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S1. Phase II — Paleoclimate conditions

During Phase II, the onset of drier and/or warmer conditions was inferred between 17.8 ka BP and 17
ka BP at sites located south of 40°S. Specifically, this onset was estimated at ca. 17.8 ka BP from lake
level lowering and the spread of North Patagonian rainforest at Lago Pichilaguna (41.3°S, Moreno et
al., 2018) and the expansion of North Patagonian trees at the Huelmo site (41.5°S, Moreno and Leon,
2003). Note that overall humid conditions were detected at the Huelmo site until ca. 15.5 ka BP (Moreno
and Leon, 2003). Warmer and/or drier conditions were also inferred at 17.6 ka BP at 46°S from the
expansion of Nothofagus woodland reconstructed from the pollen records of the marine site MDO7-
3088 (Montade et al., 2013). Similar conditions were inferred after 17 ka BP from the pollen records of
site ODP 1233 (41°S) and the evidence of the replacement of the North Patagonian and Subantarctic
forests and parkland present during the LGM by Valdivian and Lowland Deciduous Forests
characteristic of more temperate climate (Heusser et al., 2006b). The end of this overall drier phase was
marked by a return to colder and/or wetter conditions detected at 14.8 ka BP from an increase in
hygrophilous and cold-tolerant plants at Lago Pichilaguna (41.3°S, Moreno et al., 2018) and the
expansion of the conifer Podocarus nubigena at the Huelmo site at 41.5°S (Moreno and Leon, 2003).
On the archipelagos located off the coast of Chile, this transition was dated at 14.7 ka BP from the
establishment of forests composed of Nothofagus, Pilgerodendron and Podocarpus trees characteristic
of cold and wet conditions detected at the Laguna Facil and the Laguna Oprasa (44°S, Haberle and
Bennett, 2004). At the Lago Lepué (42.8°S, Pesce and Moreno, 2014), this return to wetter and/or colder
conditions was inferred at 14.6°S from the Eucryphia/Caldcluvia versus Podocarpaceae (P. nubigena
and S. conspicua) index reflecting hydroclimate variations (ECPI, Moreno, 2004). This transition to
wetter conditions was also dated at 14.5 ka BP from an increase in hygrophilous cold resistant trees at
the Lago El Salto (41.6°S, Moreno and Videla, 2016) and from evidence for the development of
Magellanic moorland in the pollen record at the marine site MD07-3088 (46°S, Montade et al., 2013).
Several records located between 40°S and 42°S also inferred this transition at ca. 14 ka BP. These include
the pollen records of Heusser et al. (2006b), Jara and Moreno (2014) and Vargas-Ramirez et al. (2008)
as well as the ECPI records of Moreno (2004) and Moreno et al. (2010). Note that the record of Murali
et al. (2010) suggested an onset of wetter conditions at 15.8 ka BP based on the composition of marine
sediments at site ODP 1233 (41°S, Figure S13). Here, we instead refer to the records of Heusser et al.
(2006a) and Kaiser et al. (2024) to reconstruct paleoclimate at 41°S since their pollen and §?Hy.x records
more directly reflect past hydrological regimes.

S2. Phase 111 — Paleoclimate conditions

Phase III was marked by wet and cold conditions (see Sect. S1) followed by a transition period until ca.
11.5 ka BP — roughly corresponding to the Younger Dryas (ca. 12.9-11.6 ka BP). The onset of this
transition period was dated at 13 ka BP from enhanced fire activity at site Lago El Salto indicting
increase precipitation variability and/or seasonality (Moreno and Videla, 2016). A transition period
characterized by reduced precipitation was also inferred at 12.8 ka BP from evidence for a retreat of
Magellanic moorland in the pollen record at site MD07-3088 (46°S, Montade et al., 2013). A transition
period starting at 12.7 ka BP was also detected from pollen and charcoal records suggesting drier
conditions at the Lago Pichilaguna (41.3°S, Moreno et al., 2018) and the Lago Lepué (42.8°S, Pesce
and Moreno, 2014). Jara and Moreno (2014) used pollen and charcoal records to date the onset of a
decrease in precipitation at 12.4 ka BP at Lago Pichilafquén (40.7°S, pollen and charcoal records). In
the record of Moreno (2004) and Moreno et al. (2010), we furthermore noted an increase in the ECPI
index at around 13 ka BP indicating the onset of a transition to warmer and drier conditions. These
reconstructions suggest a precipitation decrease and/or climate variability during the Younger Dryas.

Overall wet conditions were inferred until between 12.3 ka BP and 11 ka BP after which drier and
warmer conditions prevailed. Specifically, the shift to warmer and drier climate was dated at
12.3 ka BP at the Laguna Facil and the Laguna Oprasa (44°S, pollen records, Haberle and
Bennett, 2004) and at 12 ka BP based on the pollen records at site ODP 1233, (Heusser et al.,



2006b). The onset of a drier period was also dated at 11.6 ka BP in the pollen, charcoal and
stratigraphic records of Abarzia et al. (2004, Laguna Tahui, 42.8°S), the pollen and charcoal
records at Lago El Salto (41.6°S, Moreno and Videla, 2016) and the pollen records at Lago
Puyehue (40.7°S, Vargas-Ramirez et al., 2008). The pollen and charcoal records at Lago
Pichilafquén (40.7°S, Jara and Moreno, 2014), at marine site MDO07-3088 (46°S, Montade et
al., 2013) and at Lago Condorito (ECPI index, 41.8°S, Moreno, 2004; Moreno et al., 2010) also
indicated a transition to drier conditions at 11.5 ka BP. This aligns with the detection of a
transition to drier and warmer conditions inferred at 11.3 ka BP at Lago Pichilaguna from the
spread of drought-tolerant tree, evidence for low lake level and high frequency of fire activity
(Moreno et al., 2018). Furthermore, palynological and stratigraphic changes at the Huelmo site
(41.5°S, Moreno and Ledn, 2003) as well as charcoal records and the ECPI index at Lago Lepué
(42.8°S, Pesce and Moreno, 2014) confirmed a transition to drier conditions at ca. 11 ka BP.
Note that this transition period was not detected in the records of Vargas-Ramirez et al. (2008),
Heusser et al. (2006b), Moreno and Leo6n (2003), Haberle and Bennet (2004) and Abarzua et al.
(2004). Nevertheless, most reconstructions are consistent with a colder and wetter period
between ca. 14 and 12 ka BP and the onset of drier conditions at ca. 11.5 ka BP as suggested by
the 8?Hwax records at site GeoB3304-5 at 33°S.

S3 Phase IV — Paleoclimate conditions

Most records located between 40°S and 46°S indicated a transition from dry to wet conditions between
8 and 7 ka BP. At 40°S, wetter conditions were detected at 8 ka BP in the pollen records at Lago Puyehue
(Vargas-Ramirez et al., 2008) and at 7.1 ka BP in the pollen and charcoal records at Lago Pichilafquén
(Jara and Moreno, 2014). Note that the pollen records of Vargas-Ramirez et al. (2008) furthermore
suggested an intensification of wetter conditions at 6.8 ka BP. Between 41°S and 44°S, the onset of
wetter conditions was dated between 7.9 and 7.6 ka BP (Abarzta et al., 2004; Moreno, 2004; Moreno et
al., 2010, 2018; Moreno and Leon, 2003; Moreno and Videla, 2016; Pesce and Moreno, 2014).
Specifically, wetter conditions were inferred after 7.9 ka BP from palynological and stratigraphical
evidence at Laguna Tahui (42.8°S, Abarzua et al., 2004). At the Lago Condorito (41.8°S), this transition
was determined at around 7.6 ka BP based on ECPI record (Sect. S1, Moreno, 2004; Moreno et al.,
2010). At Lago Pichilaguna, wetter conditions were inferred after 7.7 ka BP from stratigraphic pollen
and charcoal records (Moreno et al., 2018). Furthermore, palynological and stratigraphic changes at the
Huelmo site (41.5°S, Moreno and Leon, 2003), pollen and charcoal records at Lago El Salto (41.6°S,
Moreno and Videla, 2016) as well as charcoal records and the ECPI index at Lago Lepué (42.8°S, Pesce
and Moreno, 2014) confirmed a transition to drier conditions between 7.9 and 7.6 ka BP. At 44°S,
Haberle and Bennett (2004) suggested seasonally wet conditions between 6.8 and 2.7 ka BP from
palynological, geochemical and charcoal records. At 46°S, Montade et al. (2013) dated this transition at
7.4 ka BP using pollen records.

S4 Phase V — Paleoclimate conditions

Several records indicated climate variability along Chile during Phase V. At the Laguna Tahui (42.8°S),
climate variability was suggested from changes in pollen assemblages after ca. 6.6 ka BP (Abarzua et
al., 2004). At the Laguna Facil and the Laguna Oprasa (44°S), seasonally wet climate was inferred after
ca. 6.8 ka BP from palynological evidence and fire records (Haberle and Bennett, 2004). In addition,
climate variability potentially related to El-Nifio was inferred at these sites after ca. 2.8 ka BP (Haberle
and Bennett, 2004). At the Lago Pichilafquén (40.7°S), pollen assemblage shifts and charcoal records
also suggested multiple transitions from warm and dry to cold and wet conditions over the last 7.1 ka
BP (Jara and Moreno, 2012, 2014). Similarly, dry intervals were detected in the pollen records at the
Condorito Lake (41.8°S) between 4.1 and 3.8 ka BP and 2.9 and 1.8 ka BP despite evidence for an
overall increase in precipitation between ca. 7 and 3 ka BP (Moreno, 2004). At the Lago El Salto
(41.7°S), charcoal and pollen records also indicated alternating cold-wet and warm-dry phases, as well
as megadrought events, after 5.3 ka BP (Moreno and Videla, 2016). At the Lago Lepué (42.8°S), dry



phases were also inferred from pollen and charcoal records between 4.3 and 4 ka BP and 2 and 0.8 ka
BP despite an ECPI index suggesting a sustained shift toward wetter and colder conditions after 7.8 ka
BP (Pesce and Moreno, 2014). Dry phases were also inferred at 40.8°S (Lago Puyehue and Los Mallines)
from pollen records between 4.6 and 4.3 ka BP and 3 and 2.6 ka BP in the context of overall humid
conditions (Vargas-Ramirez et al., 2008).



Table S1

Table S1. Compiled paleoclimatic records in Chile reported in Figure 4d.

Date range of

Lat. Long. leoclimaty Proxy type tracing paleoclimate
#  Ref. Site (WGS  (WGS ~ Preocimaie y P gp
econstruct. in conditions
84) 84) ka BP
1 Stuut and Lamy, 2004 GeoB3375-1 -27.47 -71.25 35t08 Humidity index (grain-size distribution)
2 Muiioz et al., 2020 core BGGC5 -30.2 -71.4 8to0 Pollen moisture index
3 Kaiseretal, 2008 GeoB7139-2 3020 7198 40t00 Terrigenous input, sedimentation rates
and plant wax n-alkanes
4 Bernhardt et al., 2017 GeoB7139-2 -30.20 -71.98 26 to 0 Humidity index (grain-size distribution)
Santa Julia . . .
5 Ortega et al., 2012 archeological site -31.83 -71.75 13t00 Sedimentological and geomorphological
Maldonado and Coastal swamp .
6 Villagran, 2002 forest -31.83 -71.47 62100 Palynological
Maldonado and :
7 Villagran, 2006 Swamp forest -32.08 -71.5 10to 0 Palynological
8 Flores-Aqueveque et Slt? GNL 3277 715 28 1021 Stratlgraphlc, sedimentological and
al., 2021 Quintero 1 geochemical
Sedimentological, mineralogical,
9 Jenny et al., 2002a Laguna Aculeo -33.83 -70.9 10to 0 geochemical, palynological and
microfossils (diatoms)
10 Jenny et al., 2003 Laguna Aculeo -33.83 -70.9 10t0 0 Sedimentological
11 Villa-Martinez et al., Laguna Aculeo 33.83 709 75100 Palynological, charcoal and microalgae
2003 records
12 Valero Garcés et al., Laguna Tagua 345 711 4610 6.5 Sedlmentqloglcal, geochemical and
2005 Tagua palynological
13 g(r)lig70ne—Alvarez etal, Lago Vichuqué -34.8 -72.05 7t00 Sedimentological, geochemical
14 Heusser et al., 2006a ODP site 202- 3622 7393 140 t0 0 Palynological and oxygen isotope ratios
1234 records
15 Muratlietal,, 2010 (1)222 site 202- 3622 7393 30100 Petrology/Mineralogy
Vargas-Ramirez etal.,  Lago Puyehue/ ca. - .
16 2008 Los Mallines 407 ca.-72.3  17.5t00 Palynological
Jara and Moreno., Lago .
17 5014 Pichilafquén -40.73 -72.47 145100 Palynological and charcoal record
18 Jara and Moreno, 2012 ngq . -40.73 -72.47 2.6t00 Palynological and charcoal record
Pichilafquén
19  Heusser et al., 2006b (1)22}3’ site 202- -41 7445 50t09 Palynological
20 Kaiser et al., 2024 10225 site 202- -41 -74.45 50to 0 Hydrogen isotope on leaf-wax n-alkanes
21 Moreno et al., 2018 Lago Pichilaguna  -41.25 -73.05 25t00 feat:l(})/;lgsloglcal, strati. and charcoal
22 Moreno and Ledn, Huelmo site 4152 73 20t07 Palynological
23 %(;rgno and Videla, Lago EI Salto -41.65 -73.1 16t0 0 Palynological and charcoal record
24 Moreno, 2004 Lago Condorito -41.75 -73.12 15t00 Palynological, ECPI index
25 Moreno et al., 2010 Lago Condorito -41.75 -73.12 15t00 Palynological, ECPI index
2 Pesce and Moreno, Lago Lepué 423 7371 1800 Palynological, ECPI index and charcoal
2014 record
27  Abarzia et al., 2004 Laguna Tahui -42.83 -73.5 17t0 0 Palynologic and stratigraphic
28 Haberle and Bennett, Laguna Facil/ ca-443  ca 74 16500 Palynological, geochemical and charcoal
2004 Oprasa record
29 Montade et al., 2013 MDO07-3088 -46.07 -75.68 22t00 Palynological
30 Ashworth et al., 1991 Puerto Edén -49.13 -74.42 16t0 0 Palynological and beetle fossil record
31 DesaMartinet al, Gran Campo-2  -5281  -72.93 14105 Palynological
32 Lamy et al., 2010 Several sites ;.531 to- 12.5t00 Palynological and sedimentological
33 Heusser et al., 2000 core HE98-1C -53.61 -70.93 17.6to 11.5 Palynological
34 Perren et al., 2025 Isla Hornos Lake  -55.97 -67.28 11kato 0O Microfossil (diatoms) record and

geochemical




Figures S1 to S14
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Figure S1. Sampling sites and the hydrogen and carbon isotope ratios (measured on n-Cz9 n-alkanes) of
fluvial and marine sediments along Chile. Data represent present-day conditions (river and multicorer [MUC]
sediments) and variability spanning ca. 20 kyr in gravity cores. (a) Mean annual precipitation map (TRMM 3B43,
European Commission, Joint Research Centre (JRC), 2015) and sampling sites (this study, Gaviria-Lugo et al.,
2023a; Kaiser et al., 2024). (b) Mean annual 8?Hprecip map (Bowen et al., 2005; Bowen and Revenaugh, 2003;
Waterisotopes Database, 2017) and sampling sites (this study, Gaviria-Lugo et al., 2023a; Kaiser et al., 2024). (c)
Hydrogen isotope composition (n-Ca9) of modern fluvial sediments (green, Gaviria-Lugo et al., 2023a, b), marine
surface sediments (MUC, light blue, Gaviria-Lugo et al., 2023a, b) and gravity cores (dark blue, site GeoB7139-2
from Kaiser et al., 2024 and sites GeoB3304-5 and 22SL) by latitude. (d) Carbon isotope composition (n-Cyg) of
fluvial sediments (green), marine surface sediments (light blue) and gravity cores (dark blue) by latitude (this
study, see Gaviria-Lugo et al., 2023a for sample site description). The §'*C ratio of modern river and MUC samples
were corrected for the pre-industrial carbon isotope composition of the atmosphere (Section 3.4). Note the
consistency of the modern hydrogen and carbon isotope ratios along Chile despite substantial changes in the mean
annual precipitation amount (panel A). Digital Elevation Model is from the GEBCO Bathymetric Compilation
Group (2019). The lake and river maps are from the Biblioteca del Congreso Nacional de Chile (accessed
31.03.2025). Watersheds are from Gaviria-Lugo et al. (2023a). Error bars in panels C and D correspond to two
standard deviations (26) calculated from the 62H and the 613C values reported in Tables 5 to 7 reported in Lauchli
et al. (2025, see Data availability)
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Figure S2. Catchment contours of the HydroBASINS Level 6 map (Hydroshed, Lehner et al., 2006; Lehner
and Grill, 2013) compared with the catchment contours from Gaviria-Lugo et al. (2023a) with sampling
sites. Fluvial sediments (green), and gravity cores (dark blue). Mean annual 8*Hprecip map (Bowen et al., 2005;
Bowen and Revenaugh, 2003; Waterisotopes Database, 2017). HydroBASINS map accessed the 27.03.2025. The
source areas of sites GeoB7139-2, GeoB3304-5 and 22SL are indicated by the diamond line pattern. These consist,
in the catchments of the Elqui, Limari, Aconcagua, Maipo, Itata and Biobio rivers listed from North to South.




Figures S3-S8: Age models

The age models of the marine sites GeoB7139-2 (Figure S3 and S6), GeoB3304-5 (Figure S4 and S7),
and 22SL (Figure S5 and S8) were generated using the R-Package rbacon v. 3.2.0 (Blaauw and Christen,
2011) for the scenarios 1 and 2.
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Figure S3. Age-depth model of the marine site GeoB7139-2 (Scenario 1) reconstructed and plotted using the
rbacon R Package (Blaauw and Christen, 2011). A boundary was defined at 140 cm. The settings used were
acc.mean=100 between 0 and 140 cm, acc.mean=40 between 140 and 600 cm, acc.shape=1.25, mem.strength=12
and mem.mean=0.2. The calibrated radiocarbon ages and their uncertainties were displayed in blue. The red and
grey dashed curve corresponded to the mean and 95% confidence interval of the age-depth model, respectively.
Turbidites layers were indicated by grey rectangles.
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Figure S4. Age-depth model of the marine site GeoB3304-5 (Scenario 1) reconstructed and plotted using the
rbacon R Package (Blaauw and Christen, 2011). A boundary was defined at 170 cm. The settings used were
acc.mean=100 between 0 and 170 cm, acc.mean=20 between 170 and 897 cm, acc.shape=1.25, mem.strength=12,
and mem.mean=0.2. See Figure S3 for the legend.
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Figure S5. Age-depth model of the marine site 22SL (Scenario 1) reconstructed and plotted using the rbacon
R Package (Blaauw and Christen, 2011). A boundary (dashed line) was defined at 345 cm. The settings used were
acc.mean=80 between 0 and 345 cm, acc.mean=20 between 345and 894 cm, acc.shape=1.25, mem.strength=12
and mem.mean=0.2. See Figure S3 for the legend.
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Figure S6. Age-depth model of the marine site GeoB7139-2 (Scenario 2) reconstructed and plotted using the
rbacon R Package (Blaauw and Christen, 2011). A boundary was defined at 140 cm. The settings used were
acc.mean=100 between 0 and 140 cm, acc.mean=40 between 140 and 600 cm, acc.shape=1.25, mem.strength=12
and mem.mean=0.2. The calibrated radiocarbon ages and their uncertainties were displayed in blue. The red and
grey dashed curve corresponded to the mean and 95% confidence interval of the age-depth model, respectively.
Turbidites layers were indicated by grey rectangles.
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Figure S7. Age-depth model of the marine site GeoB3304-5 (Scenario 2) reconstructed and plotted using the
rbacon R Package (Blaauw and Christen, 2011). A boundary was defined at 170 cm. The settings used were
acc.mean=100 between 0 and 170 cm, acc.mean=20 between 170 and 897 cm, acc.shape=1.25, mem.strength=12,
and mem.mean=0.2. See Figure S6 for the legend.
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Figure S8. Age-depth model of the marine site 22SL (Scenario 2) reconstructed and plotted using the rbacon
R Package (Blaauw and Christen, 2011). A boundary (dashed line) was defined at 345 cm. The settings used were
acc.mean=80 between 0 and 345 cm, acc.mean=20 between 345and 894 cm, acc.shape=1.25, mem.strength=12
and mem.mean=0.2. See Figure S6 for the legend.
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Figure S10. Hydrogen isotope records (6?Hyax) of the n-alkane homologues n-C29 and n-Cs; of site 22SL.
Note the similarities in the trends of the two homologues during the last 20 kyr. The two standard deviations (2c)
calculated from the values reported in the Tables S5 and S6 were indicated for the §?H (1-Ca9) values.
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Figure S11. Reconstruction of the past extent of the SWW belt and the SPH based on the hydrogen isotope
records of leaf-wax n-alkanes (n-C291) and previously published literature. (a) §'3Cwax records of sites
GeoB3304-5 and 22SL. (b) 3*Hwax records of sites GeoB7139-2 (30°S, Kaiser et al., 2024), GeoB3304-5 and
22SL. (c) Map of the west coast of South America between the latitudes of 25°S and 56°S with the locations of
the marine sites. (d) Reconstruction of the past extend of the SWW belt and the SPH. Note the southward migration
of the SWW belt at around 17 ka BP, its northward migration during Phase III, its abrupt shift southward during
Phase IV and its return northward during Phase V. References: (1) (Stuut and Lamy, 2004), (2) (Muioz et al.,
2020), (3) (Kaiser et al., 2008), (4) (Bernhardt et al., 2017), (5) (Ortega et al., 2012), (6) (Maldonado and Villagran,
2002), (7) (Maldonado and Villagran, 2006), (8) (Flores-Aqueveque et al., 2021), (9) (Jenny et al., 2002), (10)
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(Jenny et al., 2003), (11) (Villa-Martinez et al., 2003), (12) (Valero-Garcés et al., 2005), (13) (Frugone-Alvarez et
al.,2017), (14) (Heusser et al., 2006a), (15) (Muratli et al., 2010), (16) (Vargas-Ramirez et al., 2008) in which only
a cooling was recorded during the ACR, (17) (Jara and Moreno, 2014), (18) (Jara and Moreno, 2012), (19) (Heusser
et al., 2006b), (20) (Kaiser et al., 2024), (21) (Moreno et al., 2018), (22) (Moreno and Leoén, 2003), in which only
a cooling was recorded during the ACR (23) (Moreno and Videla, 2016), (24) (Moreno, 2004), (25) (Moreno et
al., 2010), (26) (Pesce and Moreno, 2014), (27) (Abarzta et al., 2004), (28) (Haberle and Bennett, 2004), (29)
(Montade et al., 2013) note that in this record, only cold conditions were inferred before 17.8 ka BP, (30) (Ashworth
etal., 1991), (31) (Fesq-Martin et al., 2004), (32) (Lamy et al., 2010), centered at 53°S, (33) (Heusser et al., 2000),
and (34) (Perren et al., 2025). See Sects. 5.3.1 to 5.3.5; Sects. S1 to S3 and Fig. S14 in the Supplementary Material
for details. Error bars correspond to two standard deviations (26) calculated from the values reported in the Tables
5 and 6 reported in Lauchli et al. (2025, see Data availability). The gradient of blue shades in panel C schematically
reflects the core and peripheral zone of the SWW belt as shown in Fig. 3.
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Figure S12. Comparison of the 8*Cwax records of sites GeoB3304-5 and 22SL with pollens records of site
ODP 1234 (Heusser et al., 2006a). (a) Cyperaceae counts in site ODP 1234 (36°S) from Heusser et al. (2006a)
available under the ACER pollen and charcoal database (ACER project members et al., 2017; Sanchez Goili et al.,
2017) plotted using the age-depth model of Hattig et al. (2023). (b) Nothofagus dombeyi-type counts in site ODP
202-1234 (36°S) from Heusser et al. (2006a) available under the ACER pollen and charcoal database (ACER
project members et al., 2017; Sanchez Goili et al., 2017) plotted using the age-depth model of Hittig et al. (2023).
(¢) 8"3Cyax n-C3; records of sites GeoB3304-5 and 22SL. Nothofagus dombeyi-type combines evergreen trees and
Cyperaceae is a graminoid family. The lack of relationship between the 8'*Cy.x record of site 22SL and these pollen
records confirm that, despite changes in vegetation, the water use efficiency remains unchanged at the latitude of
33°S and 36°S in Chile over the last 20 kyr.
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Figure S13. Reconstruction of the past extend of the SWWs based on previously published literature
between ca. 40°S and 43°S. (a) Reconstruction of the past extend of the SWWs between 40°S and 43°S with
relative changes in humidity and/or temperature. (b) Comparison of relative changes in humidity previously
inferred at site ODP 1233 (41°S). References from Figure 4 and S11: (16) (Vargas-Ramirez et al., 2008) note that
only a cooling was recorded during the ACR, (17) (Jara and Moreno, 2014), (18) (Jara and Moreno, 2012), (19)
(Heusser et al., 2006b), (19b) (Muratli et al., 2010), (20) (Kaiser et al., 2024), (21) (Moreno et al., 2018), (22)
(Moreno and Leon, 2003), note that only a cooling was recorded during the ACR (23) (Moreno and Videla, 2016),
(24) (Moreno, 2004), (25) (Moreno et al., 2010), (26) (Pesce and Moreno, 2014), (27) (Abarzua et al., 2004).
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Figure S14. Comparison of the leaf-wax n-alkane hydrogen isotope records (n-C29, 1) to past changes in
insolation (a), seasonality (b) and independent paleoenvironmental records (c-k). (a) Equatorial seasonality
modelled as the difference in insolation between June and December at the equator (Berger, 1988; Berger and
Loutre, 1991). (b) Past insolation during the austral summer at the latitude of 35°S (Berger, 1988; Berger and
Loutre, 1991). (c) Reflectance at site MD03-2621 indicating past latitudinal migrations of the ITCZ (Deplazes et
al., 2013). (d) Titanium content of site ODP 1002 indicating past latitudinal migrations of the ITCZ (Haug et al.,
2001). (e) AMOC strength derived from the model of Péppelmeier et al. (2023) for the North Atlantic (45-70°N)
between 1000 and 3000 m water depth. (f) Continuous record of atmospheric CO2 (spline-smoothed data)



compiled by Kohler et al. (2017a, b). (g) Southern Hemisphere surface temperature from Shakun et al. (2012, dark
green) and Erb et al. (2022, light green) reported as temperature difference to pre-industrial values (AT). (h)
Northern Hemisphere surface temperature from Shakun et al. (2012, dark green) and Erb et al. (2022, light green)
reported as temperature difference to pre-industrial values (AT). (i) Sea surface temperature (Uk’37, SST) at site
GeoB7139-2 (30°S, Kaiser et al., 2008, 2024). (j) Sea surface temperature (Uk’37, SST) at site ODP 1234 (36°S,
de Bar et al., 2018a, b). (k) 62Hwax (n-C31) record of site ODP 1233 (41°S, Kaiser et al., 2024). (1) $2Hwax (n-
C29) record of sites GeoB7139-2 (30°S, Kaiser et al., 2024), GeoB3304-5 (33°S) and 22SL (36°S). Error bars in
(1) represent two standard deviations (2c) calculated from the values reported in Tables 5 and 6 reported in Lauchli
et al. (2025, see Data availability). Abbreviations: AT hemisph.: atmospheric pathways driven by large
interhemispheric temperature differences; ACR: Antarctic Cold Reversal; YD: Younger Dryas; HS 1: Heinrich
Stadial 1.
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