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Louvain-la-Neuve, Belgique

Received: 20 June 2007 – Published in Clim. Past Discuss.: 6 July 2007
Revised: 18 October 2007 – Accepted: 27 November 2007 – Published: 19 December 2007

Abstract. Local-scale climate information is increasingly
needed for the study of past, present and future climate
changes. In this study we develop a non-linear statistical
downscaling method to generate local temperatures and pre-
cipitation values from large-scale variables of a Earth Sys-
tem Model of Intermediate Complexity (here CLIMBER).
Our statistical downscaling scheme is based on the concept
of Generalized Additive Models (GAMs), capturing non-
linearities via non-parametric techniques. Our GAMs are
calibrated on the present Western Europe climate. For this
region, annual GAMs (i.e. models based on 12 monthly val-
ues per location) are fitted by combining two types of large-
scale explanatory variables: geographical (e.g. topographi-
cal information) and physical (i.e. entirely simulated by the
CLIMBER model).

To evaluate the adequacy of the non-linear transfer func-
tions fitted on the present Western European climate, they
are applied to different spatial and temporal large-scale con-
ditions. Local projections for present North America and
Northern Europe climates are obtained and compared to lo-
cal observations. This partially addresses the issue of spatial
robustness of our transfer functions by answering the ques-
tion “does our statistical model remain valid when applied to
large-scale climate conditions from a region different from
the one used for calibration?”. To asses their temporal per-
formances, local projections for the Last Glacial Maximum
period are derived and compared to local reconstructions and
General Circulation Model outputs.

Our downscaling methodology performs adequately for
the Western Europe climate. Concerning the spatial and
temporal evaluations, it does not behave as well for North-
ern America and Northern Europe climates because the cal-
ibration domain may be too different from the targeted re-
gions. The physical explanatory variables alone are not capa-

Correspondence to:M. Vrac
(mathieu.vrac@cea.fr )

ble of downscaling realistic values. However, the inclusion
of geographical-type variables – such as altitude, advective
continentality and moutains effect on wind (W–slope) – as
GAM explanatory variables clearly improves our local pro-
jections.

1 Introduction

Understanding the present climate and explaining its changes
represent difficult scientific issues. One classical approach to
respond to these challenges is to study the past climate his-
tory. The class of General Circulation Models (GCM), com-
plex computer codes simulating the atmospheric circulation
through resolving the equations representing the Earth’s at-
mospheric dynamics and the coupling between the oceans
and the atmosphere, offers a powerful device to understand
and represent the global scale behavior of our climate. How-
ever, they are computationally intensive and can only pro-
duce relatively low spatial resolution simulations. Small-
scale physical processes which drive important local surface
variables such as heavy precipitation and its strong spatial
variability (e.g. Wood et al., 2004) are not yet well captured
by GCMs. For paleoclimate studies, this computing time
limitation becomes even more prevalent. Only models with
a very low resolution are capable of simulating climate over
thousand of years (e.g. Rahmstorf and Ganopolski, 1999) and
comparing these large-scale outputs with local proxy data
corresponds to an arduous task (e.g. Kageyama et al., 2006).

While GCMs aim to capture large-scale behaviors, as-
sessing theregional/local impacts of climate changes con-
stitutes one of the essential inquiries asked by the end-user
(economists, decision makers, etc). Depending on the appli-
cation at hand, the desired time scale can greatly vary. The
flood planner may be interested in local precipitation infor-
mation for the next 50 years and the nuclear waste manager
would like to have a rough view of precipitation over his/her
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deposit site for the next thousand years. The latter situation
poses more computational and uncertainty problems than the
former case. In this paper, we focus on statistical models
and large-scale outputs that can span over a few thousands
years, present time and the Last Glacial Maximum (LGM).
This temporal constraint has been paramount in the data and
methods proposed in this paper and, especially it limits the
applicability of physical based models that have been devised
to handle a few decades or centuries.

The so-calleddownscalingmethods aims at answering
how to “zoom in” the information provided by large-scale
systems (e.g. GCMs) into the required local-scale. Re-
gional Climate Models (RCMs) provide a physically based
approach (e.g. Liang et al., 2006). But, they are generally
considered as equally (if not more) computationally inten-
sive than GCMs. The class of Statistical Downscaling Meth-
ods (SDMs) represents a well-developped alternative that can
bypass this computational obstacle. They are faster because
they rely on empirical relationships between local-scale data
(e.g. observations, reconstructions) and large-scale upper-air
atmospheric variables (e.g. reanalysis data, GCM outputs).
Another advantage resides in their probability foundation
that allows to associate uncertainties more easily than with
RCMs (e.g. Katz, 2002). The SDM proposed in this study
belongs to the “transfer functions” SDM family (e.g. Zorita
and von Storch, 1998; Snell et al., 2000; Huth, 2002). They
directly link large–scale information to local–scale variables.
This technique is in contrast to the “weather typing” ap-
proach (e.g. Bardossy et al., 1994; Huth, 2001; Vrac et al.,
2007a) that is based on conditioning statistical models on re-
current weather states and to weather generators (e.g. Wilks,
1999; Wilks and Wilby, 1999).

One constraining assumption of any SDM resides in the
hypothesis that the fitted transfer functions arestationaryin
time. While this assumption may hold reasonably well at a
decadal or even centennial scale, its validity can be strongly
challenged over thousands of year. This could lead to un-
realistic statistical relationships and then to unrealistic pro-
jections of local variables. Consequently, extreme cautions
have to be applied when implementing and interpreting a pa-
leoclimatic downscaling scheme. Validity procedures and a
search for stationary components have to be added (e.g. Vrac
et al., 2007b). For example, incorporating geographical vari-
ables that are, by nature, much less sensitive to changing
large-scale conditions than physical ones can bring some sta-
bility and confidence to paleoclimatic downscaling projec-
tions. Another important issue linked to SDMs concerns
the statistical modeling type of large-versus-local relation-
ships. Classically, such relationships are assumed to belin-
ear (e.g. Wilby et al., 1998). But, whenever strong nonlin-
earities are present, these linear models cannot perform ade-
quately. One of our goals in this paper is to present statisti-
cal models that have the flexibility of depicting any transfer
function (linear and non-linear). They will be non paramet-
ric, i.e. the relationship type would not be imposed a priori,

but instead, driven by the data themselves.
The rest of this article is organized as follows. In Sect. 2,

our large and local-scale data are presented. The proposed
statistical model is developed and explained. An application
is presented in Sect. 3. Conclusions and a short discussion
are provided in the Sect. 4.

2 Our non-linear statistical downscaling scheme

To calibrate any SDM, large-scale and local-scale data are re-
quired. The local-scale data must have the resolution needed
for local projections. The large-scale data resolution has to
be equal to the one used to drive the projections.

In this article, the calibration region corresponds to West-
ern Europe and it can approximately be represented by the
geographical rectangle [10◦ E; 20◦ W] × [37◦ N; 55◦ N] (see
maps of Fig.7). This rectangle has been choosen because it
contains various physical and geographical contrasted con-
ditions. Oceanic influences (e.g. Atlantic, North Sea), high
mountains near the center (Alps, Pyrenees), Mediterranean
conditions, and continental climate (eastern countries) imply
a wide range of local temperatures and precipitation values
and of large-scale variables. This large variety of climate and
geographical situations is necessary to calibrate our transfer
functions and to apply them under evolving large-scale con-
ditions.

2.1 Large-scale data: the CLIMBER model

Our large-scale data are outputs from the CLIMBER model
(Petoukhov et al., 2000, 2005) that has a large spatial resolu-
tion of 10◦ in latitude and 51◦ in longitude. It is an intermedi-
ate complexity model. In comparison to 3-D general circula-
tion models, it includes less explicit representations of atmo-
spheric features, thus relying on more parameterizations. In
particular, it does not compute explicitly the atmosphere dy-
namics at the synoptic scales but it accounts for their effects
on the meridional heat transport. In addition, the daily vari-
ability of meteorological events (e.g. winds associated with
low pressure systems) is ignored, as well as the time scale of
a few years, in particular the North Atlantic Oscillation.

The CLIMBER model has been conceived to explore cli-
mate variations over very long periods (103 to 106 years).
Thus, it is a suitable tool for the paleoclimate community.
Despite its simplicity, CLIMBER was favorably compared
to results from more complex models, both in a paleocli-
mate framework (Kageyama et al., 2001) as well as in an
upcoming global warming context (Pethoukhov et al., 2005).
Nevertheless, it is crucial to keep in mind that CLIMBER
outputs largely depend on other components of the climate
system, notably on ice sheets and the carbon cycle, that are
imposed in CLIMBER. In this work, the outputs are obtained
from a control run stabilized after a few thousand years. The
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insolation, pCO2 and ice-sheet forcing are imposed an in
Berger (1978), Petit et al. (1999), and Peltier (1994).

2.2 Local-scale data: the CRU climatology

The local-scale temperature and precipitation data used for
calibration and validation of our statistical model come from
the “Climate Research Unit” database (CRU, New et al.,
2000). The spatial resolution of these regularly gridded data
is high (10’, i.e. 1/6 degree) and it corresponds to more
than 13200 land grid-points over our Western Europe re-
gion. Their monthly temporal resolution is consistent with
the CLIMBER one.

The CRU database represents a monthly presentclimatol-
ogy. That means that twelve monthly mean values, represen-
tative of the actual climate, are available at each grid-point
and for each available variable (here, temperatures and pre-
cipitation). In addition, CRU provides the mean altitude of
each grid-point.

2.3 Our statistical method: generalized additive models

Our goal is here to present a statistical model capable of re-
gressing the values of local variablesY (temperatures or pre-
cipitation), calledexplained variablestaken from the CRU
database. Theexplanatory variablesXj – i.e. the variables
used to explainY – correspond to some of the large-scale
values derived from CLIMBER outputs (see next Section).
To go beyond the classical linear model, we opt to work with
Generalized Additive Models (GAM). This allows us to infer
non-linear relationships between the explained variable and
the chosen explanatory variables. More precisely, a GAM ex-
presses the expectation ofY conditionally onp explanatory
variables(X1, . . . , Xp), sayE(Y |X1, . . . , Xp), as a sum of
fj (Xj )

E(Y |X1, . . . , Xp) =

p∑
j=1

fj

(
Xj

)
+ ε, (1)

where the functionfj (.) has a non-parametric form andε
represents a zero-mean Gaussian noise or error. Equation (1)
justifies the term “Generalized Additive Models” because
each possible explanatory variableXj could have a non-
linear (generalized) effect on the expectation ofY and the
cumulative effect of theXj ’s is clearly additive. Although
such a type of model has been extensively studied, tested and
used in statistics and its related fields (Hastie and Tibshirani,
1990), it has never been applied to downscale paleoclimate
data (to our knowledge).

To introduce non-linearities in (1), we chose to represent
the functionsfj (.) as piecewise third order polynomial func-
tions evaluated at four knots (i.e. borders of the “pieces”
or intervals). Such functions belong to the class ofcubic
spline functions(e.g. de Boor, 2001). In our case, this means
that each functionfj (.) has at most twelve parameters (three

intervals defined by four knots multiplied by four param-
eters for each third order polynomial). During the fitting
step, the four knots are placed evenly throughout the pre-
dictor range, i.e. approximately at every 33rd percentile of
the predictor values. The values at neighbouring knots are
connected by cubic polynomials constrained to continuity
conditions. The latter provides smooth transitions between
the different cubic polynomials at the knots. Details of the
fitting methods are given in Wood (2000, 2004) and in the
reference manual of the “mgcv” R package (downloadable
at http://cran.r-project.org/). Note that the spline type and
order were arbitrarily chosen. Our different choices (cubic
splines, three intervals, continuity condition) ensure a (rela-
tively) small number of parameters as well as enough flex-
ibility in our modeling of transfer functions. Depending on
the objectives and data at hand, other choices for the spline
functions could be made.

As already mentioned, theε term of Eq. (1) represents a
Gaussian error. Although temperature data classically satisfy
this normality assumption, precipitation need to be log trans-
formed before being modeled by a GAM. This is justified by
the fact that cumulated precipitation can be correctly mod-
eled by log-normal distributions (e.g. Cheng and Qi, 2002).

To illustrate the GAM capacity at modeling non-linear link
functions, Fig.1 shows the estimated spline functionsfj (.)

obtained after explaining some log-transformed July precip-
itation data with the four following explanatory variables
(p=4 in (1)): specific humidity (Q), wind intensity in the
v direction (Wv), the altitude (elv), and latitude (LAT). More
details about these data will be provided in Sect. 3.1. In this
figure, the x-axes correspond to each explanatory variableXj

and the y-axes represent the contribution ofXj at explaining
Y , i.e. fj (Xj ). The four panels indicate that the estimated
contributions from Q and Wv are strongly non-linear and the
ones from elv is mostly linear. The estimatedfj (.) for LAT
is clearly uninformative since it is constantly equal to 0. Al-
though this first analysis was very specific and limited, it ex-
emplifies that a GAM is very flexible and let the data speak
for themselves. In particular, a non-linear relationship can be
modeled only when it is necessary.

3 Applications and results

3.1 The explanatory variables

Expert knowledge leads us to select thirteen explanatory vari-
ables among all large-scale variables from our available data
set. These explanatory variables are considered as potential
informative candidates for explainingE(Y |X1, . . . , Xp). To
reflect their respective stationary quality, they have been di-
vided into two groups. Our objective is to take into account
obvious climatological facts linked to geography (e.g. eleva-
tion, continentality, slope) without an explicit physical de-
scription, and to compare them to more traditional physical
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Figure 1: Spline functions (full lines) estimated for a toy model calibrated for the July
CRU precipitation data with explanatory variables Q (in kg/kg), Wv (in m/s), elv (in m),
and LAT (in oN). The dashed lines correspond to 2 standard errors above and below the
estimated splines, and the ticks on the X-axis represent the observed predictor values. While
the contributions from Q and Wv are modeled through strong non-linearity, elv and LAT
contributions are mostly linear, and the LAT spline is clearly uninformative in this toy model.
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Fig. 1. Spline functions (full lines) estimated for a toy model calibrated for the July CRU precipitation data with explanatory variables Q (in
kg/kg), Wv (in m/s), elv (in m), and LAT (in◦ N). The dashed lines correspond to 2 standard errors above and below the estimated splines,
and the ticks on the x-axis represent the observed predictor values. While the contributions from Q and Wv are modeled through strong
non-linearity, elv and LAT contributions are mostly linear, and the LAT spline is clearly uninformative in this toy model.

predictors. For example, mountains and wind strongly in-
fluence temperature and precipitation. But modeling these
influences in an explicit physical way can quickly become
quite tricky. The main idea here is to let our model do this
job in a statistical way, using and comparing two sets of pre-
dictors. The following nine explanatory variables are con-
sidered as “physical” variables: specific (Q) and relative hu-
midity (RH), sea level pressure (SLP), temperature (T), wind
intensity in u (Wu) and v (Wv) directions, dew point temper-
ature (Td), dew point temperature depressionDT d=T d−T

and vertically integrated specific humidity (QI). In the list
above, DTd represents the degree of saturation in water va-
por of the atmosphere. In past studies (Charles et al., 1999;
Vrac et al., 2007a; Vrac and Naveau, 2007), the variables Td
and DTd have shown good explanatory power for downscal-
ing precipitation. In addition to the “physical” variables, the
following four “geographical” ones have been identified: ele-
vation (elv), advective (Aco) and diffusive (Dco) continental-
ity (see definition below), and W-slope (Wsl) (see definition
below). The variables Q, RH, T, Wu, Wv, Td, DTd, are taken
at the surface.

The diffusive continentality index Dco (between 0 and 1)
corresponds to the shortest distance to the ocean. If a point
is close to a sea or an ocean, then Dco is close to zero. Con-
versely, a point far away from the sea translates into a Dco
close to one.

The advective continentality Aco taking its value between
zero and one is associated to wind intensities and directions.
It is based on the following hypothesis. An air mass becomes
progressively continental (or inversely maritime) as it travels
over land (ocean). The rate of this changes towards continen-
tal versus maritime conditions is assumed to be a constant
fraction (τ) per unit time, i.e. the change in continentality
during a timedt is

dC = [−C (1 − ico) + (1 − C) (ico)] τ dt, (2)

with C the continentality ranging from zero (sea limit)
to one (land limit), ico equals to zero over sea and to
one over land, respectively. The parameterτ satisfies
τ dt=τ dx

dt
1
U

dt=
dx/U
l0/U0

ln 2 wheredx is the distance traveled
by the air mass during the timedt , U is the mean wind norm
from CLIMBER andl0/U0 is the distance/wind ratio corre-
sponding to a continentality change of 1/2. This ratio is set

to l0
U0

=
5 .105 m

5 m/s . To complete the computation of continental-
ity at a given point, we must first integrate the continentality
change over each “incoming air mass path”

Cd=

∫
path

dC=

∫
path

[−C (1−ico) +(1−C) (ico)]
ln(2)/U

l0/U0
dx. (3)

It is necessary to decide the respective weight of each path
direction. It is reasonable to rely on simple assumptions: (1)
give more weight to path directions which matches the di-
rection of the mean wind, and (2) give zero weight to paths
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which are in opposition with the mean wind, i.e. penaliz-
ing an air-mass traveling against the wind (this would be in-
consistent with our above assumptions for the continentality
change over a given path). A simple way to perform this is
to use the scalar product of the mean windU and the path
direction unit vector̂lp (integrated over each path)

Id =

∫
path

max(l̂p. U , 0)dC. (4)

The weighted average of the contributions from all paths pro-
vides the continentality at the desired point:

C =

∑
d

Id Cd∑
d

Id

. (5)

The last “geographical” variable is the W-slope taking into
account (in part) the impact of the mountains on the regional
climate. It is computed separately from the advective conti-
nentality index but in a similar way. Like for continentality,
several incoming air masses directions are considered, with
the same weighting as before, i.e. through (4). Here, the W-
slope corresponds to the mean zonal wind multiplied by the
mean east-west slope over approximately 100 km. Indeed,
in CLIMBER, over this region, the prevailing wind is west-
erly. Only upward trends are retained. That means that the
W-slope increases only when the air mass is going up, hence
potentially cooling and precipitating.

Remark that Aco and Wsl are not “purely geographical”,
in the sense that they are not completely static. The classifi-
cation into “physical” or “geographical” predictors is (for a
part) arbitrary, and reflects more “classical” predictors versus
our proposed original ones, respectively.

Note also that the CLIMBER-modeled precipitation are
not part of our explanatory variables set. It is common to
disregard large-scale precipitation information (e.g. reanaly-
sis data, GCM or EMIC outputs) when downscaling precip-
itation. Local precipitation usually have such a high spatial
variability that large-scale precipitation data can be some-
times misleading (e.g., Vrac et al., 2007a).

3.2 General considerations before implementing our down-
scaling scheme

Spatially, one CLIMBER grid-cell corresponds to several
CRU precipitation and temperature grid-cells (those con-
tained in a CLIMBER grid-cell). This implies that our non-
linear regression scheme defined by Eq. (1) cannot be di-
rectly implemented. There are too manyY ’s for a single
CLIMBER realization(X1, . . . , Xp). To solve this issue,the
CLIMBER outputs are bi-linearly interpolated (e.g. Accadia
et al., 2003) to the CRU resolution. Hence, the interpolated
CLIMBER outputs can be considered as explanatory vari-
ables (i.e., predictor values) of the CRU precipitation and
temperatures in our GAM.

Concerning the seasonality, shifts in seasonality are likely
to occur over long time periods and applyingmonthlyGAMs
(i.e. one GAM per month) would potentially lead to unreal-
istic downscaled time series. This comes back to the issue of
stationary raised in Sect. 1. To overcome this problem, we
restrict our attention toannualGAMs, i.e. one single model
calibrated over the entire twelve months (instead of a GAM
per month), meaning that the same set of spline functions is
now used for all months.

We can compute the percentage of observed variance ex-
plained by a given set of explanatory variables (e.g. Saporta,
1990):

% of variance explained=

∑
i(y

?
i − y)2∑

i(yi − y)2
× 100 (6)

wherey?
i is the GAM-predicted value,yi the observed value,

andy the observed mean. The valuesyi−y?
i (i.e. obs – pre-

diction) are called “residuals”.
In order to select the combination of explanatory variables

that better explainsY , each possible combination amongp

explanatory variables has been tested, plus the “null-model”
corresponding to a model in which all parameters except
the intercept are 0. The number of such combinations is
N=2p. Among all combinations, the “optimal” explanatory
variables set is selected according to the Bayesian Informa-
tion Criterion (BIC), developed and asymptotically justified
by Schwartz (1978):

BIC = n log

(
RSS

n

)
+ d log(n), (7)

where n corresponds to the sample size and the residual
sum of squares (RSS) of the estimated model is defined by∑n

i=1(yi−y?
i )

2. This criterion combines a term correspond-
ing to a goodness-of-fit measure between the model and the
data (the first term) with a penalty term (second term) de-
pending on the sample sizen and on the dimensiond of the
model. The BIC helps at selecting a model (and therefore the
explanatory variables) by balancing the risk of over-fitting
with the penalty term.

3.3 Applying GAMs to downscaling projections

3.3.1 Present Western Europe downscaling projections

Applying GAMs to all combinations of our thirteen explana-
tory variables clearly shows that some variables have no or
very limited explicative power. For example, the spline func-
tions obtained for Wu for explaining temperatures are gen-
erally very flat and close to zero (not shown). This means
that although Wu participated to improve the percentage of
variance explained, its global contribution is relatively small,
of the order of the penalty term, and hence Wu is not essen-
tial to be kept. As explained in Sect.3.1and in the previous
one, we define (through BIC) the “best” combinations of pre-
dictors on two different sets of variables: the “physical” and
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Figure 2: January maps of (a) CRU resolution interpolated CLIMBER precipitation, (b)
GAM predicted precipitation from physical variables, and (c) observed monthly precipitation
(in mm/month). Figures (d-f) are equivalent to (a-c) but for temperatures (in oC).
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Fig. 2. January maps of(a) CRU resolution interpolated CLIMBER precipitation,(b) GAM predicted precipitation from physical variables,
and(c) observed monthly precipitation (in mm/month). Figures(d–f) are equivalent to (a–c) but for temperatures (in◦C).

“geographical” ones. Overall, the final physical explanatory
variables retained for our GAMs for explaining precipitation
are Q, RH, T, Wu, Wv, Td, DTd, and QI. For explaining tem-
peratures, the retained variables are slightly different: Q, RH,
SLP, T, Wv, Td, DTd, and QI. These two sets of explanatory
variables have the best BIC values (or second best BIC for the
temperature since we removed Wu) among the physical vari-
ables, and correspond to about 60% and 91% of explained
variance for log-precipitation and temperatures, respectively.
Concerning our “geographical” variables, the following three
has been conserved to explain both temperatures and precip-
itation: the altitude (elv), the advective continentality (Aco)
and the W-slope (Wsl). They explain about 17.5% and 79%
of variance for log-precipitation and temperatures, respec-
tively.

In order to have a visual inspection of the quality of the
results, Figure2 displays the January maps (results are sim-
ilar for the other months) of CRU resolution interpolated
CLIMBER precipitation (2a), GAM predicted precipitation
from the physical variables (2b), and observed monthly pre-
cipitation in mm/month (2c). Figure2d–f are equivalent to
2a–c but for temperatures (in◦C). The similarities between
GAM-predicted and observed values are obvious and illus-
trate the good behavior of GAM for our Western Europe re-
gion under present climate.

Figures3 and4 show the residuals (obs-predicted) for four

months (January, April, July, and October) representative of
the four seasons, respectively for the log-precipitation with
geographical explanatory variables (Figs.3a–d) and with
physical explanatory variables (Fig.3e–h), and for the tem-
peratures with geographical explanatory variables (Fig.4a–
d) and with physical explanatory variables (Fig.4f–i).

Although with a relatively low percentage of variance ex-
plained (about 17.5%), the log-precipitation residuals maps
obtained from the geographical variables are paradoxically
small (i.e. good) and reasonably centred on zero. This low
percentage of variance comes from some relatively small
errors distributed over the year and by stronger residuals
(meaning stronger errors) in Southern Europe in July and
August. Inferred precipitation (Fig.3) seem to be slightly
better with physical variables than with geographical ones,
overall for summer months. This is true also for temper-
atures (Fig.4): despite systematic regional errors of about
five◦C over high mountains, physical variables seem more
efficient than geographical variables to provide local predic-
tions, i.e. with residuals closer to zero.

However, these differences between physically– and
geographically–based predictions are slight and are not infor-
mative about the behaviour of the predictions in the context
of a different climate.
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Fig. 3. Log-precipitation GAM residuals (obs-pred) maps for Western Europe, (a–d) from the geographical explanatory variables, (e–h)
from the physical explanatory variables, for January, April, July, and October respectively. The residual sum of square (RSS) is given for
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Fig. 5. (a–d)Log-precipitation and(f–i) temperature GAM residuals (obs-pred) maps for North America, from the geographical explana-
tory variables, for January, April, July, and October respectively. GAMs are calibrated on Western Europe. Legends are provided in
log(mm/month) in(e)and in◦C in (j) .

3.3.2 Present downscaling projections over other regions

In order to test the annual models for climate different from
the one used for calibration, we downscale the large-scale
CLIMBER data over two regions corresponding approxi-
mately to North America (USA and Canada) and Northern
Europe (with a part of Siberia), based on the calibrations ob-
tained from the two sets of predictors. The North America
results of residuals (obs – pred) are presented for (log) pre-
cipitation in Fig.5a–d and in Fig.5f–i for temperatures, from
the geographical explanatory variables. The results from the
physical explanatory variables and Northern Europe results
are not shown here but are discussed in the following.

North America precipitation residuals maps from the ge-
ographical variables (Fig.5a–d) show coherent spatial struc-
tures, despite more or less pronounced residuals (from−6 to
+2 units). The equivalent maps from the physical explana-
tory variables (not shown) are associated to larger residuals
(comprised between−30 and−15 units) and to very inco-
herent (almost random) patterns that cannot be explained by
any geographical (e.g. mountains or coasts) effects. The lat-
ter can be explained by the values of the physical explanatory
variables that are out of the calibration range observed over
Western Europe: for example, the range of the variable QI is
[0.4, 2.4] for Western Europe, while it is [0.3, 3.1] for North
America. Moreover, in Fig.5a–d, the downscaled precipita-
tion is associated to larger errors inland than along the East
and West American coasts: the continentality index seems to
play a non-negligible role. Furthermore, we can remark that
the residuals are weaker for summer than for winter months.

The same conclusions hold for the precipitation projec-
tions over the Northern Europe region (not shown): residu-
als maps with incoherent patterns from physical explanatory
variables (out of the calibration range) and with coherent spa-
tial structures from geographical variables; weaker residuals
with geographical (–5 to +2 units) than physical variables (–
30 to –10 units); the geographical explanatory variables pro-
vide smaller errors inland than along the coasts; weaker in
summer then in winter.

Figure5f–i for the North America temperature residuals
maps show results similar to those for precipitation: incoher-
ent maps from physical explanatory variables (not shown)
with high residuals (+120◦C to +220◦C) and continuous as-
pect maps from the geographical variables with lower resid-
uals (−30◦C to +10◦C), as for precipitation, smaller in sum-
mer. However, the inland/coasts differences visible for pre-
cipitation are not present for temperatures. The differences
are more pronounced according to the latitudes: for example,
in January, north is associated to large residuals, and the more
we go south, the smaller the errors. The Northern Europe
temperature results (not shown) are equivalent except for the
latitudes-driven residuals. Indeed, while residuals seem to be
latitudes-driven in summer, the residuals structures are lon-
gitudinal in winter (with relatively small values).

In general, the results obtained from the physical explana-
tory variables invalidate the Western Europe-fitted-GAM
methodology when used to predict Northern Europe and
North America temperatures and precipitation. Although
the geographical explanatory variables alone are not entirely
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Fig. 6. Monthly maps of(a–d) relative differences and(f–i) absolute differences (with respect to present) between GAM downscaled LGM
values (from geographical explanatory variables and CLIMBER SLP for precipitation and from geographical explanatory variables and
CLIMBER T for temperatures) and present (a–d) precipitation and (f–i) temperatures for January, April, July, and October respectively.
Legends are provided in(e) in percentage and in(j) in ◦C.

satisfactory, they provide better projections (i.e. smaller
residuals) than physical variables alone in downscaling
precipitation and temperature values under large-scale cli-
mate conditions strongly different from the calibration ones
(i.e. they are more “robust” to the change of region for pro-
jection).

3.3.3 LGM Western Europe downscaling projections

Based on the results brought by the projections over regions
different from the calibration one, GAMs are fitted to present
climate Western Europe temperatures and precipitation, and
used to deduce last glacial maximum (LGM, 21 ky) temper-
atures and precipitation. For this LGM downscaling, the re-
tained explanatory variables are the geographical variables
(elv, Aco, and Wsl), where one physical predictor is added,
chosen based on the BIC results and relatively subjective
choices. For precipitation, this variable is the CLIMBER
sea level pressure (SLP), while for temperatures it is the
CLIMBER temperature (T ). Indeed, although the geograph-
ical explanatory variables bring robustness to the downscal-
ing process, they are not sufficient by themselves to drive
correctly the local variables. The selected added variables
are supposed to provide useful large-scale information in or-
der to have more physically-driven temperatures and precip-
itation. As the LGM sea level is 120 m lower than today, the
LGM elv predictor is taken as the present altitude plus 120 m.

Note that the ice sheets supposed to cover northern Europe
are not modeled in this work, but are imposed. The splines
obtained (not shown) are essentially linear and/or monotonic
but not constant, confirming an underlying physical sense of
the selected variables.

The monthly precipitation maps of the relative differences
with respect to present precipitation are presented in Fig.6a–
d and the monthly temperature maps of the absolute differ-
ences with respect to present temperatures are presented in
Fig. 6f–i, for January, April, July, and October. Figure6a–d
show that, in general, LGM climate is drier that present one.
However, regionally, some increases of the precipitation are
to be noted. Moreover, the North-East part of the studied
region presents a clear increase, whatever the month. For
temperatures in Fig.6f–i, as expected, we see that the LGM
climate is colder than present, whatever the month and the re-
gion. A latitudinal effect is discernible from about November
to May (not shown completely, see January), with stronger
differences in Northern regions and smaller ones in South.
LGM June–October show more uniform differences with re-
spect to present with somehow a “coastal” effect, see for ex-
ample July. These results can be quite difficult to compare to
LGM GCM outputs (generally given with low spatial resolu-
tion for the whole globe). However, except for the increased
rainfall in the N-E they are in a relative agreement with the
LGM precipitation and temperature anomalies provided by
Jost et al. (2005) for Europe.
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Fig. 7. Locations of the 9 reconstructed LGM data in Western Eu-
rope whose the values have to be compared to our GAM downscaled
values.

In order to have more assessment of the LGM results
brought by our CLIMBER-driven GAM, reconstructed LGM
precipitation and temperature data have been compared to
our downscaled values. These data are local reconstructions
from pollen data using inverse vegetation modeling (Wu et
al., 2007). The locations of the 9 points in Western Europe
are shown on Fig.7. Moreover, four GCMs involved in the
Paleoclimate Modelling Intercomparison Project II (PMIP2,
e.g. Braconnot et al., 2007; Kageyama et al., 2006; Ramstein
et al., 2007) are also used: MIROC3.2.2, FGOALS-1.0g,
IPSL-CM4-V1-MR, and HadCM3M2. These fully coupled
atmosphere-ocean GCM experiments are available in the
PMIP2 database as of 7 April 2007 (http://pmip2.lsce.ipsl.fr).
They use the standard PMIP settings (as in CLIMBER): in-
solation, pCO2 and ice-sheets are prescribed. Their typical
grid-size is 300 km×300 km, while the CLIMBER resolu-
tion is about 1000 km×4000 km. Hence, for each of the 9
locations, we have:

1. the LGM reconstructed temperature and precipitation
values (min, median, and max)

2. the temperature and precipitation values for the
CLIMBER grid-cells containing the points,

3. the projections obtained from the CLIMBER-driven
GAM,

4. the four (temp. and precipitation) GCMs values for the
model grid-cells containing the points.

For each of these 9 locations, we compare these different val-
ues for LGM January and July in Fig.8a for temperature and
in Fig. 8b for precipitation. Remark that the LGM predictors
values for these 9 stations do belong to the calibraton range.
Note also that the CLIMBER precipitation simulations are
not used in GAM for downscaling and are only provided here
for comparisons.

Although the goal of this paper is not to assess the
CLIMBER simulations, the most surprising result may be
the good agreement between CLIMBER and the local recon-
structions. For both temperature and precipitation, the GAM
downscaled values are realistic and generally brought some
useful additional information. Indeed, even when CLIMBER
is far away from the values to be retrieved/approximated, the
downscaling process is sometimes capable of moving away
from CLIMBER and getting closer to the reconstructions.
For example, for July precipitation (bottom of Fig.8b), in
station 9 (the right one), CLIMBER precipitation is clearly
too large and the downscaled value is brought back to the
low part of the GCMs range, closer to the reconstructed pre-
cipitation. A counterexample is given by stations 7 and 8 (in
the same bottom of Fig.8b), where CLIMBER precipitation
is too high and the downscaled value is higher. This result is
not surprising since these stations are the two locations over
Italy where we see, in Fig.6c, an unrealistic increase of pre-
cipitation larger than 100%.

For temperatures, the results are generally better for Jan-
uary than for July. The PMIP2 GCMs used in this work give
ranges of July temperatures quite far from the reconstruc-
tions. Hence, as the CLIMBER temperatures are close to the
GCMs range, although the CLIMBER-driven GAM down-
scaled temperatures are capable of moving away from the
CLIMBER values, the downscaled temperatures tend to stay
distant from “real” values.

As a summary of these results, Table1 presents the mean
temperatures (in◦C) and mean precipitation (in mm/month)
computed for January and July for the 9 stations from the
reconstructed data, the GCMs outputs, the bi-linearly inter-
polated CLIMBER values, and the GAM projections. We see
that the mean GAM downscaled values are closer to the re-
constructions than CLIMBER and the PMIP2 GCMs for July
temperatures and January precipitation, while CLIMBER is
the closest to reconstructions for January temperatures (with
GAM projections better than the GCM’s), and the GCMs are
the closest to the reconstructed July precipitation. This last
point is due to stations 7 and 8 with too large downscaled
values for the July mean precipitation. However, in general,
the CLIMBER-driven GAM based downscaling process pro-
vides realistic and satisfying local temperatures and precipi-
tation, thus showing the quality of the proposed method.
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Fig. 8. (a)Comparison (in◦C) at the 9 locations of the reconstructed temperatures (min, median, and max in o signs), the min, median, and
max temperature values (in asterisk signs) from the four GCMs grid-cell (containing the location), the CLIMBER grid-cell (containing the
location) temperatures (in diamond signs), and the CLIMBER-driven GAM downscaled temperatures (in× signs) for January and July ;(b)
idem for precipitation values (in mm/month).
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Table 1. Mean temperatures (in◦C) and precipitation (in
mm/month) computed for January and July from the 9 locations.
The? symbol indicates the value the closest to the reconstructions.

January mean temperatures from reconstructions
from GCMs
from CLIMBER
from GAM

−9.2
−0.4
−9.1?

−3.2
July mean temperatures from reconstructions

from GCMs
from CLIMBER
from GAM

−3.2
14.4
11.5
10.5?

January mean precipitation from reconstructions
from GCMs
from CLIMBER
from GAM

64
84.5
53.6
53.8?

July mean precipitation from reconstructions
from GCMs
from CLIMBER
from GAM

36.3
38.9?

42.1
49.7

4 Conclusions and discussion

In this article, Generalized Additive Models have been de-
veloped to inject non-linearities in the downscaling of pre-
cipitation and temperatures within a paleoclimate framework
(LGM and present). Two types of explanatory variables,
called “geographical” and “physical”, have been investigated
in our non-linear regression scheme. Our analysis tends to
show that the geographical explanatory variables alone are
not entirely satisfactory, but provide more “realistic” local
projections than physical variables alone. If used alone,
the latter seem to be uninformative at best and misleading
at worst. This is particularly true when they are exploited
outside of their calibration range (e.g., transfer functions
trained on Western Europe and applied to North America).
In contrast, the geographical ones improve the stability of
our downscaling projections.

After calibration on present climate, selected geographical
variables (altitude, advective continentality, and W-slope) as-
sociated with physical ones (temperatures and SLP from the
CLIMBER model), local temperature and log-transformed
precipitation projections at the LGM were derived from our
GAMs. The resulting downscaled maps showed realistic
decreases in temperature and precipitation with respect to
present climate, at least over France, i.e. the central part of
the Western Europe region. Compared to LGM reconstruc-
tions of temperatures and precipitation and simulations from
four GCMs involved in PMIP2, our downscaled values be-
have reasonably well at least for July temperatures and Jan-
uary precipitation.

As a technical perspective, it could be interesting to study
how to give less liberty to the functions of our statistical
model, in order to avoid too much influence from details spe-

cific to the climate of a given region or time period. This
could be done by verifying to what extend any part of the
modeled transfer functions are physically interpretable (or at
least compatible with our actual understanding of climate).

As a more general perspective, it would be interesting to
generate continuous long time series (e.g. thousand years or
more) of local temperatures and precipitation by taking ad-
vantage of the couple CLIMBER/GAM. The produced data
could help our understanding of the past climate evolution
by comparing the generated time series with existing recon-
structions.

It would also be worth calibrating and applying the GAM
approach to the GCMs involved in PMIP2 instead of the
CLIMBER model. Indeed, although adaptations (in the
predictors and/or in GAM) have probably to be made in
this context, as GCMs represent the atmospheric dynam-
ics at much higher spatial and temporal resolutions than
CLIMBER, sharper downscaling results should be obtained.
In addition, one can also increase the number of EMIC or
GCM runs. Ensemble techniques should improve the esti-
mation of the variability within our downscaling procedure.
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A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes,
P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled
simulations of the Mid-Holocene and Last Glacial Maximum -
Part 1: experiments and large-scale features, Clim. Past, 3, 261–
277, 2007,
http://www.clim-past.net/3/261/2007/.

Charles, S. P., Bates, B. C., Whetton, P. H., and Hughes, J. P.: Val-
idation of downscaling models for changed climate conditions:
case study of southern Australia, Clim. Res., 12, 1–14, 1999.

Cheng, M. and Qi, Y.: Frontal Rainfall-Rate Distribution and Some
Conclusions on the Threshold Method, J. Appl. Meteorol., 41,
1128–1139, 2002.

Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models,
Chapman and Hall, 1990.

Huth, R.: Disaggregating climatic trends by classification of circu-
lation patterns, Int. J. Climatol., 21, 135–153, 2001.

Huth, R.: Statistical downscaling of daily temperature in central
Europe, J. Climate, 15, 1731–1742, 2002.

Jost, A., Lunt, D., Kageyama, M., Abe–Ouchi, A., Peyron, O.,
Valdes, P.J., and Ramstein, G.: High-resolution simulations of
the last glacial maximum climate over Europe: a solution to
discrepancies with continental palaeoclimatic reconstructions?,
Clim. Dynam., 24, 577–590, 2005.

Kageyama, M., Peyron, O., Pinot, S., Tarasov, P., Guiot, J., Jous-
saume, S., and Ramstein, G.: The Last Glacial Maximum climate
over Europe and western Siberia: a PMIP comparison between
models and data, Clim. Dynam., 17, 23–43, 2001.

Kageyama, M., Lâıné, A., Abe-Ouchi, A., Braconnot, P., Cortijo,
E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C. D., Ki-
toh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B.,
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