading, and the MLYRV
has high positive loading. PC2 reveals a dipole mode of spa-
tial pattern. Positive loading occurs in the region north to
28◦ N, whereas its south has negative PC loading. The third
PC also shows a three-belt mode of spatial pattern. When
the MLYRV has negative loading, NC and SEC has positive
loading. It is evident that the result of PCA shows a distinct
difference of summer precipitation variability in NC and the
MLYRV during the past 50 years. Therefore, we choose NC
and the MLYRV as our study regions to explore the tempo-
spatial variability of summer precipitation during the instru-
mental and historical times over eastern China. Another rea-
son why we choose them as our study regions is that 1500-yr
proxy data of summer precipitation is available only in these
two regions (Zheng et al., 2006).

During the last century, large interannual variability in
summer precipitation is observed in both regions (Fig. 2a,
b). In the MLYRV, average monthly summer precipitation
varied from 110 mm (1900) to 230 mm (more than 2 stan-
dard deviation, 1958), while it varied from 55 mm (1900) to
113 mm (1964) in NC. Spectral analysis of these two time
series reveals some significant cycles. 2-yr and 3-yr cycles
are significant at the 95% confidence level in the MLYRV
and NC (Fig. 3c), respectively. A number of studies have
indicated that the interannual variability in summer precipi-
tation over the Asian monsoon region is associated with the
tropospheric biennial oscillation (TBO, Shen and Lau, 1995;
Webster et al., 1998; Yang, and Lau, 2006), ENSO events
(Wang et al., 2000, 2003; Lau and Wu, 2001), and snow
cover over the Tibetan Plateau (Wu and Qian, 2003; Yang
and Lau, 2006). 2–3-yr cycle revealed by summer precip-
itation in the MLYRV and NC is typical TBO and ENSO.
Decadal variability in summer precipitation is not signifi-
cant at the 95% confidence level in both the MLYRV and
NC. Wavelet filtering of the time series shows that decadal-
centennial band oscillations only explain 19.4% and 18.3%
variance of summer precipitation in the MLYRV and NC, re-
spectively.
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Fig. 1. Result of PCA on the observed data from 1951 to 2000
consisting of 80 stations over eastern China, including eigenvalue
scree plot(a), and spatial patterns of loading in the first three PCs
(b–c).

3.2 Variability of summer precipitation in proxy data

Proxy data of summer precipitation used here are DWI de-
rived from the Chinese historical documents. This proxy data
covers the past 1500 years. Due to that 10-yr moving aver-
age was involved in developing regional DFI for the MLYRV
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Fig. 2. (a) Observed summer precipitation in the MLYRV and
its Wavelet filtered (Tpass=10–100-yr, paul basis) time series.(b)
Observed summer precipitation in NC and its Wavelet filtered
(Tpass=10–100-yr, paul basis) time series.(c) MTM results of the
MLYRV and NC summer precipitation time series. Resolution and
taper number used in the MTM analysis are 2 and 3, respectively;
red noise null hypothesis is selected; and a robust estimate of the
red noise background is calculated using the approach of Mann and
Lee (1996), and its confidence levels are shown.

and NC, high frequency variability in the regional DWI time
series was removed (Zheng et al., 2006). Therefore, they
are used to examine decadal to centennial variability. Fig-
ure 3a and b show the normalized time series of DWI for
the MLYRV and NC. To detect significant decadal to centen-
nial variability, we conducted the MTM analysis on the two
time series. In the MTM analysis, red noise null hypothesis
is selected, i.e., the first-order autoregressive noise process
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DWI for the MLYRV (a) and NC(b). Wavelet filtered DWI time
series for the MLYRV and NC in bidecadal band (Tpass=15–35-yr,
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and centennial band (Tpass=65–170-yr, paul basis). A curve of re-
constructed temperature for whole China (Yang et al., 2004) is also
shown for a comparison of summer precipitation variability over
eastern China with temperature variation in China.

is assumed because of high autocorrelation of proxy data.
A robust estimate of the red noise background is calculated
using the approach of Mann and Lee (1996). As shown by
Fig. 4, decadal to centennial periodicities are well presented
in both time series. For the MLYRV, the centennial-scale
variation is dominated by the 100–110-yr and 120–170-yr os-
cillations, which are significant at the 95% confidence level.
A peak stands up at 78–95-yr at the 90% confidence level.
The major mode of multidecadal oscillation is 43–52-yr pe-
riodicity with more than 99% confidence level. Bidecadal
oscillation consists of five oscillation modes, i.e. 15–17-yr,
18–19-yr, 21–23-yr, 26–28-yr, and 30–33-yr periodicities.
Theses modes exceed the 95% confidence level. Addition-
ally, a quadridecadal oscillation (36–39-yr) with more than
99% confidence level is also seen in the MLYRV time se-
ries. For NC, the centennial-scale oscillation consists of two
cyclical modes at the 95% confidence level, including 68–
76-yr and 86–130-yr variations. A peak of 43–48-yr exhibits
at the 95% confidence level. Significant periodicities at the
bidecadal oscillation are 17–19-yr, 20–29-yr, and 31–35-yr,
in which the most prominent cyclic mode is 20–29-yr vari-
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Fig. 4. MTM results of the MLYRV and NC DWI time series. Res-
olution and taper number used in the MTM analysis are 2 and 3, re-
spectively; red noise null hypothesis is selected; a robust estimate of
the red noise background is calculated using the approach of Mann
and Lee (1996), and its confidence levels are shown.

ation. We conducted coherency analysis on two time series
from NC and MLYRV. The result shows that coherent spec-
tral peaks significant at 95% or 90% confidence level include
15-yr, 19-yr, 25-yr, 33–34-yr, 47–50-yr, 68-yr, and 149-yr.
These coherent spectral peaks only cover parts of individual
peaks revealed by the MTM, so we combine those individual
peaks into three relatively broad bands, i.e. bidecadal (15–
35-yr), pentadacadal (40–60-yr), and centennial (65–170-yr)
bands based on the result of coherency analysis and MTM to
elucidate their temporal evolution.

We employed wavelet approach to determine the temporal
evolution of dominant oscillation bands. Bidecadal, pentada-
cadal, and centennial bands explain 36.3% (39.1%), 17.8%
(17.4%), and 21.3% (24%) of variance of the MLYRV (NC)
time series. The amplitudes of these bands were not constant
through time and they varied substantially from one period
to another over the past 1500 years (Fig. 4c–e). Six intervals
are distinguished by the temporal evolution in the amplitude
of these bands. The strongest signal of centennial oscillation
occurred before AD 800 in both NC and the MLYRV. The
variation in the MLYRV was in good phase coherence with
that in NC. The pentadecadal oscillation mode was weak in
the MLYRV, whereas it was relatively strong in NC from AD
500 to 800. During this period, the bidecadal oscillation in
the MLYRV time series was weak in its early half and strong
in its late half. Conversely, it was strong in NC time series
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from AD 500 to 700, and weak from AD 700 to 800. The am-
plitude of the centennial oscillation in both time series grad-
ually decreased and reached their minima during the period
from AD 800 to 1130. On the other hand, the phase relation
of the centennial oscillation between two regions changed
from “in-phase” to “out-of-phase” at the end of this period.
During this period, the pentadecadal oscillation over NC and
the MLYRV changed from weak to strong in a way opposite
to that of the centennial oscillation. The bidecadal oscillation
was strong in AD 900–1000 and AD 1060–1130, and it was
weak in the other intervals of this period. The period of AD
1130–1400 is characterized by strong centennial mode and
weak pentadecadal oscillation. The amplitude of bidecadal
oscillation over the MLYRV was strong, whereas it was rel-
atively weak over NC during this period. The strongest pen-
tadecadal oscillation over NC and the MLYRV occurred in
the period from AD 1400 to 1700, when the centennial oscil-
lation was still as strong as in the previous period. During
this period, the bidecadal oscillation was relatively strong
over the MLYRV, whereas its power reached the maxima
over NC. The variation of centennial and pentadecadal oscil-
lations decreased in the interval from AD 1700 to 1900, when
the bidecadal oscillation maintained strong. The 20th century
is distinguished from preceding interval by weak centennial
and bidecadal oscillations and strong pentadecadal oscilla-
tion.

After analyzing DWI data of AD 1470–1950 and observed
summer rainfall of 1951–1999 from individual station over
eastern China (25 stations), Zhu and Wang (2002) found an
80-yr oscillation with the 95% confidence level in some ar-
eas. This oscillation over NC was out of phase to that along
the MLYRV during the past 530 years. Our results derived
from spectral analysis and wavelet filtering suggested the oc-
currence of this centennial oscillation from a regional pre-
cipitation view. However, the phase relationship between NC
and the MLYRV was not constant during the past 1500 years.
“Out-of-phase” as indicated by Zhu and Wang (2002) and
“in-phase” were found after and before AD 1100. This phe-
nomenon probably suggests a major shift of climate around
AD 1100 over China. Some previous studies (e.g. Wang and
Zhang, 1996) indicated that the largest shift of climate in
both precipitation and temperature during the last two mil-
lennia in China occurred around AD 1230. It seems reason-
able to speculate that this transition in the phase relationship
of centennial oscillation between NC and the MLYRV could
have been caused by a major shift of climate over China in
12th or 13th century. A comparison of reconstructed tem-
perature from multi-proxy data in China (Yang et al., 2004)
with our results further supports our speculation. The warm
period ended around AD 1100 in China. This compari-
son also reveals an interesting fact that dominant long-term
oscillation modes varied during the last 1500 years under
different temperature conditions. During the warm periods
such as the Medieval Warm Period (AD 800–1100 in China,
Yang et al., 2002) and 20th century, the centennial oscilla-

tion was weak and the pentadecadal oscillation was strong.
During the cold periods such as AD 500–800 and AD 1400–
1700, both the centennial and pentadecadal oscillations were
strong, although the pentadecadal oscillation in the MLYRV
was not as strong as that in NC during the former cold pe-
riod. During the normal conditions such as periods of AD
1100–1400 and AD 1700–1900, the centennial oscillation
was relatively strong whereas pentadecadal oscillation was
very weak. The correlation of temperature conditions with
the bidecadal oscillation is not as clear as that with the cen-
tennial and pentadecadal oscillations, although strong signals
of the bidecadal oscillation more frequently occurred in cold
or normal conditions.

3.3 Variability of summer precipitation in modeled data

Here we present the results of millennium simulations us-
ing CCSM2.0.1. Three experiments including an AD 1000
control run, a run with orbital forcing and solar forcing, and
another run with full forcing, were carried out in this study.
In the AD 1000 control run, the model was first run fully
coupled for 300 years in a spin up mode with constant 1990
conditions. The run was then continued from year 300 with-
out any forcing changes (fixed at AD 1000 forcing condi-
tions, i.e. solar forcing is 1365.0 W m−2, the concentration of
CO2, CH4, N2O, CFC-11, and CFC-12 are 280, 680, 266, 0,
and 0 ppbv, respectively) and was run fully coupled for 1000
years. The forced simulations were started from fully cou-
pled 300 years. The analysis of the global mean sea surface
temperature from the control run show a small drift, suggest-
ing that the spin up procedure is adequate to avoid long-term
drift of climate. The orbital parameter is almost constant dur-
ing the last 1000 years; it is thus neglected in our interpreta-
tions of model data.

Figure 5 shows the spatial patterns of summer precipita-
tion over East Asia (10–50◦ N, 90–130◦ E) in observed and
simulated data from 1950 to 1995. Generally, CCSM2.0.1
underestimates the summer precipitation in the regions south
to 30◦ N, whereas it overestimates in the regions north to
30◦ N, especially the Sichuan Basin. This might be an indica-
tion that CCSM2.0.1’s performance in simulating the effect
of the Tibetan Plateau on precipitation needs to be improved.
However, the spatial pattern of summer precipitation in the
regions beyond the Tibetan Plateau, such as eastern China, is
better simulated in the three experiments, although the sum-
mer precipitation is obviously underestimated in the south-
eastern costal region. Nevertheless, the summer precipitation
is well simulated in our study regions, the MLYRV and NC,
where a zonal gradient of summer precipitation similar to ob-
served pattern exhibits significantly in the three experiments.
Figure 6a shows a comparison of distribution statistics (full
range, 25th, 50th, 75th quartiles and the mean) in observed
and modeled summer precipitation from 1951 to 1995 in the
MLYRV and NC. The simulated means and medians of sum-
mer precipitation in three experiments are rather stable and

Clim. Past, 5, 129–141, 2009 www.clim-past.net/5/129/2009/



C. Shen et al.: Variability of summer precipitation over eastern China 135

they are close to the observed ones in the MLYRV. The dis-
persion ranges of simulated summer precipitation for this pe-
riod in the MLYRV are also comparable to that from observa-
tion. The simulated means and medians in NC are about 20–
30 mm higher than observed ones. The dispersion range for
NC in the experiment with full forcing is smaller than other
two experiments and it is close to the observed one. Although
the difference in modeled summer precipitation between the
two regions is not as distinct as observed one, one-sample T-
test indicates that the means of summer precipitation in the
two regions are significantly different at the 99% confidence
level, suggesting that these two regions apparently belong
to different regimes of summer precipitation as indicated by
observed data. The simulated and observed annual precipi-
tation (Fig. 6b) and temperature (not shown here) variations
also show this fact. In the MLYRV, the monthly precipitation
peak occurs in May and June, whereas NC experiences the
highest monthly precipitation in July and August. Therefore,
it seems reasonable to use these modeled data in these two
regions to determine the variability of summer precipitation
in millennium simulations and then to further compare with
proxy data.

Figure 7 shows time series of simulated summer precipita-
tion in the MLYRV and NC during the last millennium. 10-yr
moving averages are taken for three purposes, i.e. maximiz-
ing the signal-to-noise ratio, emphasizing the decadal to cen-
tennial variability, and maintaining a consistence with proxy
data for a model-data comparison. The general impression
from the figure is that the difference of simulated summer
precipitation is relatively large among three experiments and
the summer precipitation varies in an apparent periodic man-
ner. This large difference is not unexpected since the control
run with fixed forcing only reproduces the internal variabil-
ity of summer precipitation and the other two runs driven
by solar forcing and full forcing probably capture both inter-
nal and external variability. The model-data comparison for
the MLYRV and NC indicates that the full forcing run pro-
duces the temporal pattern similar most to that observed in
proxy data. We note that the temporal pattern in full forc-
ing run matches that in the solar forcing run and proxy data
well in its the early 320 year (AD 1000–1320), when correla-
tion coefficients calculated from 101-yr sliding window show
significant positive correlation among them. This is presum-
ably due to inactive volcanic activities during in this period.
The peaks and valleys in these time series do not parallel
well between model and proxy data from AD 1320 to 1900.
Both positive and negative correlations occur in this period.
The difference in temporal patterns between two runs of so-
lar forcing and full forcing becomes larger. The poor matches
between model and proxy data as well as different runs occur
in the last century, when no significant correlation or nega-
tive correlation is observed. Therefore, it seems reasonable
to speculate that different combinations of forcing conditions
would modulate the variability in summer precipitation dur-
ing the different periods.
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Fig. 5. Spatial patterns of summer precipitation (unit: mm/month)
in observed data(a), and modeled data of three experiments,
i.e. control run(b), orbital and solar forcing driven run(c), and full
forcing driven run(d). All data are 45-yr averages of 1951–1995.

Proxy data of summer precipitation exhibits some signifi-
cant decadal to centennial oscillations during the last 1500
years. To examine possible attributions of these oscilla-
tions, we also conduct MTM analysis on the modeled sum-
mer precipitation from three runs. As shown by Fig. 8, only
decadal to multidecadal periodicities are well presented for
the MLYRV and NC in the control run. The most prominent
oscillation mode for both regions is the pentadecadal (40–
60-yr) periodicity, which is significant at the 95% confidence
level. Other significant oscillation modes for the MLYRV
include 15–18-yr, 21-25-yr, and 27–37-yr cycles. The latter
two cycles are also found in NC. No significant centennial
band (65–170-yr) oscillation shows up in the control run. In
the solar forcing run, the dominant oscillations with the 95%
confidence level in the MLYRV are 16–17-yr, 22-yr, 27–35,
and 105–170-yr periodicities, whereas they are 17-yr, 25–29-
yr, 30-yr, 37–41-yr, 68–90-yr, and 170–260-yr cycles in NC.
Additionally, there are two cycles at 50–60-yr and 65–80-yr
significant at the 90% confidence level in the MLYRV. In the
full forcing run, the major oscillation modes for the MLYRV
are 17–21-yr, 22–25-yr, and 37–41-yr variations, which are
significant at the 95% confidence level. A 50-72-yr cycle
with the 90% confidence level is also seen in the MLYRV.
In NC, significant oscillation modes include 19–21-yr, 23–
27-yr, 29-yr, and 56–80-yr periodicities. Theses modes are
significant at the 95% confidence level.

As mentioned above, three dominant cyclic modes re-
vealed by proxy data are bidecadal band (15–35-yr), pen-
tadecadal band (40–60-yr), and centennial band (65–170-yr)
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also shown.(b) Graphs of observed and modeled annual precipitation variations based on the monthly mean precipitation from 1951 to 1995.
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Fig. 7. A comparison of summer precipitation from proxy data
and modeled data in the MLYRV and NC. All data are 10-yr mov-
ing averages. The dot lines represent the period boundaries recog-
nized by temporal evolutions of decadal to centennial oscillations
in Sect. 3.2.

oscillations. Centennial band oscillation is not found in the
control run, indicating that it is not an internal variability.
This oscillation is clearly visible in the solar forcing run,
however, the full forcing run does not produce significant

centennial peaks as well as the solar forcing run. The pos-
sible reason why the centennial peak becomes insignificant
in the full forcing run is that the change amplitude of solar
forcing is smaller than that of other forings such as volcanic
forcing, the response of summer precipitation to solar forcing
may be overwhelmed by other forcings. On the other hand,
peaks in the centennial band oscillation revealed by proxy do
not match those in the two simulations with solar forcing and
full forcing. Therefore, whether this centennial oscillation
is linked to century-type periodicity in solar forcing as sug-
gested by some previous studies (e.g. Zhu and Wang, 2002)
is still an open question.

Another dominant oscillation registered in proxy data is
the pentadecadal oscillation (40–60-yr). This oscillation is
not significant in short observation records (1951–2004 and
1880–2002; Ding et al., 2007). The predominant oscillation
mode in observation records is bidedacadal or 30–40-yr peri-
odicity (Li et al., 2004; Ding et al., 2007). It is interesting to
note that this oscillation clearly stands up in the control run
with the 99% confidence level. This might be an indication
that this oscillation is an internal fluctuation of the climate
system. It has been suggested that the multidecadal variation
of summer precipitation over eastern China is associated with
the internal process of the ocean-atmosphere, such as ENSO
events and PDO (Li et al., 2005; Zhou et al., 2006). Sev-
eral studies have characterized the PDO as emerging from
a phase-locked interaction between oscillations with ca. 20
and 50-yr periods, and regime shifts occur when the oscilla-
tions change phase simultaneously (Nakamura et al., 1997;
Minobe, 1999, 2000). The amplitude of the pentadecadal
variation, an oscillation providing the basic regime timescale
of PDO is not constant through time as indicated by Fig. 3
and some previous studies (e.g. Shen et al., 2006). There-
fore, this oscillation is likely an internal variability of the
ocean-atmosphere system and its length and amplitude might
be modulated by external forcing or other internal processes.
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Schlesinger and Ramankutty (1994) found that there is a 65–
70-yr oscillation in temperature of Northern Hemisphere and
it is the statistical result of 50–88-yr oscillations. Comparing
observations with model simulations, they suggested that this
oscillation arises from the internal variability of the ocean-
atmosphere system. Using a fully coupled ocean-atmosphere
model, Delworth et al. (1993) showed a climatic oscillation
with a time scale of approximately 50 years produced by
the ocean-atmosphere interaction. Goswami (2006) noted a
quasi 50–60-yr interdecadal fluctuation in interannual vari-
ability of the south Asian summer monsoon, the east Asian
summer monsoon, and the ENSO. He hypothesized that this
oscillation of the Asian monsoon and ENSO is a manifesta-
tion of a global coupled ocean-atmosphere mode of oscilla-
tion. These findings support our interpretation of this pen-
tadecadal oscillation observed in both model and proxy data
as an internal variability of the ocean-atmosphere system.

The bidecadal band oscillation (15–35-yr) in proxy data
consists of a series of oscillation modes. Dominant modes in-
clude 15–19-yr, 21–29-yr and 3-1-35-yr periodicities. These
oscillation modes can be found in both control run and forced
runs. Thus it is difficult to determine whether it is an inter-
nal or external variability. Previous studies suggested that
the decadal-interdecadal oscillations within bidecadal band
found in the Pacific sea-surface temperature, ENSO events,
and PDO are largely internal, resulting from the ocean-
atmosphere interaction and the tropical-extratropical interac-
tion (Zhang et al., 1997; Nakamura et al., 1997; Minobe,
1999; Evans et al., 2001; Liu et al., 2002; Deser et al., 2004;
Schneider and Cornuelle, 2005; Nonaka et al., 2006). There-
fore, the bidecadal band oscillation in our proxy and model
data is likely an internal variability.

3.4 Variability in spatial pattern of summer precipita-
tion in proxy and modeled data

As mentioned in the introduction, some studies using rel-
atively short observed data (several decades to one cen-
tury) indicated an increase in the frequency of drought-in-
north/flood-in-south over eastern China during the last few
decades (Xu, 2001; Ding et al., 2007). It is evident that
records longer than multi-decade are necessary to exam-
ine whether this conclusion is solid in the millennium or
multi-century context of climate. Here we use both proxy
and model data to examine the dominant spatial patterns of
anomalous summer precipitation events over eastern China
and to determine how unusual this spatial pattern of summer
precipitation recorded in the last few decades. The annually-
resolved proxy data of summer precipitation used here is the
area-weighted regional DWI developed from the network of
DWI over eastern China (Shen et al., 2008). It covers the last
530 years. Model data is from the full forcing run. Both data
are standardized using the means and standard deviations of
1951–1995.
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Fig. 8. MTM results of summer precipitation in three experiments
of millennium simulation. Resolution and taper number used in the
MTM analysis are 2 and 3, respectively; red noise null hypothesis is
selected; a robust estimate of the red noise background is calculated
using the approach of Mann and Lee (1996), and its confidence lev-
els are shown.

Figure 9 is 4-quarter plot of proxy and model data showing
the spatial patterns of summer precipitation in the MLYRV
and NC. We use one standard deviation as the criterion to
define an anomalous summer precipitation event. When the
standardized DWI values in two regions are within the range
of one standard deviation, this year witnesses a normal sum-
mer in precipitation. As the standardized DWI value in any
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Fig. 9. Four-quarter plots of standardized proxy data (DWI)(a) and modeled data (experiment with full forcing)(b) of summer precipitation
during AD 1470–1999 over the MLYRV and NC showing the spatial pattern of anomalous summer precipitation events. The last 30 years
(1970–1999) are presented by red dots. The proxy and modeled data are standardized using their means and standard deviations of 1951–
1995. Boxplots show the probability distributions of different spatial patterns of anomalous summer precipitation events revealed by proxy
(c) and modeled(d) data. The shaded box around the median represents the inner quartile range (IQR), which identifies the region between
the 25th and 75th percentiles. The whiskers extending from the IQR represent the largest/smallest value that is still within the median
±1.5(IQR). Any value beyond the whiskers is subjectively considered to be an extreme value or an outlier.

region is beyond the range of one standard deviation, this
year is defined as an anomalous summer precipitation event.
Its spatial pattern is then assigned through comparing the
standardized DWI values in the two regions. Two modes, co-
herence and dipole consisting four spatial patterns, are then
defined. Coherence mode includes coherent drought and
coherent flood, whereas the dipole mode includes drought-
in-north/flood-in-south and flood-in-north/drought-in-south.
After this procedure, we use a moving 20-yr window to cal-
culate the occurrence probability of four spatial patterns of
anomalous summer precipitation events and normal condi-
tions.

The distribution statistics of their occurrence probability
in 530-yr proxy and model data is shown in the lower panel
of Fig. 9. As expected, normal conditions have the highest

occurrence probability in both proxy and model data. For
proxy data, the most frequent anomalous summer precipita-
tion event was coherent flood with a mean of 0.18 during
the past 530 years. The second one was coherent drought
with a mean of 0.1. Two spatial patterns of dipole mode
occurred less frequently than the spatial patterns of coher-
ence mode. There are some extreme values in the occurrence
probability of coherent drought, and two dipole patterns in
proxy data. These extreme values indicate some time in-
tervals with extremely high occurrence probability of these
spatial patterns. Proxy data indicate that the periods with ex-
tremely high probability (0.35 or 0.30) of coherence drought
were AD 1481–1490 and 1927–1942. The high frequency of
drought-in-north/flood-in-south occurred in AD 1555–1565,
1601–1610, and 1980–2000 (with probability of more than
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0.25). The flood-in-north/drought-in-south was the most fre-
quent anomalous summer precipitation event in AD 1645–
1654 and 1955–1964. For the last two decades, the occur-
rence probabilities of coherent drought, coherent flood, and
flood-in-north/drought-in-south are close to their means of
the last 530 years. The probability of normal conditions is
markedly lower than its means, close to a statistically sig-
nificant level, indicating that anomalous summer precipita-
tion events happened more frequently in recent two decades.
The probability value of drought-in-north/flood-in-south oc-
curs as an outlier, i.e. this value is significantly different from
its mean of the last 530 years at the 99% confidence level. It
means that this variability in spatial pattern of summer pre-
cipitation during the last two decades is unusual even in the
five-century context. Model data seems to support observed
result, although there is somewhat difference in the probabil-
ity distribution of normal conditions and four spatial patterns
of anomalous summer precipitation events. For the last two
decades, a decrease in the occurrence probability of normal
conditions and an increase in the probability of drought-in-
north/flood-in-south can be seen, although statistically they
are not significantly different from their means.

4 Concluding remarks

This study analyzes observational, proxy, and model data to
investigate the variability of summer precipitation over east-
ern China during the last millennium with a focus on the
middle and lower Yangtze River Valley and North China.
On the interannual scale, 2–3-yr cycle, typical TBO and
ENSO signals are well presented in observational data over
the MLYRV and NC. Oscillations on the decadal scale are
not as distinct as these on the interannual scale in the in-
strumental times. Spectral analysis of regional proxy data of
summer precipitation reveals three statistically significant os-
cillation bands, i.e. bidecadal (15–35-yr), pendadecadal (40–
60-yr), and centennial (65–170-yr) band during the past 1500
years. The time evolutions of these bands revealed by the
wavelet filtering indicate that the amplitudes of these oscilla-
tion bands are not constant through time. They vary substan-
tially from one period to another over the past 1500 years. A
comparison of the behaviors of these oscillation bands with
temperature conditions in China shows that these periods dis-
tinguished by the temporal evolutions of oscillations corre-
sponds those episodes with different temperature conditions.
Weak centennial oscillation and strong pentadecadal oscil-
lation occurred in warm conditions during the MWM and
20th century. During the cold periods of AD 500–800 and
AD 1400–1700, both the centennial and pentadecadal oscil-
lations were strong. When the temperature was in relatively
normal conditions, pentadecadal oscillation was very weak
while the centennial oscillation was relatively strong. Our
analyses also show that the phase relationship in centennial
oscillation between NC and the MLYRV was not constant

during the past 1500 years. It changed from “in-phase” to
“out-of-phase” at about AD 1100. It may suggest a major
shift of climate in China around AD 1100.

A comparison of observational data with modeled data
from millennium simulations using CCSM2.0.1 shows that
the model reproduces the tempo-spatial patterns of summer
precipitation over East Asia in broad terms. A model/data in-
tercomparison suggests that the pentadecadal and bidecadal
oscillations could be associated with internal variability of
climate system. However, further analyses on the model re-
sults such as ocean and land temperature, atmospheric cir-
culations, and moisture transportation are needed to separate
the factors governing these oscillations and better understand
underlying mechanisms.

In this study, we also analyze the occurrence probability
of spatial patterns of anomalous summer precipitation events
using proxy and model data. Our analyses on both model
and proxy data demonstrate that an increase in the frequency
of drought-in-north/flood-in-south over eastern China during
the last two decades is unusual in the past five centuries. The
study of Menon et al. (2002) suggested that this trend might
be related to increased black carbon aerosols.
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