Supplement of Clim. Past, 21, 2115–2132, 2025 https://doi.org/10.5194/cp-21-2115-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Oligocene-early Miocene paradox of $p{\bf CO}_2$ inferred from alkenone carbon isotopic fractionation and sea surface temperature trends

José Guitián et al.

Correspondence to: José Guitián (jguitian@iim.csic.es) and Heather M. Stoll (heather.stoll@eaps.ethz.ch)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1.
Differences between SST proxy between ZB-1 column and RTX-200 column measurement

	Proxy	av. diff. (°C)	Stdv.
IODP 1406	$U^{k'}_{37} \ U^{k'}_{38ME}$	-0.6	0.4
(subset)		-0.8	1.9
ODP 1168	$U_{37}^{k^\prime} \\ U_{38ME}^{k^\prime}$	-0.5	1.2
<22.4 Ma		-1	0.7
ODP 1168	$U^{k'}_{37} \ U^{k'}_{38ME}$	-1.8	1.7
>22.4 Ma		-2.8	1.8

Differences between $\delta^{I3}C$ alkenone between ZB-1 column and RTX-200 column measurement

and KTA-200	column measure	iiciit	
		av. diff. (%)	Stdv.
IODP 1406 (subset)	$\delta^{I3}C$ alk	-0.2	0.9
ODP 1168 <22.4 Ma	$\delta^{I3}C$ alk	-1.1	1
ODP 1168 >22.4 Ma	$\delta^{I3}C$ alk	-3.7	1.6

Figure S1. High resolution IODP 1406 subset of measured $\delta^{13}C$ benthic foraminifera (red crosses), bulk carbonate (green circles), $C_{37.2}$ alkenone, calculated ϵp (where DIC $\delta^{13}C$ derived from bulk carbonate is solid line and circles, from benthic foraminifera transparent line and crosses), and SST.

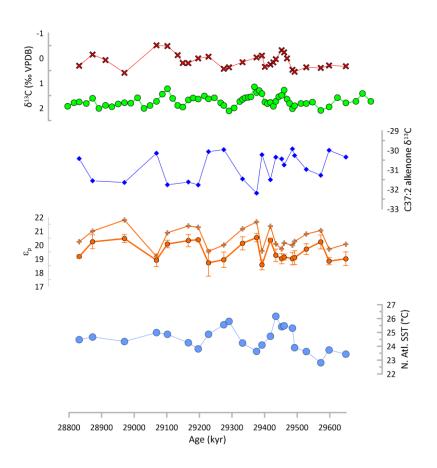


Table S2

Site	Source age model	Source SST	Source $\delta^{13}C_alk$	Source δ ¹³ C_DIC	
ODP 1168	Stoll et al., (2024)	Miocene = $U_{37}^{k'}$ This study Oligocene = $U_{38ME}^{k'}$ This study	This study	Bulk sed0.05 ‰	
IODP 1406	Stoll et al., (2024)	$U_{37}^{k'}$ This study	This study	Bulk sed0.05 ‰	
DSDP 516	Guitian <i>et al.</i> , (2020)			Miocene = Planktic foram.	
		TEX ₈₆ Auderset <i>et al.</i> , (2022)	Pagani <i>et al.</i> , (2005)	Oligocene = Benthic foram. + 2 ‰	
ODP 608	CenCO2PIP Consortium, (2023)	TEX ₈₆ Super <i>et al.</i> , (2018)	Super et al., (2018)	Planktic foram.	
ODP 925	Guitian <i>et al.</i> , (2020)	TEX ₈₆ Zhang et al., (2013) and this study	Zhang et al., (2013) and this study	Bulk sed0.05 ‰	

 $Figure \ S2. \ Measured \ biogenic \ silica \ vs \ SST \ from \ the \ same \ samples \ of \ IODP \ 1406 \ and \ ODP \ 1168. \ Dashed \ black \ line \ shows \ overall \ relation.$

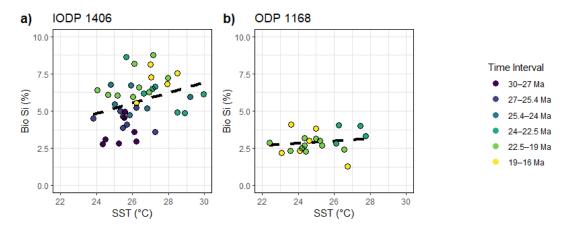


Table S3

1 able 55								
Slopes	IODP 1406							
	SST			SST Benthic				
Interval (Ma)	ϵ_p measured	ε_p temp	ε_p size	ϵ_p sum	ε_p measured	ϵ_p temp	ϵ_p size	ϵ_p sum
30 to 27	0.5	1	0.2	0.7	-0.5	-1	2	1.49
27 to 25.4	0.7	1.1	1	1.5	-2.8	-3.1	-3.7	-4.03
25.4 to 24	-0.2	0.3	-0.1	0.4	0.1	-0.9	1.8	0.70
24 to 22.5	-0.3	0.2	-0.7	-0.2	0.5	-1.2	1.9	0.14
22.5 to 19	0	0.5	-0.2	0.3	0.4	0.1	2.7	1.82
19 to 16	0.2	0.7	0.9	1.4	0.8	1.6	6.3	7.21
All	-0.75	-0.25	-0.71	-0.21	2.16	0.98	2.53	1.24

Slopes	ODP 1168							
	SST				SST Benthic			
Interval (Ma)	ϵ_p measured	ϵ_p temp	ϵ_p size	ϵ_p sum	ϵ_p measured	ϵ_p temp	ϵ_p size	ϵ_p sum
30 to 27	0.5	1	0.5	1				
27 to 25.4								
25.4 to 24	0.6	1.1	1.5	2				
24 to 22.5	-0.3	0.3	-1	-0.5				
22.5 to 19	-0.4	0.1	-0.9	-0.4				
19 to 16	-0.3	0.2	-0.3	0.2	-0.7	-0.2	-0.9	-0.4
					•			
All	0.6	1.1	0.7	1.2				

Figure S3. Entire studied period correlation regression lines, for the measured ε_p (solid), ε_p without the theoretical temperature effect (transparent), and ε_p without the temperature and size effect (dashed). R2-values: a (0.43**, 0.16, 0.09); b (0.58**, 0.78**, 0.73**); c (0.25, 0.13, 0.15); d (0.29, 0.25, 0.48).** p value <0.05.

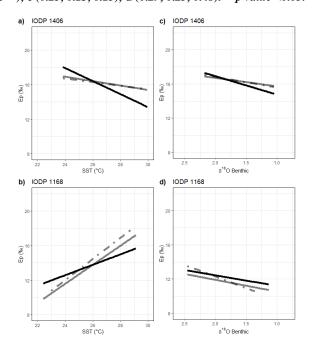
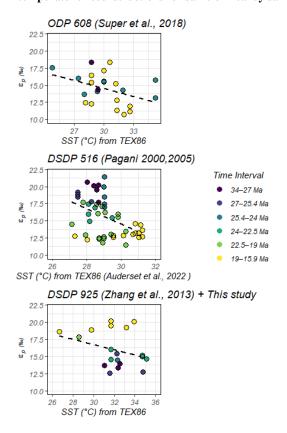



Figure S4. Relation between published ϵ_p estimates recalculated as described in text, and existing GDGTs-derived temperature reconstructions for same or nearby samples.

