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Abstract. As of 2023, global mean temperature has risen
by about 1.45± 0.12 °C with respect to the 1850–1900 pre-
industrial (PI) baseline according to the World Meteorologi-
cal Organization. This rise constitutes the first period of sub-
stantial global warming since the Last Deglaciation, when
global temperatures rose over several millennia by about 4.0–
7.0 °C according to proxy reconstructions. Similar levels of
warming could be reached in the coming centuries consid-
ering current and possible future emissions. Such warming
causes widespread changes in the climate system, of which
the mean state provides only an incomplete picture. Instead,
fluctuations around the mean and in higher-order statistics
need to be considered. Indeed, climate’s variability and the
distributions of climate variables change with warming, im-
pacting, for example, ecosystems and the frequency and in-
tensity of extremes. However, previous investigations of cli-
mate variability focus mostly on measures such as variance,
or standard deviation, and on quasi-equilibrium states such
as the Holocene or Last Glacial Maximum (LGM). Changes
in the tails of distributions of climate variables and transition
periods such as the Last Deglaciation remain largely unex-
plored.

Therefore, we investigate changes of climate variability
on annual to millennial timescales in 15 transient climate
model simulations of the Last Deglaciation. This ensemble
consists of models of varying complexity, from an energy
balance model to Earth system models (ESMs), and includes

sensitivity experiments, which differ only in terms of their
underlying ice sheet reconstruction, meltwater protocol, or
consideration of volcanic forcing. The ensemble simulates an
increase in global mean temperature of 3.0–6.6 °C between
the LGM and Holocene. Against this backdrop, we examine
whether common patterns of variability emerge in the en-
semble. To this end, we compare the variability in surface
climate during the LGM, Deglaciation, and Holocene by es-
timating and analyzing the distributions and power spectra
of surface temperature and precipitation. For analyzing the
distribution shapes, we turn to the higher-order moments of
variance, skewness, and kurtosis. These show that the dis-
tributions cannot be assumed to be normal, a precondition
for commonly used statistical methods. During the LGM and
Holocene, they further reveal significant differences, as most
simulations feature larger temperature variance during the
LGM than the Holocene, in line with results from reconstruc-
tions.

As a transition period, the Deglaciation stands out as a
time of high variance in surface temperature and precipita-
tion, especially on decadal and longer timescales. In general,
this dependency on the mean state increases with model com-
plexity, although there is a large spread between models of
similar complexity. Some of that spread can be explained by
differences in ice sheet, meltwater, and volcanic forcings, re-
vealing the impact of simulation protocols on simulated vari-
ability. The forcings affect variability not only on their char-
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acteristic timescales. Rather, we find that they impact vari-
ability on all timescales from annual to millennial. The dif-
ferent forcing protocols further have a stronger imprint on
the distributions of temperature than precipitation. A reanal-
ysis of the LGM exhibits similar global mean variability to
most of the ensemble, but spatial patterns vary. However, pa-
leoclimate data assimilation combines model and proxy data
information using a Kalman-filter-based algorithm. More re-
search is needed to disentangle their relative impact on recon-
structed levels of variability. As such, uncertainty around the
models’ abilities to capture climate variability likewise re-
mains, affecting simulations of all time periods: past, present,
and future. Decreasing this uncertainty warrants a systematic
model–data comparison of simulated variability during peri-
ods of warming.

1 Introduction

Understanding the response of the climate system during ex-
tended periods of global warming is of vital importance given
current and projected anthropogenic warming. However, the
observational record provides an insufficient data basis due
to its short length of only about 150 years and its sparse
spatial coverage during the earlier years (e.g., Morice et al.,
2012). To extend the record further back in time requires
the use of natural climate archives and proxy-based recon-
structions. Such reconstructions have many associated uncer-
tainties and limited resolution in time and space. Combining
proxy records from different locations into a global field re-
construction introduces additional uncertainties, such as dif-
ferent interpolation and calibration procedures, age models,
and proxy biases (Christiansen and Ljungqvist, 2017; Tin-
gley et al., 2012). Climate models, on the other hand, sim-
ulate three-dimensional fields of a wide variety of variables
that describe the climate. As such, they provide continuous
estimates of climate that are limited by model physics and
parametrizations but allow detailed investigations of the cli-
mate system and its changes on long timescales. Since their
simulation length and resolution depend mostly on compu-
tational resources, simulation protocols up until the Paleo-
climate Modeling Intercomparison Project phase 3 (PMIP3)
encompassed mostly equilibrium simulations of past climate
states in the form of time slices. Experiments with time-
dependent (transient) forcings were limited to short periods
like the past millennium or done with accelerated bound-
ary conditions. The latest iteration, PMIP4, added more and
longer experiments with transient boundary conditions. This
allows more in-depth explorations of past transitions in the
climate’s mean state, such as the Last Deglaciation, which
we examine here using an ensemble of transient simulations.

As the transition from the Last Glacial Maximum (LGM;
23–19 kyr before present1) to the current warm period of the
Holocene (10.65 kyr BP–present day), the Last Deglaciation
was a period of substantial global climate change. Global
mean surface temperature (GMST) increased by about 4–
7 °C according to proxy-based reconstructions and climate
model simulations (Fig. 1a; Gulev et al., 2021; Osman et al.,
2021; Annan et al., 2022; Tierney et al., 2020; Shakun and
Carlson, 2010). The spread among recent estimates is simi-
lar, with some leaning towards the higher end with a warm-
ing of 7.0 ± 1.0 °C suggested by Osman et al. (2021) and
6.1 °C (5.7, 6.5) by Tierney et al. (2020) and others towards
the lower end such as the estimate of 4.5 ± 0.9 °C by An-
nan et al. (2022). In simulations, a rise in global mean pre-
cipitation (GMP) accompanies this warming (Fig. 1b). Dur-
ing the same period, global mean sea level rose by approxi-
mately 120 m as the ice sheets in both hemispheres, but es-
pecially the Fennoscandian and Laurentide ice sheets, shrunk
(Fig. 1c, Lambeck et al., 2014; Grant et al., 2012). However,
there are significant uncertainties associated with ice sheet
reconstructions, especially with respect to ice sheet extent
and elevation (Stokes et al., 2015; Abe-Ouchi et al., 2015;
Ivanovic et al., 2016). In turn, the timing and magnitude of
meltwater events, which crucially impact the deglacial cli-
mate evolution (Snoll et al., 2024), remain uncertain.

Increasing levels of atmospheric carbon dioxide (CO2)
contributed to and drove this change (Shakun et al., 2012)
as they rose from about 193.2 ppm at the onset of the Last
Deglaciation to approximately 271.2 ppm at its end (Gulev
et al., 2021). During the Holocene, CO2 levels roughly sta-
bilized until the Industrial Revolution (Fig. 1d). Similarly,
atmospheric methane almost doubled from the LGM to the
Holocene (Köhler et al., 2017, Fig. 1e). Changes in latitudi-
nal and seasonal insolation distribution favored this rise in at-
mospheric greenhouse gases (GHGs) and warming (Fig. 1f).

However, considering only the described mean changes is
insufficient to capture the full breadth of climate change then
and now. Instead, it is necessary to study the climate’s vari-
ability, too, as reflected in the fluctuations around the mean2

and in higher-order statistics in space and time (Katz and
Brown, 1992). These fluctuations determine the actual cli-
mate conditions at any point in time and space and are the
focus of our study. They affect the various modes of variabil-
ity (Rehfeld et al., 2020) and the occurrence and frequency of
extremes (Simolo and Corti, 2022; Ionita et al., 2021; Schär
et al., 2004; Loikith et al., 2018; Ruff and Neelin, 2012;
Laepple et al., 2023). Climate variability further acts across
timescales, from intra-annual (i.e., heat waves) and interan-

1Here, before present (BP) refers to the year 1950, Common Era
(CE). AP denotes the opposite, after present.

2We include only changes outside the mean in our use of vari-
ability. This is in contrast to the IPCC (2021), which includes any
deviation from a given equilibrium state, including the change in
the mean with time.
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Figure 1. Climate responses and external forcing during the past 26 kyr: (a) global mean temperature anomaly (with regard to 1960–1989)
as simulated by MPI-ESM, captured in ice cores from Antarctica (EPICA Dome C; Jouzel et al., 2007) and Greenland (NGRIP; Andersen
et al., 2004) and reconstructed in the LGM reanalysis (Osman et al., 2021). The proxy records for local temperature derived from EPICA and
NGRIP are scaled to GMST using GMST= 0.5×Tlocal. (b) Global mean precipitation as simulated by the Earth system model MPI-ESM,
(c) meltwater release for ice sheet reconstructions GLAC1-D and ICE6G as used in MPI-ESM r1–r7 (Kapsch et al., 2022), (d) atmospheric
CO2 (Köhler et al., 2017) and (e) CH4 levels (Köhler et al., 2017), (f) daily insolation at 65◦N and 65◦S at the summer solstice (Huybers
and Eisenman, 2006), (g) solar constant from one ensemble member generated as surrogate data based on Steinhilber et al. (2009) following
Ellerhoff and Rehfeld (2021) (comparison with Steinhilber et al., 2009 in Fig. S2 in the Supplement), and (h) volcanic forcing TephraSynthIce
(Schindlbeck-Belo et al., 2024; Sigl et al., 2022).

nual (multi-year droughts, the El Niño–Southern Oscillation
(ENSO)) to millennial scales (D–O events) and beyond and
across different spatial scales (Franzke et al., 2020; Laepple
et al., 2023).

Proxy-based reconstructions suggest that global mean
temperature variance was about 4 times higher during the
LGM than the Holocene, possibly due to changes in the
Equator-to-pole temperature gradient (Rehfeld et al., 2018).

This implies a dependence of variability on mean climate.
The extent of this state dependency varies regionally; e.g.,
Rehfeld et al. (2018) find that it is generally larger in the
Northern Hemisphere mid- and high latitudes than in the
Southern Hemisphere. Models are only partially able to
match this LGM-to-Holocene change in temperature vari-
ability. Rehfeld et al. (2018) found that interannual to decadal
variability is about 30 % higher during the LGM than during
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the pre-industrial (PI) in PMIP3 and Coupled Model Inter-
comparison Project (CMIP) phase 5 simulations. Shi et al.
(2022) confirmed this for PMIP3/4 LGM simulations, which
have about 20 % larger interannual variability than PI sim-
ulations. Models do agree with reconstructions on decreas-
ing global temperature variability (Rehfeld et al., 2020) and
mean local variability (Ellerhoff et al., 2022) with warming,
especially towards higher latitudes (Ellerhoff et al., 2022),
but with some exceptions in the tropics (Rehfeld et al., 2020).
Few studies quantitatively considered variability changes
over the Last Deglaciation. One, Weitzel et al. (2024), com-
pared millennial and orbital variability in many of the tran-
sient simulations considered here with proxy reconstructions.
Differences varied in time and space, and no single simula-
tion was identified to best match reconstructions.

Globally, there is mostly agreement between the variance
at interannual to centennial timescales in models and recon-
structions both during the Holocene (Laepple et al., 2023)
and further back in time, including during the Deglaciation
(Zhu et al., 2019). On regional and local scales, however,
models simulate less variability than reconstructions, espe-
cially on multi-decadal timescales and longer (Laepple et al.,
2023; Ellerhoff et al., 2022; Rehfeld et al., 2018). Including
natural forcing (that is, forcing from solar and volcanic ac-
tivity) in simulations reduces this difference but cannot close
it (Ellerhoff et al., 2022). Opposite to temperature, precipita-
tion variability increases with warming, with some regional
exceptions (Rehfeld et al., 2020). This precipitation variabil-
ity can be linked to mean precipitation changes, as dry re-
gions generally have lower variability and wet regions gen-
erally have higher variability (Rehfeld et al., 2020).

The influence of natural forcing demonstrates that sig-
nificant variability arises in response to external forcings
and boundary conditions. Volcanism, in particular, has been
identified as a prominent driver of changes in temperature,
precipitation, and modes of atmospheric dynamics (Timm-
reck, 2012; Iles and Hegerl, 2015; Liu et al., 2016; Zanchet-
tin et al., 2015). Its strongest effects manifest on annual
timescales (Lovejoy and Varotsos, 2016), as has been found
for the past millennium and Common Era (Schurer et al.,
2014; Lovejoy and Varotsos, 2016). It further contributed
substantially to subdecadal (Le et al., 2016), decadal (Hegerl
et al., 2003), and multi-decadal (Schurer et al., 2013) vari-
ance. During glacials, strong volcanic eruptions are even sug-
gested as a driver of millennial variability (Baldini et al.,
2015). There is conflicting evidence with respect to the de-
pendence of the impacts of volcanic forcing on the back-
ground state: in equilibrium simulations of the LGM and the
PI period, Ellerhoff et al. (2022) found no state dependency
on the global scale for surface temperature variability and
only slight differences for precipitation. Bethke et al. (2017),
on the other hand, found enhanced variability in future pro-
jections on annual to decadal timescales.

Throughout glacial cycles, the cryosphere plays a crucial
role for the climate and its variability. This includes sea ice

dynamics and changes in ice sheets and associated meltwa-
ter releases. Ice sheets and meltwater releases are still com-
monly simulated as external forcings (Ivanovic et al., 2016).
However, reconstructions of ice sheet extent and elevation
and associated meltwater pulses entail significant uncertain-
ties (Stokes et al., 2015; Abe-Ouchi et al., 2015; Ivanovic
et al., 2016; Izumi et al., 2023). For both the LGM and the
Last Deglaciation, simulated climate has been shown to be
very sensitive to ice sheet reconstructions (Izumi et al., 2023;
Kapsch et al., 2022; Bakker et al., 2020; Ullman et al., 2014).
Furthermore, meltwater release as a consequence of melting
ice sheets affects ocean circulation and thus deglacial climate
as a whole (Kapsch et al., 2022). Consequently, the uncer-
tainties in meltwater scenarios and models’ varying sensitiv-
ities to freshwater crucially affect the simulation of deglacial
climate (Snoll et al., 2024).

For sea ice, a decreasing extent has been shown to reduce
the seasonal to interannual standard deviation of temperature,
likely due to polar amplification and the sea ice–albedo feed-
back (Screen, 2014; Huntingford et al., 2013; Screen and
Simmonds, 2010; Bathiany et al., 2018). As a response to
shrinking sea ice, this feedback reduces the meridional tem-
perature gradient, which has been linked to decreased vari-
ability. Collow et al. (2019) demonstrate a decrease in ex-
treme temperatures, both in frequency and magnitude, with
decreasing sea ice extent. Loss of sea ice further leads to an
increase in scaling (Rehfeld et al., 2020). In addition, Eller-
hoff et al. (2022) found that sea ice dynamics are a signif-
icant component of local variability on decadal and longer
timescales.

Analyses of variability largely focus on variance, espe-
cially in paleoclimate studies, as mean and variance suffice
to describe a normal (Gaussian) distribution in full, mak-
ing variance a useful metric in many contexts. For annual
to decadal temperature data, assuming normally distributed
data is often a good approximation after removing periodic
variations like the diurnal or seasonal cycle. However, on
shorter timescales, this assumption can break down locally
and regionally, where many climate variables are non-normal
(Tamarin-Brodsky et al., 2022; Garfinkel and Harnik, 2017;
Perron and Sura, 2013; Simolo and Corti, 2022). Such cases
necessitate more detailed analyses of the shape of distribu-
tions, which higher-order moments allow.

The higher-order moments of skewness and kurtosis fa-
cilitate an examination of the asymmetry and heaviness of a
distribution’s tails, respectively. They have been shown to be
pronounced for many atmospheric variables, such as geopo-
tential height, vorticity, wind fields, and specific humidity
(Perron and Sura, 2013) on top of temperature (Tamarin-
Brodsky et al., 2022; Ruff and Neelin, 2012; Skelton et al.,
2020; Volodin and Yurova, 2013) and precipitation (He et al.,
2013). All else being equal, an increase in variance already
increases the probability of extremes, whereas a decrease
would counteract it. However, this can be complicated by ad-
ditional changes in skewness and kurtosis (McKinnon et al.,
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2016), which reveal enhancements or reductions in extremes
(Ruff and Neelin, 2012; Simolo and Corti, 2022).

The shape of the tails determines how extremes change
with warming, such that, for example, under warming, short
tails lead to higher exceedances with respect to fixed hot ex-
treme thresholds than Gaussian tails would (Ruff and Neelin,
2012; Loikith et al., 2018). Additionally, changes in skew-
ness can indicate approaching abrupt shifts. As a system
moves towards a tipping point, the weight of the distribu-
tion moves towards this point with an increasingly long tail
away from it; that is, skewness increases when approaching a
point of abrupt change (Guttal and Jayaprakash, 2008). These
kinds of early warning signals have been found in weather
station and climate model simulation data (Skelton et al.,
2020; He et al., 2013), as well as in ecosystems (Guttal and
Jayaprakash, 2008).

Overall, changing dynamics in the Earth system will af-
fect the distributions of a climate variable, potentially result-
ing in changes in skewness or kurtosis. However, the mecha-
nisms linking the climate system to these statistical measures
remain unclear (Simolo and Corti, 2022; Perron and Sura,
2013). For surface or near-surface temperature, asymmetry
and long tails are found due to horizontal advection along
storm tracks (Garfinkel and Harnik, 2017; Ruff and Neelin,
2012). Land–atmosphere interactions, particularly changes
in soil moisture, are related to significant changes in skew-
ness for near-surface temperature as well (Berg et al., 2014;
Douville et al., 2016). Skewness further reflects a marine ver-
sus continental influence (McKinnon et al., 2016). Studies
of skewness and kurtosis in the literature use data from the
20th century or future projections, often consider only lim-
ited time frames, and mostly focus on daily and seasonal
data. To the best of our knowledge, for paleoclimate, no other
study has investigated moments higher than standard devia-
tion. As a consequence, the role of higher-order moments on
longer timescales, when normality assumptions might break
down under a non-stationary climate evolution, and in past
climates is unknown. Whether they changed between past
climate periods, can indicate past abrupt transitions, or could
provide a useful metric for inter-model and model–data com-
parisons remains similarly unclear.

Here, we evaluate how the variability in surface climate
changes from the LGM to the present. The analysis uses an
ensemble of transient climate model simulations (Sect. 2.1)
that we characterize based on model complexity (Sect. 2.2).
As indicators of variability, we focus on changes to the dis-
tributions of surface temperature and precipitation, including
the higher-order moments (Sect. 3.1) and the power spectrum
(Sect. 3.2). We hypothesize (1) that patterns of surface cli-
mate variability are state-dependent for the quasi-equilibrium
conditions of the LGM and the Holocene, which differ
from those during a transitionary state like the Deglaciation;
(2) that state- and forcing-induced changes in variability de-
pend on timescale; and (3) that there is a necessary and suf-
ficient level of model complexity for the simulation of vari-

ability. To verify these hypotheses, we investigate the depen-
dence of the variability of surface temperature and precipita-
tion on

– background state (Sect. 5.2);

– timescale (Sect. 5.2);

– forcings, particularly ice sheet reconstruction, meltwa-
ter forcing protocol, and volcanism (Sect. 5.3); and

– model complexity (Sect. 5.4).

By comparing simulated variability with reconstructions and
a reanalysis product, we explore the impact of forcing pro-
tocols on model–data agreement (Sect. 4.6.4). Overall, we
examine the last global transition in climate to highlight dif-
ferences between a period of warming in comparison to its
preceding and succeeding stable climates.

2 Models and data

We draw on an ensemble of 15 simulations of the Last
Deglaciation from climate models of varying complexity
(Sect. 2.1). The models range from an energy balance model
(EBM) and Earth system models of intermediate complexity
(EMICs) to general circulation models (GCMs) and Earth
system models (ESMs), which we evaluate regarding their
complexity (Sect. 2.2). Furthermore, we compare the simu-
lations to a multi-proxy reconstruction (Sect. 2.3).

2.1 Simulation data

All 15 simulations are transient and cover at least the Last
Deglaciation. We separate the simulations into a main set and
a sensitivity set. Table 1 provides an overview of the sim-
ulations and forcing protocols. The following describes the
ensemble in more detail:

– MPI-ESM ch4 (Kleinen et al., 2023, 2020)
Model: This main set simulation used a setup of MPI-
ESM v.1.2 at a coarse resolution called MPI-ESM-
CR (Mauritsen et al., 2019; Mikolajewicz et al., 2018)
with a methane cycle (Kleinen et al., 2020). Boundary
conditions, including ice sheets, bathymetry, topogra-
phy (Meccia and Mikolajewicz, 2018) from GLAC1-D
(Briggs et al., 2014; Tarasov et al., 2012), and river rout-
ing (Riddick et al., 2018) were updated every 10 years.
It covers 23 kyr BP until the present day.
Simulated climate: This run simulates an LGM (23–
19 kyr BP) to Holocene (8–0 kyr BP)3 warming of

3Whenever the mean for LGM and Holocene is computed, we
follow these definitions, as marked in Fig. 2; that is, for the LGM we
consider 23–19 kyr, and for the Holocene we consider 8–0 kyr BP.
The mean anomalies in Fig. 2 are plotted with respect to the past
2kyr.
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4.4 °C and wetting of 0.27 mm d−1. 4 At its start, it still
cools in the global mean in tandem with an increase in
the Equator-to-pole difference in the Southern Hemi-
sphere and in sea ice volume (Fig. 2). It reaches its min-
imal GMST at around 21 kyr BP. The trend in increasing
GMST during the Deglaciation is interrupted by abrupt
decreases in GMST thrice: at around 14.5, 13.5, and
11.5 kyr BP. In comparison to other simulations, MPI-
ESM ch4 simulates the smallest sea ice cover (Fig. 2c).
Its global sea ice fraction is largest between 23 and
17 kyr BP and undergoes cycles of abrupt increase and
decrease during the Deglaciation.

– MPI-ESM r1–r7 (Kapsch et al., 2022, 2021)
Model: These seven simulations were produced using
two more setups of MPI-ESM-CR. They also update
boundary conditions every 10 years and cover the pe-
riod from 26kyr BP to the present day. They use dif-
ferent ice sheet reconstructions – GLAC1-D or ICE-
6G_C (in the following ICE6G; Peltier et al., 2015)
– and vary by meltwater scenario. Furthermore, a pa-
rameter for cloud formation was changed in r5–r7 to
remove a cold bias found in r1–r4 (as detailed in the
supporting information of Kapsch et al., 2022). The
ice sheet reconstructions differ in their original resolu-
tion in time, with ICE6G providing updated boundary
conditions at 500-year intervals and GLAC1-D at 100-
year intervals, and were interpolated here to 10-year
resolution. The meltwater scenarios follow the options
outlined in the deglacial protocol of PMIP4 (Ivanovic
et al., 2016): melt-uniform, melt-routed, and no-melt.
These correspond to meltwater being distributed glob-
ally, through river-routing or being removed. Simulation
r7 also applies a volcanic forcing by Schindlbeck-Belo
et al. (2024) that builds on the Holocene reconstruction
by Sigl et al. (2022), drawing on tephra records and in-
cluding synthetic volcanic eruptions to mitigate under-
estimation of small eruptions. This simulation is part of
the main set. Runs 1–6 form part of the sensitivity set.
For two simulations, r3 and r4, only centennial means
were available; thus they are only considered for the
analysis of centennial variability.
Simulated climate: These simulations exhibit the largest
warming between the LGM and Holocene of the ensem-
ble with a range from 5.3 °C (for r5) up to 6.6 °C (for
r7; Figs. 2a and S1a). The accompanying global mean
wetting is also the largest in the ensemble, ranging be-
tween 0.30 mm d−1 (r5) and 0.39 mm d−1 (r1 and r7).
Runs 1, 6, and 7 further simulate abrupt cooling peri-
ods during the Deglaciation with the same timing as in
MPI-ESM ch4. These are the simulations that employ
the GLAC1-D ice sheet reconstruction and correspond-
ing meltwater forcing. The remaining runs show either

4Throughout the analysis, we use the units Celsius for surface
temperature and mm d−1 for precipitation.

continuous or sometimes abrupt warming during those
periods. The sea ice cover in these simulations is gener-
ally larger than in MPI-ESM ch4 and shows a stronger
decrease towards the Holocene.

– TraCE-21ka (He, 2011)
Model: The TraCE-21ka simulation was performed
with CCSM3 (Collins et al., 2006) and stretches from
22 kyr BP to 1990 CE. This main set simulation was de-
signed to match proxy data of millennial events such
as the Bølling–Allerød and Younger Dryas during the
Deglaciation (He, 2011). As such, it applies meltwater
forcings in the Northern and Southern hemispheres at
various times throughout the Deglaciation to reproduce
proxy records (denoted as melt-routed matched). Ice
sheets are updated at intervals of 500 years based on a
modified version of the ICE5G reconstruction (ICE5G*;
He, 2011; Peltier, 2004). As greenhouse gas forcing,
TraCE-21ka uses Joos and Spahni (2008) (referred to
as J&S in Table 1) with the age model of Monnin et al.
(2001).
Simulated climate: Among all simulations, TraCE-21ka
tends towards the lower end of GMST and GMP
change from the LGM to the Holocene at 4.1 °C and
0.20 mm d−1. It shows abrupt warming around the
time of the Bølling–Allerød interstadial (about 14.7–
12.9 kyr BP) with subsequent cooling matching the
Younger Dryas (circa 12.9–11.7 kyr BP; Fig. 2a). For
most of the time period covered, TraCE-21ka produces
the largest sea ice cover, with the exception of the EBM
(Fig. 2c). This difference becomes particularly large
towards the end of the Deglaciation and remains so
throughout the Holocene.

– HadCM3B r1 & r2 (Snoll et al., 2024)
Model: The ensemble contains two simulations from
HadCM3B (Valdes et al., 2017) that cover 23 kyr BP to
2 kyr AP. These employ two different meltwater proto-
cols, melt-uniform (r1) and melt-routed (r2), from the
PMIP4 protocol to match the ICE6G ice sheet history.
The simulations prescribe orbit and greenhouse gases
(GHGs) annually, while ICE6G ice sheet, orography,
land–sea mask, and bathymetry are updated every 500
years. HadCM3B r1 is part of the sensitivity set, while
r2 is included in the main set.
Simulated climate: The GMST difference between the
LGM and the Holocene is 4.5 °C for the melt-uniform
r1 and 4.8 °C for the melt-routed r2. Similarly, wet-
ting of r1 is weaker at 0.26 mm d−1 in comparison to
0.27 mm d−1 for r2. The changes in Equator-to-pole
gradient are notably small, especially in the Northern
Hemisphere (Fig. 2d, e). Sea ice cover shrinks un-
til 14 kyr BP and remains roughly constant thereafter
(Fig. 2c).
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– FAMOUS (Smith and Gregory, 2012)
Model: FAMOUS is a low-resolution, slightly simpli-
fied version of HadCM3 (Smith et al., 2008). It is some-
times classified as an EMIC (as in Valdes et al., 2017)
or as a low-resolution GCM based on the complexity of
its atmosphere model. The simulation used here as part
of the main set was run with an acceleration factor of
10 for all forcings, allowing it to cover the last 120kyr
(Smith and Gregory, 2012). The simulation does not
consider sea level change; that is, ice sheets are present
only where there are no modern ocean grid points. Fur-
thermore, the ICE5G reconstruction and topographic
changes (Peltier, 2004) were only applied north of 40° N
(ICE5G**). In particular, the Antarctic ice sheet re-
mains unchanged (Smith and Gregory, 2012).
Simulated climate: FAMOUS simulates the small-
est global mean change for both surface temperature
and precipitation among all simulations at 3.1 °C and
0.15 mm d−1, respectively. Its simulated Equator-to-
pole temperature differences are among the largest in
the ensemble, but they decrease comparatively little
from the LGM to the present day (Fig. 2d, e).

– LOVECLIM DG_ns (Menviel et al., 2011)
Model: This version of the EMIC LOVECLIM couples
the atmosphere model ECBilt (Opsteegh et al., 1998)
to the ocean model CLIO (Campin and Goosse, 1999;
Goosse et al., 1999; Goosse and Fichefet, 1999). LOVE-
CLIM DG_ns used ECBilt-CLIO v.3 coupled to a dy-
namical vegetation model with a terrestrial carbon cy-
cle (Menviel et al., 2011) and is included in the main
set. It focuses on the Deglaciation, running from 18–
6.2 kyr BP. Employed greenhouse forcing is based on
reconstructions from EPICA (Lüthi et al., 2008; Mon-
nin et al., 2001; Spahni et al., 2005) mapped onto the
EDC3 age scale (Parrenin et al., 2007). Like TraCE-
21ka, it includes meltwater pulses in the North Atlantic
and Southern Ocean (melt-routed matched) to repro-
duce millennial-scale events in the North Atlantic (Mc-
Manus et al., 2004) and Greenland (Alley, 2000) during
this period (Menviel et al., 2011).
Simulated climate: As a result of the employed meltwa-
ter pulses, there are a warming and a subsequent cool-
ing event visible in the global mean around the times
of the Bølling–Allerød and the Younger Dryas, respec-
tively (Fig. 2a, b). This signal is very strong in the
Northern Hemisphere, where LOVECLIM DG_ns ex-
hibits a large reduction in Equator-to-pole temperature
gradient alongside these abrupt changes (Fig. 2d). In
the Southern Hemisphere, this decrease is more sub-
dued (Fig. 2e). Overall, the simulation shows deglacial
warming and wetting comparable to most of the other
simulations (Fig. 2a, b).

– ECBilt-CLIO sim2bl (Timm and Timmermann, 2007)
Model: The second ECBilt simulation included in the

main set uses the same coupled ocean and atmosphere
models and covers the period from 21–0 kyr BP (Timm
and Timmermann, 2007). It contains no meltwater forc-
ing. For the ice sheets and land–sea mask of the atmo-
sphere model, it applies ICE4G with the East Siberian
ice sheet removed (ICE4G*). For the ocean model,
the same ice sheet is used but combined with a con-
stant land–sea mask representing present-day condi-
tions (ICE4G* & PD).
Simulated climate: Its simulated mean changes are
3.9 °C and 0.25 mm d−1. Like LOVECLIM DG_ns,
it has deglacial warming and wetting comparable to
most of the other simulations (Fig. 2a, b). In magni-
tude, changes in ECBilt-CLIO sim2bl resemble those
in LOVECLIM DG_ns (Fig. 2). Their structure is quite
different, though, as ECBilt-CLIO sim2bl variables all
change in a step-like manner. The simulated sea ice
cover is at the upper end of the ensemble at the be-
ginning of the simulation (similarly to TraCE-21ka and
MPI-ESM r7) and then, like MPI-ESM r7, reduces dras-
tically towards the Holocene (Fig. 2c).

– TransEBM (Sect. S2.1 in the Supplement)
Model: To represent the linear temperature response of
the climate system to external forcing, we juxtapose
a simulation from an extended version of the 2D en-
ergy balance model TransEBM (Ziegler and Rehfeld,
2021) with the other simulations and include it in the
main set. Here, it has been extended to include fresh-
water and zonal volcanic forcing. The simulation cov-
ers the surface temperature evolution of the last 26 kyr,
with ICE6G boundary conditions updated every 125 or
500years. Sea ice extent was interpolated between the
LGM and present-day states given by Zhuang et al.
(2017). Meltwater forcing was assimilated based on the
database of sea surface temperature records by Jonkers
et al. (2020) (Jonkers assimilated; see Sect. S2.1). The
simulation employs the same volcanic forcing as MPI-
ESM r7. Sect. S2.1 describes the simulation in more de-
tail.
Simulated climate: TransEBM simulates a GMST dif-
ference between the LGM and the Holocene of 4.1 °C,
which is at the lower end of the ensemble and compara-
ble to that of TraCE-21ka. Changes in Equator-to-pole
difference are similar in magnitude in both hemispheres,
unlike most other simulations (Fig. 2d, e). Its sea ice
cover is the largest and changes the most during the
Deglaciation because EBM models sea ice as a surface
type, which covers any given grid cell completely.

To summarize, the main set is made up of MPI-ESM ch4
and r7, TraCE-21ka, HadCM3B r2, FAMOUS, LOVECLIM
DG_ns, ECBilt-CLIO sim2bl, and TransEBM. MPI-ESM
r1–r6 and HadCM3B r1 form the sensitivity set.
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Figure 2. Centennial changes in the main set from the simulation ensemble from the LGM to the Holocene with annual data as shading.
(a) GMST and (b) GMP anomaly with respect to the past 2 kyr. (c) Global sea ice fraction. Note that the EBM only allows complete coverage
of grid cells by one surface type and therefore has the largest sea ice cover. FAMOUS and LOVECLIM DG_ns are missing, since their sea
ice cover was not readily available. (d, e) Equator-to-pole temperature difference for the Northern Hemisphere and Southern Hemisphere,
respectively, computed as the difference between polar (70–90°) and equatorial (15° S–15° N) temperatures. The latter are shown in panel (f).
The sensitivity set is shown in gray and can be found in Fig. S1. LGM (23–19 kyr BP), Deglaciation (19–8 kyr BP), and Holocene (8–0 kyr BP)
as used in this study are marked in panel (a).

2.2 The model hierarchy

We construct a hierarchy of the models to summarize the out-
lined differences and thus understand their effects on all as-
pects of climate variability. The complexity of the models
and simulations differs along several axes: resolution in time
and space, complexity of the individual components (e.g.,
atmosphere, ocean, land surface), their coupling, and their
forcing. Constructing a hierarchy of models or simulations
helps summarize those differences and thus understand their
effect on any given analysis. The relevant axes of compar-
ison might differ between applications. As a consequence,
ranking the same models and simulations might produce a
different hierarchy depending on the application. Here, we
establish a hierarchy focused on features that affect variabil-
ity and for which the simulations meaningfully differ.

Based on these considerations, we include eight axes of
comparison (Fig. 3a). Section S2.2 explores these axes and
the classification of the simulations. The resulting hierarchy
reveals the various levels of complexity of the different sim-
ulations by placing them along each axis. In general, a sim-
ulation is considered more complex, the larger the total area
it covers. Whenever an axis of the hierarchy does not ap-
ply to a simulation, the rank will be at the center of the net;
see the lack of dedicated ocean or land hydrology model in
TransEBM.

Based on all the factors summarized in Fig. 3a, we sepa-
rate all simulations into four groups of complexity for parts
of our analysis: ESMs (MPI-ESM), GCMs (TraCE-21ka,
HadCM3B1, FAMOUS), EMICs (LOVECLIM, ECBilt-
CLIO), and the EBM (TransEBM). The categorization fol-
lows the overall number of levels reached in the hierarchy. In
the end, both applied forcings and complexity of the model
components decide the simulation output. Our analysis tries
to identify and disentangle the effects of both on simulated
variability, with the goal of identifying the complexity both
necessary and sufficient for long, transient climate simula-
tions. Since increased complexity implies higher computa-
tional demand, a trade-off has to be made between complex-
ity and available resources. Knowing the benefits and limita-
tions of added complexity is thus crucial.

2.3 Global climate reanalysis data

For quantitative comparison, we draw on a spatiotemporally
gridded product, the LGM reanalysis LGMR by Osman et al.
(2021), which covers the past 24000 years. LGMR combines
model simulations and proxy reconstructions in an offline
data assimilation approach for a proxy-constrained estimate
of the full field of surface temperature since the LGM. The
resulting dataset has a resolution in time of 200 years, allow-
ing a comparison of centennial variability to the results of our
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Figure 3. (a) Ranking of the models used in this study along eight axes of complexity. The criteria are described in detail in Sect. 2.2 and
Table S1. Altogether they establish a hierarchy of the different models: ESMs (MPI-ESM), GCMs (CCSM3, HadCM3B, FAMOUS), EMICs
(LOVECLIM, ECBilt-CLIO), and the EBM (TransEBM). Atmospheric and oceanic resolutions of some of the simulations are listed, with
the vertical resolution always last. (b, c) Latitudinal distributions of mean temperature and precipitation for hierarchy categories based on
panel (a). For temperature, the biggest spread between the models and largest overall increases from the LGM to the Holocene can be found
in the polar regions. For precipitation, the simulations and periods vary most in the tropics and the mid-latitude bands.

analysis. The reanalysis relies on model priors from 17 time-
slice experiments from iCESM1 (Brady et al., 2019) and 539
geochemical proxy records of sea surface temperature. Us-
ing a Bayesian forward model, proxy values are estimated
for given time steps at every proxy location from the model
prior. This produces a forward-modeled proxy value different
from the actual proxy value. To take uncertainties and the co-
variance between proxy location and the climate field into ac-
count, this difference is weighted by the Kalman gain for the
update of the model prior temperature field. The resulting re-
analysis estimates a global warming of 7.0±1.0 °C from the
end of the LGM to the PI (with PI defined as 1000–1850 CE),
as it is contains an LGM state colder than reconstructed else-
where (cf. Annan et al., 2022; Tierney et al., 2020; Shakun
and Carlson, 2010). However, unlike other reconstructions,
LGMR provides a gridded reconstruction of the surface tem-
perature field covering the whole time period of interest here,
not just the LGM. Here, we use the ensemble mean as the ba-
sis for our calculations of variability.

3 Methods

Climate can be represented by sets of observations in space
and time. The field of a climate variable then refers to usually
gridded spatial representations of that variable (von Storch
and Zwiers, 1999). Conversely, a time series specifies the se-

quence of observations in time (Chatfield, 2016). As such,
climate variables can be treated as random variables with as-
sociated probability distributions, and time series represent
realizations of a stochastic process. Here, we analyze the sta-
tistical properties of the time series of surface temperature
and precipitation in space and time by computing their mo-
ments and power spectra.

In order to compare the transient simulations, we first re-
grid them to a common T21 resolution, which is the low-
est commonly used resolution in the ensemble. We further
compute decadal and centennial means of the annual data to
obtain the variability on those timescales. Then, we extract
the time periods, LGM (23–19 kyr BP), Deglaciation (19–
8 kyr BP), and Holocene (8–0 kyr BP), from all time series
(see Fig. 2a). Finally, we remove the trend from the time se-
ries using a Gaussian filter with a kernel length equivalent
to 4000 years,5 which is the length of the LGM as the short-
est time period we investigate. After detrending, we can as-
sume that the resulting time series are (weakly) stationary, a
requirement for the estimation of moments, along with the
autocovariance function and thus the spectrum.

5Fig. S3 shows the effect of different choices of kernel lengths
and compares this method to linear detrending with breakpoints.
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3.1 Moments of a probability distribution

The distributions of surface temperature and precipitation
cannot be assumed to be normal. Precipitation in particular
often has heavier tails than a normal distribution (Franzke
et al., 2020). To describe the shape of the distributions of
climate variables, we turn to the four moments: mean, stan-
dard deviation, skewness, and kurtosis (Fig. 4; von Storch
and Zwiers, 1999). We compute them for every grid box and
time period. These are then area-averaged globally or zonally
when providing the respective means of the moments.

The generalized moments of random variable X of a point
A for a sample of sizeN are defined using the expected value
as

µn = E[(X−A)n] =
1
N

N∑
i=1

(Xi −A)n, (1)

where n designates the nth moment (Papoulis and Pillai,
2002). There exist variations of this definition of the mo-
ments depending on normalization or bias correction terms.
We introduce them in more detail in Sect. S3.1. Here, we
focus on the definitions used in the analysis. To assess the
background climate state, we use the arithmetic mean µ for
n= 1 (Fig. 4a; Papoulis and Pillai, 2002) and the expected
values computed about the origin, such that

µ1 ≡ µ= E[X] =
1
N

N∑
i=1

Xi . (2)

Considering the moments about the mean µ instead yields

mn =
1
N

N∑
i=1

(Xi −µ)n, (3)

called nth central moment (Papoulis and Pillai, 2002; von
Storch and Zwiers, 1999). For the second moment, variance,
we use a symmetric unbiased estimator (Filliben and Heck-
ert, 2024), yielding

σ 2
=

N

N − 1
m2 =

1
N − 1

N∑
i=1

(Xi −µ)2. (4)

It describes the spread of the distribution – the larger the vari-
ance and its square root standard deviation σ , the larger the
spread around mean µ (Fig. 4b).

For the third moment, skewness (s), we use

s =
m3

m
3/2
2

. (5)

Skewness describes the (a)symmetry of a distribution (von
Storch and Zwiers, 1999). It is zero for a symmetric distri-
bution, e.g., for the normal distribution. For negative skew-
ness, the weight of the distribution is at higher values, with
mode and median larger than the mean (Fig. 4c). This implies

a stronger tail for lower than higher values: the distribution
is “skewed left”. For positive skewness, on the other hand,
mode and median are smaller than the mean: the distribution
is skewed towards higher values. To test whether any skew-
ness found differs significantly from a normal distribution,
we test its deviation from normality for significance using a
t-test. For this test, the null hypothesis is that the skewness
found and that of a corresponding normal distribution are the
same and thus 0. We define the threshold for the p-value to
be 0.05.

Adapting the skewness definition for n= 4, kurtosis,
yields a kurtosis of 3 for a normal distribution. To derive an
estimator which is 0 for normal distributions, kurtosis is often
shifted by −3 to derive excess kurtosis k (Filliben and Heck-
ert, 2024). Based on the fourth and second central moment,
we calculate excess kurtosis as

k =
m4

m2
2
− 3 . (6)

We use excess kurtosis throughout the paper; for the sake of
brevity, we will refer to it as kurtosis from now on. Kurtosis
captures the heaviness of the tails of a distribution (Fig. 4d).
If excess kurtosis is negative, the tails are thinner than those
of a normal distribution. Conversely, positive excess kurto-
sis corresponds to heavier tails. Generally, positive kurtosis
and skewness co-occur for datasets with more extreme val-
ues (Doane and Seward, 2011). As for skewness, we check
again for non-normality using the hypothesis test derived
by Anscombe and Glynn (1983) with a threshold for the
p-value of 0.05. For all computations, we ignore rare not-
a-number (nan) values in the temperature or precipitation
fields. Changes in moments often occur concurrently and can
then both enhance or counteract each other (Fig. 4).

3.2 Spectral analysis

In order to analyze how the variability in surface temperature
and precipitation depends on timescale, we further compute
the power spectral density (PSD), also called the power spec-
trum. If a process contains (quasi-)oscillatory components,
the spectrum shows a peak at their periodicity with a cer-
tain width related to the damping rate of that process. The
spectrum’s background and scaling reflect the persistence (or
memory) of the process (Ditlevsen et al., 2020).

The auto-covariance function for a random variable Xt at
times t1 and t2 is given by the expectation value of its vari-
ance as

γ (t1, t2)= E[(X(t1)−µ(t1))(X(t2)−µ(t2))], (7)

where γ (0)= E[X2
] is the variance.

If the time series samples an ergodic, weakly stationary
stochastic process, the auto-covariance and mean are inde-
pendent of time and thus depend only on lag, τ = t2− t1. As-
suming further that the data XT are an excerpt of a theoret-
ically infinite time series such that they are non-zero only
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Figure 4. Visualization of changes in the moments of the distribution of a random variable, with individual changes on top and concurrent
changes on the bottom. Distributions for a lower (pink) and higher (green) value are shown. Panels (a)–(d) show changes in just one moment:
(a) mean, (b) variance, (c) skewness, and (d) excess kurtosis. Panels (e)–(h) show exemplary combinations of changes in the higher moments
with constant mean: (e) opposite changes in variance and skewness, (f) concurrent change in variance and kurtosis, (g) concurrent change in
skewness and kurtosis, and (h) changes in all higher moments. Figure S4 shows exemplary time series corresponding to the distributions.

for an interval t ∈ [−T2 ,
T
2 ] (Ditlevsen et al., 2020), auto-

covariance can be written as

γ (τ )= E((X(t)−µ)(X(t + τ )−µ)), (8)

= lim
T→∞

1
T

T/2∫
−T/2

X(t)X(t + τ ) dt. (9)

The PSD S for frequency ω is then defined as the Fourier
transform F of the autocovariance

S(ω)= F(γ (τ ))(ω), (10)

=

T/2∫
−T/2

γ (τ )exp−iωτ dτ. (11)

The spectra of climate variables sometimes scale consis-
tently across timescales following a power law with S(ω)∝
ω−β , with β as the so-called scaling coefficient (Fredriksen
and Rypdal, 2017; Lovejoy and Varotsos, 2016; Huybers and
Curry, 2006; Wunsch, 2003). The scaling coefficient then re-
flects the persistence of the stochastic process.

To estimate PSDs, we apply the multi-taper method
(Thomson, 1982; Percival and Walden, 1993) to the de-
trended time series. For data of finite length, this method
reduces spectral leakage by computing separate spectra for
orthogonal windows, so-called tapers, and averages the re-
sulting spectra. Here, we use three tapers and estimate chi-
squared distributed confidence intervals. We smooth the re-
sulting spectrum and cut off artifacts at the low- and high-
frequency end, such that, for a time series with a time step

ts, a period range of [2ts,1000] remains. For comparing the
variance in the different time periods across timescales, we
further compute the spectral gain following Ellerhoff and
Rehfeld (2021) by dividing the spectrum of the LGM and
Deglaciation, respectively, by that of the Holocene.

4 Results

We examine changes in variability against a backdrop of a
changing mean state, which we examine first (Sect. 4.1).
Then, we evaluate temperature moments with respect to
their dependence on mean state (LGM, Deglaciation, and
Holocene), timescale, and model complexity (Sect. 4.2).
Next, we focus on the forcing dependency by analyzing the
influence of ice sheet reconstruction (Sect. 4.3.1), meltwa-
ter protocol (Sect. 4.3.2), and volcanism (Sect. 4.3.3) on sur-
face temperature variability. Sections 4.4 and 4.5 repeat the
analysis for precipitation. Then, we turn to the power spectra
of temperature and precipitation, again considering state and
forcing dependency, as well as differences related to model
complexity (Sect. 4.6). We further compare the temperature
spectra to results from the LGM reanalysis.

4.1 Mean state changes from LGM to Holocene across
the ensemble

Between the LGM and the Holocene, all simulations show a
mean warming and wetting, as evidenced by the increasing
trends in GMST and GMP towards the Holocene (Fig. 2).
Overall, MPI-ESM r1–r7 exhibit the largest temperature dif-
ference between the LGM and the Holocene with an aver-
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age increase of 5.6 °C. Among the simulations, the anomaly
is largest and the simulated LGM temperature is lowest for
the simulations with GLAC1-D as the ice sheet reconstruc-
tion. In the whole ensemble, LGM cooling is widespread
and especially pronounced in the high latitudes on land,
with the exception of a few localized hotspots in a few
of the simulations, e.g., an Alaskan warm patch in TraCE-
21ka (Fig. S8g, h). Inter-simulation differences are generally
larger in the high latitudes, especially in the Northern Hemi-
sphere (Fig. 3b). For precipitation, the picture is more di-
verse, but, in most places and especially over land, a drier
LGM is simulated. Some simulations show a locally wetter
LGM in the tropics, a phenomenon mostly confined to the
oceans. ESMs and GCMs show similar latitudinal profiles,
while the EMICs miss some precipitation in the inner tropics
and mid-latitude westerlies (Fig. 3c).

4.2 State and timescale dependency of surface
temperature

Analyzing the higher-order moments of surface temperature
reveals their dependence on timescale and model complex-
ity (Figs. 5, S5). The standard deviation of surface temper-
ature and its regional differences decrease towards longer
timescales (Fig. 5a, d, g). Most of this decrease occurs be-
tween annual and decadal timescales. The only exception
to this pattern is the EBM, which has low standard devi-
ation across all periods. Differences between the three pe-
riods in the ensemble are concentrated in higher latitudes,
especially in the northern polar regions. On annual scales,
the Holocene standard deviation is smaller there than dur-
ing the LGM and Deglaciation, which are similar to each
other. For decadal and centennial scales, on the other hand,
the Deglaciation stands out with higher standard deviation,
while the Holocene and the LGM exhibit more similar lev-
els. The LGMR shows similar patterns on centennial scales.

As a measure of asymmetry, skewness is positive (neg-
ative) if the weight of the distribution is at lower (higher)
values with a high (low) value tail (see Sect. 3.1). Globally
and across latitudes, skewness of temperature is usually close
to zero, indicating little asymmetry (Figs. 5b, e, h, S5). The
EBM is the exception as it shows pronounced negative skew,
a signal that shrinks towards longer timescales. On centennial
scales, the lack of skewness in the ensemble agrees with the
results for the LGMR ensemble mean. In certain latitudinal
bands, more significant deviations from zero exist. For exam-
ple, MPI-ESM r1–6 and TraCE-21ka show positive centen-
nial and, to a lesser degree, decadal skewness in the tropics
during the Holocene, in particular over the ocean. This signal
disappears with the addition of volcanic forcing in MPI-ESM
r7 (Fig. 5h). In the MPI-ESM simulations, it is not reflective
of physical processes in the climate system (Ellerhoff and
Rehfeld, 2021). Therefore, we exclude it in the discussion of
skewness and kurtosis going forward. Furthermore, TraCE-
21ka shows a strong bipolar pattern during the Deglaciation

on all timescales, with negative skewness in the Southern
Hemisphere and positive skewness in the Northern Hemi-
sphere (Figs. 5h and S9n). All other simulations show ei-
ther no hemispheric pattern or, in the case of some MPI-ESM
simulations and, to a lesser degree, HadCM3B, the opposite
one, although with smaller magnitudes (Figs. 5h and S9k).
For the MPI-ESM simulations, this bipolar pattern mostly
shows up in the runs employing the GLAC1-D ice sheet
(ch4, r1, r6, r7). The pattern is weaker for the melt-uniform
runs (MPI-ESM r4 and HadCM3B r1) and disappears with-
out meltwater forcing (MPI-ESM r3 and HadCM3B r2).

Kurtosis reflects the heaviness of the tails, defined here
such that positive (negative) kurtosis corresponds to tails
more (less) pronounced than those of the normal distribu-
tion (see Sect. 3.1). As for skewness, the kurtosis is mostly
small on annual timescales, across periods and simulations
in the ensemble and LGMR (Figs. 5c, S5c). Towards longer
timescales, some regional differences emerge (Figs. 5f, i,
S5f, i). TraCE-21ka again deviates during the Deglaciation,
with temperatures that show strong positive kurtosis that is
strongest in the high latitudes (Figs. S6o, r, and S9w). The
EBM behaves differently on annual and decadal scales, sim-
ulating a strong positive kurtosis and thus heavy tails. On
centennial scales, the EBM is again close to the more com-
plex models.

4.3 Influence of forcings on the moments of surface
temperature distributions

Using the sensitivity set, we investigate the interaction be-
tween forcings and moments of temperature distributions, in
particular regarding the underlying ice sheet reconstruction
(Sect. 4.3.1), meltwater protocol (Sect. 4.3.2), and volcanic
forcing (Sect. 4.3.3).

4.3.1 Effect of ice sheet reconstructions on the shape of
surface temperature distributions

Changes in standard deviation are regionally limited in re-
sponse to the prescribed ice sheet reconstruction (Fig. 6a–f).
On centennial timescales, ICE6G runs simulate smaller stan-
dard deviation in the northern North Atlantic compared to the
runs using GLAC1-D (cf. MPI-ESM r1 and r6; Fig. 6a, b, d,
e). This coincides with a reduced sea ice cover in these runs
and a smaller temperature difference between the LGM and
Holocene (Fig. S1a and c). The opposite pattern occurs in ar-
eas of Antarctic sea ice, especially the Weddell Sea, where
ICE6G runs have higher standard deviation (Fig. 6b, e).

On centennial timescales, more areas in the simulations
using GLAC1-D tend to have significant skewness, both pos-
itive and negative, than in simulations using ICE6G (Fig. 7).
During the Deglaciation, the bipolar pattern of negative
skewness in the Northern Hemisphere and positive skew
in the Southern Hemisphere that emerges on decadal and
centennial timescales is enhanced in the GLAC1-D simu-
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Figure 5. Changes of annual, decadal, and centennial higher-order moments of surface temperature (a–i) and precipitation (j–r) with latitude.
For all simulations, standard deviation (left column, in units of °C for temperature and mm d−1 for precipitation), skewness (middle col-
umn, dimensionless), and kurtosis (right column, dimensionless) are shown. Results are differentiated according to period (LGM (dashed),
Deglaciation (solid), and Holocene (dotted)) and complexity (ESMs (green), GCMs (dark blue), EMICs (yellow), and EBM (pink)). For
centennial temperatures, moments of the LGMR ensemble mean are added in light blue. For temperature, the range of skewness and kurto-
sis of the EBM extend beyond what is shown, as does the kurtosis in HadCM3B for precipitation. Figures S6 and S7 show the individual
simulations.

lations (Figs. 7, S13). On decadal and annual scales, the
simulations with ICE6G can, at times, show opposite trends
in comparison to their respective GLAC1-D simulations
(Figs. S13, S14). The chosen ice sheet reconstruction has a
limited impact on temperature kurtosis on annual to centen-
nial timescales (Figs. 8, S15, S16).

4.3.2 Effect of meltwater protocols on surface
temperature distributions

Meltwater forcing affects the moments particularly during
the Deglaciation and in the North Atlantic (Figs. 6, 7, 8). The
local melt-routed protocol is associated with the largest mo-
ments, and the no-melt scenario is associated with the small-
est moments. This holds in particular in the North Atlantic.
Furthermore, the melt-routed simulation has the strongest
signal in the Southern Ocean.

For skewness, the North Atlantic is associated with a neg-
ative signal, again strongest for the melt-routed scenario
(Fig. 7). The melt-routed runs further show positive skew-
ness in the southern Atlantic and the southeastern Pacific. On
the other hand, the uniform runs do not show consistent pat-
terns: MPI-ESM r4 simulates negative skewness over large
parts of the middle and high latitudes in the Northern Hemi-
sphere, whereas HadCM3B r1 only has significant, mostly
positive, skewness in a few regions (Fig. 7). The absence
of meltwater forcing, as in MPI-ESM r3, results in a no-
table lack of significant skewness across the globe. Across
the ensemble, including meltwater mostly introduces a shift
to more positive kurtosis during the Deglaciation, especially
in the North Atlantic (Fig. 8). This positive shift is stronger
in the melt-routed (HadCM3B r2, MPI-ESM r2) than in the
melt-uniform simulations (HadCM3B r1, MPI-ESM r4) on
all timescales, although to varying degrees.
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Figure 6. Regional effects of forcings on centennial standard deviation of surface temperature. (a–f) Influence of ice sheet forcing as dif-
ferences between MPI-ESM runs using GLAC1-D and ICE6G. (g–u) MPI-ESM (g–o) and HadCM3B (p–u) simulations following different
meltwater protocols. (v–x) Difference between MPI-ESM r7 with volcanic forcing and r6 without it.

4.3.3 Effect of volcanism on surface temperature
distributions

For standard deviation of temperature, the effects of volcan-
ism are mostly limited to shorter timescales but are overall
small (Figs. 6v–x, S12). During the LGM, the run with vol-
canic forcing has a higher standard deviation than the one
without. For the Deglaciation and Holocene, volcanism re-
sults in standard deviation that is greater at lower latitudes
but smaller at higher latitudes.

Generally, volcanism results in negatively skewed temper-
ature distributions or a reduction in positive skew, since it
lowers temperatures after eruptions (Fig. S14j–o). It has the
strongest effect on shorter timescales and during the LGM
and Holocene. For the LGM, volcanic activity introduces a
pronounced negative signal, mostly confined to the tropics.
During the Holocene, skewness is decreased as well, turning
the unphysical positive signal over the tropics (see Sect. 4.2

and Ellerhoff and Rehfeld, 2021) and most land areas into
slightly negative skewness in parts of the tropics and ef-
fectively zero elsewhere (Fig. S15). On centennial scales,
volcanic activity mainly manifests in skewness during the
Holocene, where it again counteracts strong positive skew-
ness in the tropics (Fig. 7r, u).

In contrast to ice sheet and meltwater forcings, volcanic
forcing impacts kurtosis on all timescales and for all peri-
ods (Figs. 8p–u, S15j–o, S16j–o). For annual temperatures,
it shifts the kurtosis to be positive in extended areas, par-
ticularly in the tropics and at northern mid-latitudes. This
effect persists on decadal and centennial timescales for the
LGM and Deglaciation. During the Holocene and on longer
timescales, on the other hand, it reduces the low and mid-
latitude band of positive kurtosis in the tropics. With vol-
canism, skewness and kurtosis in MPI-ESM r7 resemble
HadCM3B r2 on centennial scales (Figs. 7, 8). On annual
scales, however, volcanic forcing introduces skewness and
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Figure 7. Regional effects of forcings on centennial skewness of surface temperature. Forcings are noted along with the run name for each
row. Percentages of grid boxes with significant positive and negative deviations from a Gaussian distribution are given. Areas where changes
are non-significant are hatched.

kurtosis patterns unlike any other simulation (Figs. S14,
S16).

4.4 State dependency of precipitation at annual to
centennial timescales

The standard deviation of precipitation is high in the tropics
and decreases towards higher latitudes (Fig. 5). In particu-
lar, it is high over the tropical oceans in the region of the
intertropical convergence zone (ITCZ; Figs. 5j and S11a–
i), where mean precipitation is also highest (Fig. 3c). The
tropical band of increased standard deviation exists only to
a lesser degree in the EMIC simulations (Fig. S6). State de-
pendency exists on centennial but only very rarely on an-

nual timescales. During the Deglaciation, the tropical pattern
of enhanced standard deviation remains on centennial scales
but is less pronounced than on annual scales. The spatial pat-
terns of the LGM and Holocene, on the other hand, are more
homogeneous, and the tropical standard deviation is similar
to that at other latitudes (Fig. 9). The only exception is the
FAMOUS simulation, which has enhanced tropical standard
deviation for all three periods and the overall largest magni-
tudes in the ensemble on centennial scales (Fig. S6p).

The higher moments show more diverse patterns for pre-
cipitation (Figs. 5, S5). For skewness, the simulations mostly
show positive precipitation skewness on annual scales, with
some negative skewness in areas near the Equator and lit-
tle difference between the periods (Fig. S11). The tropics
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Figure 8. Regional effects of forcings on centennial kurtosis of surface temperature. Forcings are noted along with the run name for each
row. Percentages of grid boxes with significant positive and negative deviations from a Gaussian distribution are given. Areas where changes
are non-significant are hatched.

also show the largest positive skewness. The EMICs simulate
the smallest skewness, although the positive deviation from
zero is still significant almost everywhere (Figs. 5, S11). The
ESMs and GCMs, on the other hand, simulate very simi-
lar patterns on annual scales. Starting on decadal and even
more strongly on centennial scales, the patterns diverge be-
tween periods and simulations (Figs. 5q, S10j–r). During the
LGM and Holocene, centennial skewness is close to zero and
thus indicates predominantly symmetric distributions. Dur-
ing the Deglaciation, skewness patterns are far more diverse,
with a larger spread and including negative excursions. These
center mostly around the Equator but also sometimes in the
high northern (for MPI-ESM simulations with a GLAC1-D
ice sheet; Fig. 10) or the high southern latitudes (for TraCE-

21ka; Fig. S10n). In a bipolar pattern, TraCE-21ka further
simulates high positive skewness in the high northern lati-
tudes (Figs. S6n, q and S10n). The EMICs and FAMOUS
show almost no significant skew in all periods on decadal
and centennial scales (Fig. S6).

Precipitation kurtosis is mostly positive on annual scales
across the periods in ESM and GCM simulations, in par-
ticular in the tropical regions (Figs. 5, S5, S11). The LGM
and Holocene exhibit no significant kurtosis on longer
timescales. During the Deglaciation, though, positive kurto-
sis persists. The EMICs, on the other hand, have some signif-
icant kurtosis only during the Deglaciation on annual scales
and otherwise show no significant deviation from zero in
contrast to the more complex models.
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4.5 Changes in precipitation distribution shape in
response to forcings

For the moments of precipitation, forcing dependency can
mostly be found for meltwater forcing (Figs. 9, 10). Effects
of the ice sheet reconstructions are mostly limited to cen-
tennial skewness in the tropics, in the North Atlantic zone,
and in mid- and high latitudes in Eurasia (Fig. 10). These are
the very same areas where temperature skewness changes the
most. The skewness patterns in the tropics agree between the
reconstructions but are enhanced in the GLAC1-D simula-
tions. An exception is the high northern latitudes during the
Deglaciation, where skewness is positive in the ICE6G sim-
ulations and negative in the GLAC1-D ones (Fig. 10).

Meltwater forcing affects all Deglacial moments, in partic-
ular in the tropics and North Atlantic. Standard deviation is
largest in the melt-routed runs (MPI-ESM r2 and HadCM3B
r2) and smallest in the no-melt simulation (Fig. 9). Inject-
ing meltwater introduces significant skewness in precipi-
tation distributions during the Deglaciation on centennial
timescales (Fig. 10). Both melt-routed simulations (MPI-
ESM r5 and HadCM3B r2) have a signal of negative skew-
ness in the eastern equatorial Pacific, with a positive signal to
the south of it. Only the positive signal remains somewhat in
the melt-uniform runs. These MPI-ESM and HadCM3B runs
further exhibit strong negative skewness in high northern lati-
tudes, although in different areas. The influence of meltwater
forcing on centennial kurtosis during the Deglaciation shows
up predominantly as positive kurtosis (Fig. S7). Melt-routed
runs have more positive kurtosis in the tropics, whereas melt-
uniform simulations have more in the high northern lati-
tudes. Overall, ice sheet reconstruction, meltwater protocol,
and volcanic forcing (see annual moments in Figs. S17, S18)
usually affect the moments of temperature more than those
of precipitation.

4.6 Spectral analysis of the variability in surface climate

To add to the analysis of variability, we examine the spec-
tra of surface temperature and precipitation during the LGM,
Deglaciation, and Holocene.

4.6.1 State and timescale dependency of global and
regional surface temperature spectra

Generally, we find temperature spectra that increase to-
wards longer timescales, some of which level off at multi-
centennial scales (Fig. 11). This pattern is particularly strong
for the Deglaciation, where it can also be found across lati-
tudinal bands (Fig. S21). However, the regional spectra can
be flat during the LGM and Holocene, for example, in the
tropics or mid-latitudes after a scale break at multi-decadal
scales. The spread between the simulations increases to-
wards longer timescales, especially during the Deglaciation
and the Holocene. During the LGM, all MPI-ESM simula-
tions show increased variability with a broad peak on interan-

nual scales, such that the spread is comparatively large there.
This increased variability originates in the tropical regions
(Fig. S21j, m) and relates to the simulated ENSO, which
is enhanced in the MPI-ESM simulations during the LGM.
None of the other simulations exhibit similarly increased
ENSO activity during the LGM, and the MPI-ESM signal
has been suggested to be inadvertently amplified (Ellerhoff
and Rehfeld, 2021). In the tropics, the spread between simu-
lations remains similar across timescales in all three periods.

The PSD ratios between the LGM and the Holocene de-
pend on simulation and timescale (Fig. 11d, e). In some sim-
ulations, the LGM has larger PSD across all timescales (e.g.,
MPI-ESM r7); for TraCE-21ka, it is the Holocene. For most
simulations, it changes with timescale, as many have larger
Holocene spectral power on centennial scales but larger
LGM power on decadal and millennial scales (Fig. 11d).
With very few exceptions, the deglacial spectrum contains
the largest power, especially above centennial timescales
(Fig. 11e). This pattern mostly holds for regional spectra
across latitudinal bands (Figs. S21, S22). This is partially be-
cause the increase in power from interannual to millennial
timescales is steepest during the Deglaciation, whereas the
scaling is smaller for the LGM and the Holocene.

4.6.2 Forcing dependency of the temperature spectrum
to ice sheet reconstruction, meltwater forcing, and
volcanism

The temperature spectra vary significantly in magnitude and
pattern between simulations and in response to external forc-
ing differences (Figs. 11, S21). For GLAC1-D simulations,
we find increased variability during the LGM on decadal to
centennial timescales, mainly in the Northern Hemisphere
mid- and polar latitudes. Meltwater forcing, on the other
hand, has the strongest impact during the Deglaciation, also
for the northern high latitudes. For the global spectra, there
is little difference between runs using the melt-routed (MPI-
ESM r2 and HadCM3 r2) versus melt-uniform (MPI-ESM r4
and HadCM3 r1) protocol. However, the run without melt-
water forcing has the lowest Deglacial variability among the
MPI-ESM simulations. Volcanic forcing strongly impacts the
spectrum of simulated surface temperatures. MPI-ESM r7,
the run with volcanic forcing, has the largest PSD from inter-
annual up to centennial timescales during all three periods.
While the other MPI-ESM runs show a drop in PSD on in-
terannual scales, especially during the LGM, r7 shows a con-
sistent increase in variability until at least centennial scales.
On longer timescales, it is also on the upper end of simulated
variability.
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Figure 9. Regional effects of forcings on centennial standard deviation of precipitation. Forcings are noted along with the run name for each
row.

4.6.3 Dependence of the spectral power of temperature
on model complexity

For the most part, GCMs and EMICs display less spectral
power than the ESMs up to multi-centennial scales. MPI-
ESM ch4 can be an exception, as it agrees with the other
MPI-ESM simulations on interannual scales during the LGM
but is then more similar to the non-MPI-ESM simulations on
multi-decadal scales. It further exhibits a strong 200–400-
year periodicity during the LGM that is absent in all other
simulations. This signal originates in the Southern Hemi-
sphere sea ice, grows stronger towards higher latitudes, and
extends into the tropics (Figs. S21, S29d, S30, Sect. S7.1).
The spectral power of the EBM is at the higher end on
decadal to centennial timescales. There, MPI-ESM r7, using
the same volcanic forcing reconstruction, is often the only

simulation with more power. However, it levels off around
centennial scales, with only moderate increases in variability
afterwards, such that its variability is among the lowest on
millennial scales, indicating a lack of persistence.

4.6.4 Comparison of the simulated surface temperature
variability to the LGM reanalysis

The magnitude of the LGMR power spectrum generally
falls within the range of the ensemble. During the LGM, it
shows similar levels of variability to the GCMs, matching
their increase towards millennial scales. For the Deglacia-
tion, it starts at the lower end of variability but again ex-
hibits a strong increase. This increase suggests a larger
scaling in comparison to the ensemble within the limited
range of timescales covered by the LGMR spectrum. For the
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Figure 10. Regional effects of forcings on centennial skewness of precipitation. Forcings are noted along with the run name for each row.
Percentages of grid boxes with significant positive and negative deviations from a Gaussian distribution are given. Areas where changes are
non-significant are hatched.

Holocene, the LGMR is at the lower end of spectral power
and mostly below the range of LGM-to-Holocene spectral
ratios found in reconstructions by Rehfeld et al. (2018)
(Fig. 11d). Most simulations also fall below that range, espe-
cially on decadal to centennial timescales. Above centennial
scales, many of the MPI-ESM runs are in agreement with it.
Notably, MPI-ESM r7 agrees with the range found by Re-
hfeld et al. (2018) on most timescales, although it is at the
lower end for multi-decadal scales.

4.6.5 Dependency of precipitation spectra on state,
timescale, model complexity, and forcing

With the exception of MPI-ESM r7, global spectra are quite
flat across short timescales and then feature an increase start-
ing on multi-decadal (MPI-ESM r1–r6) or centennial scales
(the remainder of the ensemble). This increase levels off
again around millennial scales. For the Deglaciation, the in-
crease is very sharp, whereas it is smaller and often more
gradual during the Holocene and LGM. Thus, the largest
variability is found during the Deglaciation above centennial
timescales, with FAMOUS as the only exception. Regionally,
LGM and Holocene spectra can be flat, especially in the trop-
ics, with only some simulations showing an increase in vari-
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Figure 11. Spectra and spectral ratios of surface temperature (top row) and precipitation (bottom row) variability with chi-squared distributed
confidence intervals. Both the x and the y axis are shown on a logarithmic scale. The spectra are separated by time period: (a, f) LGM, (b,
g) Deglaciation, and (c, h) Holocene. The spectral ratios highlight the differences between the periods showing the LGM-to-Holocene (d,
i) and the Deglaciation-to-Holocene (e, j) ratios. The sensitivity set (here in gray) is shown in Fig. S20. In panel (d), the estimated ranges of
Rehfeld et al. (2018) of the multi-centennial to millennial LGM-to-Holocene variance ratio based on proxy reconstructions (reconstructed)
and interannual variability based on the PMIP3 ensemble (PMIP3) are marked for comparison.

ability towards longer timescales for mid- and polar latitudes
(Fig. S22). The MPI-ESM simulations generally have larger
precipitation variability during the LGM than the Holocene,
whereas all other models show the opposite (Fig. 11i). All
simulations show larger precipitation variability during the
Deglaciation than during the Holocene, with the difference
increasing towards longer timescales (Fig. 11j). Precipitation
variability is among the highest in the MPI-ESM and lowest
in the EMIC simulations, globally and regionally (Fig. S23).

Inspecting the effect of forcings on the spectra of the sen-
sitivity set reveals similar relationships to that for the temper-
ature spectra. Using GLAC1-D leads to larger LGM variabil-
ity on multi-decadal and longer timescales for mid- and high
northern latitudes (Fig. S24). The no-melt protocol shows a
distinct lack of Deglacial variability, especially in the North-
ern Hemisphere. In all periods, MPI-ESM r7 with its vol-
canic forcing has significantly larger variability than all other
simulations on interannual to centennial timescales. This dif-
ference is even more pronounced than for the temperature

https://doi.org/10.5194/cp-21-627-2025 Clim. Past, 21, 627–659, 2025



648 E. Ziegler et al.: Patterns of changing surface climate variability

spectra and reaches up to 1 order of magnitude. Regionally,
too, the spectral power of MPI-ESM r7 is always on the up-
per end, such that it stands out even among the MPI-ESM
simulations.

5 Discussion

We investigate variability changes before, during, and after
a period of global warming in an ensemble of transient sim-
ulations of the Last Deglaciation. Among them, variability
differs considerably (see Table 2) depending on the follow-
ing:

– Timescale. Surface temperature shows a decrease in
standard deviation, larger absolute skew, and an in-
crease in kurtosis towards longer timescales (Sect. 4.2).
For precipitation, standard deviation decreases with
timescale (Sect. 4.4). During the LGM and Holocene,
skewness and kurtosis of precipitation tend to decrease,
whereas there is usually an increase with timescale dur-
ing the Deglaciation.

– Background state. Generally, the state dependency of
surface temperature increases with timescale for all mo-
ments and is largest during the Deglaciation (Sect. 4.2).
For precipitation, trends differ between moments and
are more complex (Sect. 4.4).

– Forcings. Simulations that differ only by ice sheet re-
construction diverge most on long timescales, although
differences can be found even for annual variability
(Sect. 4.3.1). For surface temperature, the impacts are
largest during the Deglaciation for all moments. For
precipitation, the employed ice sheet reconstructions
mainly affect skewness (Sect. 4.5).
The chosen meltwater protocol primarily affects the
moments on multi-decadal and longer timescales
(Sect. 4.3.2). On these, any kind of meltwater will in-
crease the standard deviation, absolute skewness and
kurtosis for both temperature and precipitation, with
the largest values for routed meltwater. For tempera-
ture, these trends manifest mostly in the North Atlantic,
and, for precipitation, they manifest around the equato-
rial Atlantic and eastern Pacific oceans (Sect. 4.5).
Volcanic forcing primarily affects the moments of tem-
perature with little effect on those of precipitation
(Sect. 4.3.3, Sect. 4.5). Its presence creates a low-
temperature tail. For both temperature and precipita-
tion, volcanic forcing increases spectral power on all
timescales.

– Model complexity. There are substantial differences in
simulated variability between categories of model com-
plexity and models of similar complexity (Sect. 4.2,
4.4). Except for the standard deviation of tempera-
ture, EMICs simulate very little change between states

Figure 12. Hydrological sensitivity during the LGM and Holocene:
percentage change in LGM-to-Holocene GMP against the change in
GMST. The line indicates a 2 % change in precipitation per degree
of temperature change. The data are fitted linearly with intercept 0.

and mostly have higher moments close to zero. In this
respect, they differ strongly from ESMs and GCMs,
which simulate more complex patterns and for which
some state dependency exists on all timescales and for
all moments.

Firstly, we discuss our findings on mean state changes,
against which we evaluate our hypotheses on state depen-
dency. We then discuss the above findings relating to climate
variability.

5.1 Large range in the underlying simulated and
reconstructed mean state changes

To understand variability in its context, it is important to as-
sess the simulated mean changes using observational records.
The simulated LGM to Holocene changes in GMST range
from 3.0 to 6.6 °C (Tables 2 and S1). Proxy-based recon-
structions and data assimilation approaches provide similar
ranges. Among more recent estimates, Osman et al. (2021)
suggest a warming of 7.0± 1.0 °C from the Deglaciation on-
set to the PI, while Tierney et al. (2020) estimate a tempera-
ture difference of 6.1 °C (5.7, 6.5). On the other hand, Annan
et al. (2022) propose 4.5 ± 0.9 °C and Shakun and Carlson
(2010) reconstruct a minimal warming of 4.9 °C for the LGM
at 22 kyr BP relative to the Altithermal at around 8 kyr BP.
While some of the differences can be explained by different
reference periods, uncertainty around the level of warming
remains. Agreement is larger with respect to spatial patterns
of warming, with larger changes in the Northern Hemisphere
than in the Southern Hemisphere, towards higher latitudes
in both hemispheres and over land and areas of melting ice
sheets. The temporal patterns of GMST change, however,
differ a lot between simulations. This includes, but is not lim-
ited to, the onset and termination of deglacial warming and
the timings of periods of abrupt change.
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Precipitation since the LGM is less studied than tempera-
ture, and even fewer proxy reconstructions of hydroclimate
exist. There is also no data product like the LGMR, which
can be used for comparison of spatial patterns. Therefore,
we consider simulated hydrological sensitivity to contextu-
alize our results (Fig. 12). The Clausius–Clapeyron relation
estimates a 7 % change in saturation water vapor per de-
gree temperature change. This is further constrained based
on the surface energy balance and its effect on evaporation
and water availability, such that a realistic range for precipi-
tation change per degree temperature change is 1 %–4 % (Li
et al., 2013). Here, we find a hydrological sensitivity of about
2.09 % per degree change in GMST. This agrees with the
ranges given for CMIP5/PMIP3 equilibrium simulations by
Li et al. (2013) of 1.5 %–3 % per degree Kelvin and Rehfeld
et al. (2020) of 1.1 %–2.5 % per degree Kelvin.

5.2 Increasing state dependency of variability with
timescale

5.2.1 Increased standard deviation and spectral power
of surface temperature during the deglacial
transition

For all moments of surface temperature, we find that state
dependency generally increases with timescale. Simultane-
ously, the ensemble simulates a reduction in the spread
of temperature distributions towards longer timescales with
the overall largest values during the Deglaciation. On an-
nual scales, areas of large standard deviation often exhibit
large mean changes, too, but this does not hold for longer
timescales. At decadal and centennial scales, standard devi-
ation is largest over the high-latitude oceans, particularly in
areas with seasonal sea ice cover and for the Deglaciation in
the North Atlantic in response to the changes in the Lauren-
tide ice sheet. Because the sea ice cover shrinks with warm-
ing and increases during periods of abrupt cooling, standard
deviation is larger for the Deglaciation than for the LGM and
Holocene across timescales (Fig. S26). This importance of
sea ice for local variability is in line with results from Eller-
hoff et al. (2022).

The ratio of LGM-to-Holocene variance mostly shows
higher LGM variance, with values between 1 and 2 (Ta-
bles 2 and S1). These results resemble those of Rehfeld et al.
(2018), who found ratios between 1 and 3 on interannual
to decadal scales based on CMIP5/PMIP3 equilibrium sim-
ulations. The smaller Holocene Equator-to-pole temperature
gradient, itself the result of polar amplification, has been sug-
gested as the reason driving the smaller Holocene variabil-
ity in comparison to the LGM (Rehfeld et al., 2018). Simi-
larly, Shi et al. (2022) conclude that interannual temperature
variance in PMIP3/4 LGM simulations is 20 % higher than
in PI simulations as a consequence of an increased merid-
ional temperature gradient, in particular at mid-latitudes. In-
deed, we find an enhanced meridional temperature gradi-

ent during the LGM for some regions and models, which is
correlated with the temperature gradient, including at mid-
latitudes. However, in other regions and models, we find no
such large-scale increase in the gradient nor a correlation to
the variance ratio (Fig. S31).

Few model–data comparisons of variance exist that in-
clude the LGM. When comparing the LGM and Holocene,
proxy reconstructions show that LGM variance is globally
about 4 times higher on timescales from 500 to 1750 years
(Rehfeld et al., 2018). The differences we find here are
smaller (Table 2). For PMIP3 simulations, Rehfeld et al.
(2018) similarly found a smaller simulated than recon-
structed ratio. Simulated LGM and Holocene spectra resem-
ble each other in their general shape, with increasing scaling
variability towards longer timescales. The absence of a char-
acteristic timescale in a stochastic process leads to such scal-
ing behavior with similar statistical properties across scales
(Mandelbrot and van Ness, 1968; Ellerhoff and Rehfeld,
2021). Both global and regional spectra (Figs. 11, S21, S22)
suggest inter-model differences in scaling and scale breaks.
Investigating these in greater detail by computing scaling
factors that quantify the relationship between timescale and
variability and identifying scale breaks could shed more light
on the nature of the scaling behavior. Scaling has been sug-
gested to differ between glacial and interglacial climates
(Huybers and Curry, 2006; Nilsen et al., 2016; Lovejoy,
2015; Rypdal et al., 2013; Roe and Steig, 2004), and we
also find state-dependent features (Fig. 11). This is in con-
trast to the lack of state dependency between global spectra
of equilibrium LGM and PI simulations found by Ellerhoff
et al. (2022). Since the differences are especially apparent
on longer timescales, this might point towards the long-term
memory effects or transient forcings missing in such equilib-
rium simulations.

The Deglaciation shows enhanced levels of variance in
comparison to the LGM and Holocene on decadal and cen-
tennial timescales (Fig. 5d, g) and larger spectral power
above centennial scales (Fig. 11e). Northern high latitudes
are the largest source of this state dependency, with further
significant state dependency in high southern and northern
mid-latitudes (Fig. 5d, g). This reflects the dynamic nature of
the Deglaciation with the melting of ice sheets, the resulting
freshwater flow, and the subsequent reorganization of the cli-
mate system. The enhanced variability in the spectra matches
the oscillatory behavior that Clark et al. (2012) described, es-
pecially on and for millennial scales.

Comparing simulations and reconstructions, Zhu et al.
(2019) argue that simulated and reconstructed temperature
variability agree on the global scale. That analysis consid-
ers long proxy records and reconstructions reaching back to
5 Myr BP and three of the simulations used in this paper:
TraCE-21ka, LOVECLIM DG_ns, and ECBilt-CLIO. With
respect to agreement on the global scale, our results agree
when comparing the simulations to the LGMR. On local
and regional scales, however, climate models have repeatedly

https://doi.org/10.5194/cp-21-627-2025 Clim. Past, 21, 627–659, 2025



650 E. Ziegler et al.: Patterns of changing surface climate variability

been found to underestimate variance on longer timescales
(Laepple et al., 2023). Similarly, we find notable differences
between regional patterns in the LGMR and the simulations
(see Fig. S19).

Considering the longer timescales included in the global
spectra, some of the MPI-ESM runs do fall into the range
suggested by reconstructions (Fig. 11). The LGMR only falls
in the range close to millennial timescales. It shows a steep
increase in LGM spectral power towards longer timescales,
which translates into an increasing LGM-to-Holocene ratio
that is unlike that of most simulations in the ensemble. How-
ever, proxy records covering both the LGM and the Holocene
are sparse, and both Shi et al. (2022) and Rehfeld et al.
(2018) suggest considerable spatial heterogeneity in the vari-
ance ratios. The sparse sampling of variance around the globe
likely biases the LGMR and thus the comparison. While the
LGMR exhibits more similar levels of variability to most
of the ensemble, comparison to the other reconstructions
suggests a lack of simulated regional variability on multi-
decadal timescales and beyond. The difference between the
LGMR and other reconstructions leaves uncertainty around
the models’ abilities to capture climate variability and thus a
potential lack of variability in future simulations with conse-
quences for projected changes in the frequency and intensity
of extremes. To decrease this uncertainty, our findings can
provide a basis for more in-depth model–data comparisons
of simulated variability during periods of warming. Realiz-
ing the full potential of such an analysis requires an ensemble
of coordinated experiments using common protocols (as for
some of the simulations here) and improved reconstructions
of past variability.

5.2.2 Larger absolute surface temperature skewness
and kurtosis towards longer timescales

Temperature skewness and kurtosis, describing the asym-
metry and heaviness of the tails of a distribution, respec-
tively, deviate more from zero towards longer timescales,
indicating more non-Gaussian distributions and changes in
extremes (Figs. 5, S5). During the Deglaciation, mid- and
high latitudes show enhanced values of skewness and kur-
tosis in ESMs and GCMs. Changes in skewness can be an
early warning signal of abrupt changes (Skelton et al., 2020;
He et al., 2013; Guttal and Jayaprakash, 2008). The simula-
tions in our ensemble undergo large-scale changes that can,
at times, be abrupt in response to the prescribed forcings and
boundary conditions. Regionally, there may be abrupt change
due to internal dynamics of atmosphere, sea ice, ocean, or
land surface. As our analysis computes variability over the
whole LGM, Deglaciation, and Holocene, it is ill-suited to
determine whether skewness changes occur locally or region-
ally ahead of the abrupt changes. This would instead require
an investigation into skewness changes over time. Such an
analysis would be of particular interest if it included high-

resolution proxy data for key variables experiencing abrupt
change and for potential tipping elements.

The LGMR contains some enhanced tropical skew and
kurtosis, mainly restricted to the Atlantic and continental ar-
eas (Fig. S19). During the Deglaciation, the LGMR shows
a pattern of negative skew in the North Atlantic consistent
with most simulations with any kind of meltwater forcing.
It further exhibits state dependency in the spatial patterns of
skewness and kurtosis and an increasing global mean kurto-
sis from the LGM to the Holocene (Fig. S5i). On the other
hand, the LGMR shows very few areas of significant devi-
ations from normality and patterns that are generally more
smooth than almost all simulations. Here, we use the LGMR
ensemble mean as the basis of all computations. Individual
ensemble members consistently show larger standard devi-
ation with common spatial patterns (not shown). For skew-
ness and kurtosis, however, patterns are very inconsistent
between ensemble members but, as for the ensemble mean,
with mostly Gaussian distributions. This is likely related to
the data assimilation, as an ensemble Kalman filter assumes
that the state vectors are Gaussian (Evensen et al., 2022).
While this assumption works for many weakly non-linear
systems (Evensen et al., 2022), it is likely insufficient for
the tails of the distribution. Furthermore, the higher-order
moments are affected by the spatial averaging inherent in
field reconstructions from individual proxy sites (Director
and Bornn, 2015; McKinnon et al., 2016; Haylock et al.,
2008). Due to the sparse coverage in space and time of the
proxy records, they only provide weak constraints during the
assimilation, especially further back in time. This likely also
explains why the variability in the LGMR is largest during
the LGM, when proxy availability is smallest. A compari-
son at individual proxy locations could shed more light on
model–data differences and similarities and could ascertain
whether the LGMR indeed has too little variability, as in-
dicated by its differences from both simulations and other
proxy reconstructions.

5.2.3 Precipitation distributions show trend towards
drier and less extreme years in the tropics from
the LGM to the Holocene

For precipitation, mean changes are similarly varied as for
surface temperature, with a global mean LGM-to-Holocene
wetting of 0.15–0.39 mm d−1. The ESMs and GCMs sim-
ulate some drying towards the Holocene over the tropical
oceans, with wetting almost everywhere else. The moments
are generally largest on annual timescales. In the tropics,
ESMs and GCMs show some state dependency but not as
much as for temperature. Tropical precipitation mostly de-
creases from the LGM to the Holocene, especially over the
ocean. Over the tropical oceans, standard deviation can sim-
ilarly decrease from the LGM to the Holocene, while it in-
creases almost everywhere else. During the Deglaciation,
some high-precipitation years remain, as indicated by the un-
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Table 2. Summary of LGM-to-Holocene changes in the moments. For every moment and timescale, the values according to model complexity
are listed as ESMs, GCMs, EMICs, and EBM. For the mean, the absolute value of the difference is listed; for the other moments, the ratios
are. Ratios are first computed for the individual simulations (see Tables S1 and S2 for surface temperature and precipitation, respectively)
and then averaged by category. For EMICs, this only includes ECBilt-CLIO here. Note that, on centennial scales, the ESM and GCM
categories include more simulations (MPI-ESM r3 and r4 and FAMOUS) than on the annual and decadal scale, leading among other things
to a difference in average mean change. It shows that centennial Holocene skewness of ECBilt-CLIO is very close to zero, which produces
a very large EMIC ratio. Very large ratios, as for the skewness of centennial precipitation distributions, are a result of moments very close to
zero for the LGM and Holocene.

1mhol−lgm vlgm/vhol slgm/shol klgm/khol

ESM GCM EMIC EBM ESM GCM EMIC EBM ESM GCM EMIC EBM ESM GCM EMIC EBM

Tann 5.81 4.44 3.95 4.12 1.75 1.27 1.16 1.27 0.07 −2.57 0.87 0.90 0.51 0.88 0.38 0.60
Tdec 5.81 4.44 3.95 4.12 1.43 1.25 1.03 1.39 1.76 3.44 0.76 0.98 0.26 0.29 0.09 0.60
Tcen 5.76 4.10 3.95 4.12 1.52 1.50 0.74 1.56 0.25 0.80 0.84 −0.01 −0.26 −0.25 −0.17 −0.29

pann 0.34 0.24 0.25 1.17 0.82 0.93 1.08 1.09 1.36 1.10 1.63 1.36
pdec 0.34 0.24 0.25 1.10 0.82 0.93 1.02 1.14 1.33 0.81 1.31 −0.13
pcen 0.34 0.22 0.25 1.07 0.84 0.88 0.64 1.01 101.84 −0.22 −8.97 −2.44

LGMR 6.80 1.21 −0.89 −0.47

changed positive skewness and kurtosis. For the Holocene,
however, annual higher-order moments are generally smaller
in comparison to the LGM. Towards longer timescales, stan-
dard deviation decreases significantly and shows very little
state dependency. For skewness and kurtosis, the tropical
peaks diminish, but, instead, areas of larger skew or kurto-
sis emerge in the mid- and high latitudes, especially during
the Deglaciation. So, while annual distributions show that
there are extreme-precipitation years in the tropics, decadal
and centennial distributions demonstrate that such extreme
conditions rarely persist for whole decades or centuries. For
skewness, dry regions are generally associated with positive
skew, since only a high-value tail can exist for low mean
precipitation. This is why precipitation mostly has positive
skewness.

Some GCM and ESM runs show bipolar skewness patterns
between the hemispheres but disagree on whether the neg-
ative skewness is in the Northern Hemisphere (MPI-ESM,
HadCM3B) or Southern Hemisphere (TraCE-21ka). These
bipolar patterns appear in response to meltwater forcing (see
Sect. 5.3). The spectra show little state dependency on an-
nual to multi-decadal timescales (Fig. 11i, j). For centen-
nial timescales and longer, the Deglaciation shows a strong
increase in variability, strongest in the tropics (Figs. S23
and S24), setting it apart from the LGM and Holocene. The
LGM and Holocene differ to a lesser degree but start diverg-
ing on centennial timescales, although the simulations dis-
agree whether the LGM or the Holocene has stronger spec-
tral power.

5.3 Dependence of surface climate variability on
external forcings

While ice sheet changes, meltwater fluxes and volcanism
all have characteristic timescales, differences in these forc-

ings cause variability changes on other timescales as well.
As such, forcings, through their non-linear interactions with
faster components of the climate system, impact variabil-
ity on timescales shorter than their characteristic timescales.
Conversely, they also impact slower components and thus
variability on longer timescales. This implies that, even
when investigating variability on short, e.g., interannual,
timescales, the initial state of slower components like the
oceans can affect simulated variability.

For ice sheet reconstructions, we compare ICE6G with
GLAC1-D, which has a more extensive but lower glacial
ice cover. The reconstructions have temporal resolutions
of 500 and 100 years, respectively. While the reconstruc-
tions were interpolated for MPI-ESM r1–7, this difference
in the underlying timescale will still affect centennial vari-
ability and likely explains some of the increased variabil-
ity found for simulations using GLAC1-D in comparison
to those using ICE6G (see Fig. 6). For the northern lati-
tudes, the comparison indeed reveals a general association
of GLAC1-D with larger standard deviation during the LGM
and Deglaciation (Fig. 6). On the other hand, GLAC1-D is
associated with reduced standard deviation across timescales
in parts of the Southern Ocean during the Deglaciation and
Holocene related to less variance in sea ice (Fig. S26). To-
wards longer timescales, the simulations with GLAC1-D are
both more positively and negatively skewed, in particular for
the Deglaciation. The chosen ice sheet reconstruction thus
significantly impacts variability, especially for temperature,
and behavior at the tails of the distributions on annual to
millennial timescales. However, there is considerable uncer-
tainty in ice sheet reconstructions and corresponding melt-
water releases (Stokes et al., 2015; Abe-Ouchi et al., 2015;
Ivanovic et al., 2016), an uncertainty that simulated variabil-
ity thus retains. Many of the differences between simulations
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using GLAC1-D and ICE6G can be attributed to their asso-
ciated meltwater protocols.

A bipolar skewness pattern indicates a meltwater pulse in
the area of negative skewness. GLAC1-D introduces melt-
water pulses, in particular MWP-1A and MWP-1B, mainly
in the Northern Hemisphere. These lead to a freshening of
North Atlantic surface water and a slowdown of the Atlantic
Meridional Overturning Circulation. As a result, the North-
ern Hemisphere cools and experiences more cold outliers
(negative skewness), while the Southern Hemisphere warms.
In ICE6G, on the other hand, MWP-1B is mainly released
into the Southern Ocean, counteracting and reducing the
dominating bipolar pattern. In TraCE-21ka, the most abrupt
freshwater pulse (MWP-1A) is mostly imposed as a fresh-
water flux into the Southern Ocean and, as such, leads to an
opposite pattern in skewness. Kurtosis, similarly, is stronger
in GLAC1-D simulations during the LGM and Deglaciation,
an effect that grows towards longer timescales. There is a
general ranking of simulations by meltwater protocol with
variability increasing from no-melt to melt-uniform and fi-
nally melt-routed. Since simulations are generally believed to
lack variability at least regionally (e.g., Laepple et al., 2023;
Weitzel et al., 2024; Rehfeld et al., 2018), this supports the
usage of the melt-routed protocol. Since meltwater forcing
has such a strong association with variability and the over-
all deglacial climate evolution (Snoll et al., 2024), variability
could help constrain meltwater releases. However, this would
require identifying models with high skill regarding simu-
lated variability, currently hindered by large uncertainties in
reconstructed variability. Furthermore, tuning meltwater to
reproduce reconstructed variability alone is likely too sim-
plified an approach (Weitzel et al., 2024).

Volcanism has the largest impact on annual scales, as it in-
troduces short-term cooling events. However, its impacts are
evident on longer timescales as well through non-linear in-
teractions with other components of the climate system, as
also noted by, for example, Ellerhoff et al. (2022). This is
particularly apparent in the spectra, where volcanism raises
the power across and especially on decadal to centennial
timescales (Fig. 11). Volcanic forcing mostly increases stan-
dard deviation and reduces positive temperature skew across
timescales and kurtosis on annual scales as high-temperature
outliers become less likely and low-temperature outliers be-
come more likely in response to the negative radiative forcing
imposed.

5.4 Dependency of surface climate on model complexity
suggests necessary minimal complexity

Our results suggest that there is a required minimal com-
plexity for modeling the variability in surface climate. The
EBM only reflects the linear response and does not pos-
sess the complexity required to capture changes beyond the
mean, while simple models dedicated to variability might
(see Lovejoy et al., 2021; Schillinger et al., 2022). The in-

creasing resemblance of the EBM’s moments to those of the
more complex models towards longer timescales (Fig. S5),
on the other hand, suggests that, at the global scale, centen-
nial moments are dominated by the linear response to ex-
ternal forcings. This does not account for spatial patterns,
though, which the EBM fails to capture.

The EMIC simulations provide a far better approximation
of standard deviation of temperature but fall off for the ex-
treme tails and for precipitation as a whole. The latter sug-
gests that the EMICs lack variability in atmospheric dynam-
ics. The spectral power of the EMICs is almost always on the
lower end of the ensemble, further indicating a lack of en-
ergy transfer between scales. As such, while they can match
variability in proxy reconstructions on the global level (cf.
Zhu et al., 2019), they are limited for studies of regional vari-
ability. The EMICs included here have reduced atmospheric
complexity. This will affect simulated variability and could
be different in other EMICs as it is for GCMs.

Among GCMs and ESMs, providing a ranking of simu-
lated variability proves difficult due to the sparse spatial cov-
erage of reconstructions and the lack of literature studying
variability during the Deglaciation, although first attempts
have been made (Weitzel et al., 2024). Moreover, at the level
of complexity of GCMs and ESMs, chosen forcings cause
differences between simulations at least as much as the cho-
sen model and its complexity. Due to substantial differences
in forcings and boundary conditions inherently arising from
different research foci, it can be hard to identify the sources
of differences between simulations from different models of
similar complexity. While there are some common patterns
that emerge, the simulations also disagree in many areas with
respect to magnitude and even direction of changes. This va-
riety in the ensemble can be hidden when considering multi-
model means. An experimental design geared towards un-
derstanding the roles of feedbacks on surface climate vari-
ability must take into account external forcing and bound-
ary condition changes, distinguishing interactive effects and
prescribed changes in boundary conditions which may, or
may not, be physically consistent with the climate evolution.
Given the impact of meltwater forcing and its uncertainties,
simulations with interactive ice sheets are of particular in-
terest to the study of climate extremes in response to mean
changes.

6 Conclusions

The variability in surface climate has undergone considerable
changes since the LGM, along with an increase in GMST.
Here, we investigate changes in several indicators of variabil-
ity from the LGM to the Holocene. These include standard
deviation and power spectra but also the higher-order mo-
ments of skewness and kurtosis, which have, to our knowl-
edge, previously been used only in studies of present-day
and future climate. The warming ranges from 3.0–6.6 °C in
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the ensemble of 15 transient simulations from models of
varying complexity presented here. This result agrees with
the estimates found in reconstructions, which also cover a
large range. On the whole, we can confirm our hypotheses
as (1) the variability between LGM and Holocene changes
with the mean background state for both surface temperature
and precipitation, and the variability during the Deglacia-
tion is generally larger in comparison. Furthermore, we find
that (2) state dependency increases from annual to millennial
scales and that the forcings impact variability on all, not just
their characteristic timescales, and that (3) there is a minimal
complexity needed to simulate adequate levels of variability.
In particular, we find that the variability of surface tempera-
ture and precipitation depend on the following:

1. Background state. Overall, state dependency of variabil-
ity increases towards longer timescales. Standard devi-
ation of surface temperature is larger during the LGM
than the Holocene, whereas it is the opposite for precip-
itation. The LGM has little overall temperature skew-
ness and kurtosis, whereas there can be areas of large
skewness and kurtosis during the Holocene. For precip-
itation during the LGM and Holocene, state dependency
can be found to some degree on all timescales and for
all moments, but no clear patterns emerge. Beginning
on decadal scales, the Deglaciation, as the transition
between a cold and warmer interglacial climate state,
stands out as a period of enhanced variability in com-
parison to the LGM and Holocene. This is marked by
increased variance, more skew (both positive and nega-
tive), and larger kurtosis in most simulations.

2. Timescale. Towards longer timescales, the distributions
of temperature show a decrease in variance, more ab-
solute skew, and an increase in kurtosis, i.e., enhanced
non-Gaussianity. For precipitation, variance decreases,
too, while changes to the higher-order moments are
mainly limited to the Deglaciation and differ by simula-
tion and region. Volcanism, meltwater forcing, and ice
sheet changes affect the distributions of surface temper-
ature and precipitation the most on their characteristic
timescales, but their effects can be detected from annual
to millennial timescales.

3. Model complexity. Both the EBM and EMICs fail to
reproduce patterns of variability found in the (sparse)
reconstructions and do not resemble those in the more
complex models. In our ensemble, the complexity of a
coupled ocean–atmosphere GCM is at least necessary
to produce realistic variability patterns. For the GCM
and ESM simulations, on the other hand, differences in
forcing protocols and boundary conditions play a larger
role than model complexity in determining variability in
surface temperature and precipitation.

To reach levels of variability comparable to reconstruc-
tions, simulations depend upon adequate levels of externally

forced variability, including from volcanic forcing, and in-
ternal variability. The contribution of internal variability re-
quires at least the minimum complexity of the GCMs in this
study. Nevertheless, comparison to some reconstructions of
past climate suggests that simulations might lack variability,
especially regionally and from multi-decadal timescales on-
ward. While the LGMR provided a first point of comparison,
the comparison also raises questions about a potential loss of
variability in field reconstruction methods when contrasted to
other reconstructions. However, further conclusions necessi-
tate an in-depth model–data comparison, which is limited by
the small number of available proxy records, especially for
precipitation. Since an improved understanding of the vari-
ability in surface climate is crucial, for example, because of
its relation to extremes and freshwater availability, a compar-
ison to 20th-century observations could provide clearer evi-
dence on the models’ abilities, at least for short timescales.
This could complement model evaluation efforts like CMIP
and PMIP.

Several factors have emerged that could advance the eval-
uation of simulated variability and allow a ranking of mod-
els: improved benchmarks from reconstructions, more simu-
lations with consistent protocols, ensemble of varying initial
conditions, and high-resolution snapshot simulations of past
climates. The latter would allow an analysis of the changes
in frequencies of extremes against regional mean changes
and how extremes on short timescales transfer to longer
timescales. As such, it could elucidate the role of higher-
order moments in the evaluation of model simulations going
forward.

Our results demonstrate that the Deglaciation stands out in
comparison to the LGM and Holocene as a period of warm-
ing. However, an open question remains to what degree our
results hold for future warming. To resolve this question, it
is necessary to understand how much the increased variabil-
ity is related to overall warming versus the initial state with
large Northern Hemisphere ice sheets. Interactions between
dynamics, forcings, and mean state lead to complex changes
in the distributions of surface climate variables. This implies
potential changes to extremes on timescales from years to
centuries, requiring further investigation.
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