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Abstract. This study presents a statistical time-domain ap-
proach for identifying transitions between climate states, re-
ferred to as breakpoints, using well-established economet-
ric tools. Our approach offers the advantage of constructing
time-domain confidence intervals for the breakpoints, and
it includes procedures to determine how many breakpoints
are present in the time series. We apply these tools to a
67.1 million-year-long compilation of benthic foraminiferal
oxygen isotopes (5'80), which signify global temperature
and ice volume throughout the Cenozoic. This foundational
dataset is presented in Westerhold et al. (2020), where the
authors use recurrence analysis to identify five breakpoints
that define six climate states. Fixing the number of break-
points to five, our procedure results in breakpoint estimates
that closely align with those identified by Westerhold et al.
(2020). By allowing the number of breakpoints to vary, we
provide statistical justification for more than five breakpoints
in the time series. Our method adds to our understanding of
Cenozoic climate history in terms of the timing and rate of
transitions between climate states and provides a tool for ro-
bustly assessing breakpoints in many other paleoclimate time
series.

1 Introduction

Understanding the transitions between climate states in
Earth’s past is crucial for constraining nonlinear and feed-
back dynamics of our climate system, and anticipating po-
tential climate system responses to anthropogenic warming.
The Cenozoic Era, spanning from 66 million years ago (Ma)
to today, is particularly informative in this regard, as it is well
studied and includes major shifts from hothouse climates
with temperatures 10 °C warmer than today to the onset of
permanent glaciations at both poles (Zachos et al., 2001;
Hansen et al., 2013). These transitions, or breakpoints, reflect
large-scale changes in the climate system, involving shifts in
the carbon cycle, ocean circulation, ice volume, and more
(Zachos et al., 2008; Mudelsee et al., 2014). As emphasized
by Tierney et al. (2020), paleoclimate records are essential
for assessing climate sensitivity and evaluating climate mod-
els under warmer-than-present conditions. Evidence suggests
that the sensitivity of the climate system to external forc-
ings may depend on the climate state (Caballero and Huber,
2013), and that projected future climates may increasingly
resemble early Cenozoic conditions under continued emis-
sions (Burke et al., 2018; Steffen et al., 2018). These insights
underscore the importance of identifying when past climate
state transitions occurred, how many there were, and how
certain we are about their timing. Addressing these ques-
tions is crucial for understanding the dynamics of long-term
climate variability, and recent work has increasingly empha-
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sized transition detection as a key task in climate data analy-
sis (e.g., Marwan et al., 2021; Trauth, 2025).

A widely used approach to identify breakpoints in paleo-
climate records is recurrence analysis, which identifies when
a system returns to similar states over time, helping to detect
changes in the underlying dynamics of time series (Marwan
et al., 2007; Marwan, 2023; see also Fischer et al., 2024;
Liang et al., 2025, for recent applications in paleoclimate
research). Westerhold et al. (2020) apply this technique to
a stacked record of §'80 from benthic foraminifera span-
ning from 67.1 Ma to the present, covering the Cenozoic Era.
Based on the recurrence structure of the record, the authors
identify four major climate states — Hothouse, Warmhouse,
Coolhouse, and Icehouse — which are further divided into six
states through time. To conduct this analysis, they resampled
the data at an interval of 5 thousand years (kyr) and used both
raw and detrended versions. Recurrence analysis provides
valuable insights into the recurrence structure and shifts in
a time series, and recurrence quantification analysis offers
complementary summary measures, such as recurrence rate
and determinism. However, the identification of transitions
remains largely based on visual interpretation of recurrence
plots, and the method lacks formal procedures for determin-
ing the number and statistical certainty of the transitions.

Several methodological extensions have sought to address
these limitations. For instance, Goswami et al. (2018) pro-
pose a breakpoint detection method using a probability den-
sity function sequence representation of the time series,
which accounts for timestamping uncertainty. Bagniewski
et al. (2021) combine recurrence analysis with Kolmogorov—
Smirnov tests to statistically assess abrupt shifts in recur-
rence distributions. Rousseau et al. (2023) apply this method
to the Westerhold et al. (2020) data, identifying a simi-
lar set of transitions along with several additional ones. As
discussed by Marwan et al. (2021), there are several other
approaches to identify transitions in paleoclimate time se-
ries. Among these, Livina et al. (2010) develop a statistical
method of potential analysis and apply it to detect the num-
ber of states in an ice core record. In a Bayesian framework,
Schiitz and Holschneider (2011) develop a method for de-
tecting changes in trend, and Ruggieri (2013) introduce a
Bayesian algorithm for identifying multiple breakpoints. Re-
views of breakpoint detection techniques in more general cli-
mate time series are provided by Reeves et al. (2007) and
Lund and Shi (2023).

Recently, Trauth et al. (2024) explore a suite of meth-
ods, including recurrence analysis, changepoint detection,
and nonlinear curve fitting (e.g., sigmoid and ramp func-
tions), to identify climate transitions in a paleoclimate record.
They apply a changepoint detection algorithm by Killick
et al. (2012), which efficiently detects multiple changepoints
in the mean, variance, and trend by minimizing a cost func-
tion that balances goodness-of-fit with a penalty for addi-
tional changes. The sigmoid functions are characterized by
their S-shaped curves and allow for modeling gradual tran-
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sitions (Crowley and Hyde, 2008; Trauth et al., 2021). In
contrast, the ramp functions consist of two horizontal seg-
ments connected by a linear trend and represent gradual tran-
sitions bounded by abrupt changes in slope, which can be fit-
ted using regression techniques. This method was proposed
by Mudelsee (2000) and has been applied to various paleo-
climate records (e.g., Fleitmann et al., 2003; Mudelsee and
Raymo, 2005). Furthermore, Mudelsee et al. (2014) apply
this ramp-function method, among others, to detect major
climate transitions in the Cenozoic. For further details, we re-
fer to the textbook treatments in Mudelsee (2014) and Trauth
(2025). While these approaches are widely used, they do not
typically include tools for selecting the number of transitions
or for assessing the uncertainty in their timing. In this study,
we apply an alternative method that addresses both aspects.
Specifically, we employ a statistical approach based on
least-squares to estimate breakpoints, and showcase its use
with the benthic §'80 record from Westerhold et al. (2020).
The approach is an econometric time-domain method by Bai
and Perron (1998, 2003), which was originally applied to de-
tect shifts in real interest rates data in economics (Garcia and
Perron, 1996). We henceforth refer to this as the Bai-Perron
framework. While well-established in the econometrics liter-
ature, this framework has not been applied to paleoclimate
data, where it has a great potential for providing a rigorous
statistical foundation for the estimation of breakpoints. In
particular, it offers the advantages of constructing confidence
intervals for the timestamps of the breakpoints, providing
a measure of estimation uncertainty, as well as procedures
for selecting the number of breakpoints in the time series.
These additional measures are crucial for understanding the
certainty, significance, and timing of climate transition peri-
ods in the past. The Bai-Perron framework offers flexibility
in modeling both abrupt and gradual transitions. We demon-
strate its application and benefits by using the data from
Westerhold et al. (2020), though the framework is broadly
applicable to a wide range of paleoclimate time series.

2 Methodology

2.1 Data

We use the dataset provided by Westerhold et al. (2020),
which compiles measurements of oxygen isotope ratios from
benthic foraminifera across 34 different studies and 14 ocean
drilling locations into a single stack covering the Cenozoic.
Our study focuses on the benthic §'80 record, specifically
the correlation-corrected values of benthic §'80!.

Benthic §'30 measures the deviations in the ratio of the
stable oxygen isotopes 80 to 90O in the shells of ben-
thic foraminifera relative to the Vienna Pee Dee Belemnite

IThese are the values in column “benthic d180 VPDB Corr”,
found in Sheet 33 of the file aba6853_tables_s8_s34.x1lsx
provided in the Supplement of Westerhold et al. (2020).
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(VPDB) standard. The ratio of heavy to light stable oxygen
isotopes is a function of deep ocean temperatures (Epstein
et al., 1951; Shackleton, 1967; Lisiecki and Raymo, 2005)
and of the 880 of the seawater in which the foraminifera
grow their shells, which in turn is a function of ice volume
and salinity (e.g., Waelbroeck et al., 2002; Oerlemans, 2004).
Thus, the benthic stack is an important reference record for
global climate history across the Cenozoic. Hereafter, we re-
fer to benthic 830 simply as §'30.

The §'80 compilation by Westerhold et al. (2020) spans
67.10113 Ma to 564 years before present (Fig. 1). Using re-
currence analysis, Westerhold et al. (2020) identify six cli-
mate states, and we refer to these as Warmhouse I (66—
56 Ma), Hothouse (56-47 Ma), Warmhouse 1I (47-34 Ma),
Coolhouse I (34—13.9 Ma), Coolhouse II (13.9-3.3 Ma), and
Icehouse (3.3 Ma—present). Summary statistics for the full
record and for each climate state identified by Westerhold
et al. (2020) are reported in Appendix B1.

The dataset contains 24 333 entries, of which 74 are miss-
ing in the published version. After excluding these, we retain
24259 data points, ordered from oldest to most recent. The
8180 record is irregularly spaced in time, as is typical for
paleoclimate proxy data. Its average resolution is 2.77 kyr,
ranging from 7.28 kyr during Warmhouse II, which has the
lowest resolution, to 0.88 kyr during the Icehouse, which has
the highest. The longest gap in the data spans about 115.4 kyr
and 533 gaps exceed 10kyr. Additionally, 591 time stamps
contain multiple §'30 values, with up to four observations
recorded at the same time. The §'80 stack includes an es-
timated age uncertainty of £ 100kyr in the early Cenozoic
and £10kyr in more recent periods, primarily due to uncer-
tainties in orbital tuning and sedimentation rates (Westerhold
et al., 2020). We do not explicitly account for age uncertainty
in this study, as it is small relative to the duration of the states
we estimate. We therefore expect our main findings to be ro-
bust and we will return to this issue in the results section.

2.2 The Bai-Perron framework

The Bai-Perron framework is based on minimizing the
sum of squared residuals while treating the breakpoints
as unknown parameters to be estimated (Bai and Perron,
1998, 2003). Consider a linear regression framework for the
dependent variable y;, for r =1,..., T, and with m break-
points, corresponding to m + 1 distinct states in the sample.
The general model equation is

vi=x,B+2,8j +u, t=Tj_1+1,....Tj, )

with j=1,...,m+ 1. The m break dates are denoted by
(T1,..., T,y), with the convention that 7o =0 and T,,,+1 = T,
and u, is a disturbance term with mean zero and variance 0'12.
The (p x 1)-vector x; and the (g x 1)-vector z; comprise two
sets of covariate vectors, for which B is the state-independent
vector of coefficients and §; is the state-dependent vector

of coefficients. Since only specific coefficients are subject
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to structural breaks, this model is referred to as a partial
structural change model. Moreover, we consider breaks in
the variance of u; at the break dates T7,..., T,,, such that
0:'2 * 0]2 for i # j. The parameters B and §; are estimated
alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known
and estimate the coefficients and the breakpoints using a
sample of T observations of {y:;,x;,z;}. The estimation
method is based on least squares for both the coefficients
and the breakpoints. For each possible set of m breakpoints
(T, ..., Tyy) denoted as {T;}/_ |, we obtain estimates of 8 and
d ; by minimizing the sum of squared residuals (SSR), that is,

m+1 T;

SSR=Y" >

j=1t=T;_ 1+1

—2,8;)° )

where B is common to all states, while §; is specific for the
state j, which is the period between T; 1 + 1 and T;. The re-

) and

§ i ({T;¥1)). These coefficients are then used to determine
the SSR associated with each set of breakpoints,

sulting estimated coefficients are denoted as ﬁ ({T,' YLy

+
SSRr ({T:}7, EZ

T;
Z (y,—x,ﬂ (7))

/e m 2
~23; ({Ti}i:n) - 3
The estimated breakpoints are then given by

(1. T) = argmin SSRy ({T1}1L,)) )
Ti,....Tim

The minimization is conducted over all partitions
(T1,...,T,y) such that T; —T;_; > dim(z;) to ensure that
there are enough data points to estimate the parameters & ; in
each partition. This procedure leads to estimated parameters

for the m breakpoints, i.e., {]A}};":l, ﬁ: /§ ({]A}};"ﬂ), and

3.,' = 3.,' ({f}}f”:1>. Since the possible combinations of the
placement of the breakpoints is finite, this optimization can
be conducted using a grid search, which can be computa-
tionally heavy, especially for many breakpoints. Bai and
Perron (2003) introduce an efficient method for determining
the global minimizers.

An essential advantage of the Bai-Perron framework is that
it allows for constructing confidence intervals for the timing
of the breakpoints, something that is not available for the re-
currence analysis approach implemented in Westerhold et al.
(2020). The construction of confidence intervals is based on
the asymptotic distribution of the estimated break dates. The
convergence results for the construction of confidence inter-
vals rely on a number of assumptions (see Bai and Perron,
2003).

Clim. Past, 21, 1981-2008, 2025
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Figure 1. 530 data from Westerhold et al. (2020). The vertical axis is reversed, following standard practice. The vertical dashed lines show
transitions between the climate states by Westerhold et al. (2020). The horizontal axis represents time, measured in millions of years before
present. Epoch abbreviations: Cret.: Cretaceous; Plio.: Pliocene; Pleist.: Pleistocene.

2.3 Model specifications

Three distinct specifications are considered within the Bai-
Perron framework, referred to as the “Mean”, “Fixed AR”,
and “AR” models, where AR refers to the autoregressive
model of order one with intercept. These are all special cases
of the framework outlined in Eq. (1). The simplest among
them, the Mean model, is specified as follows,

yi=cjtu, t=T; 1+1,...,Tj, (5)

for j =1,...,m+1, where c; is the state-dependent intercept
and u; is an error term. This model is equivalent to setting
x;=0,z,=1,and §; =c; in Eq. (1). A breakpoint in this
model specification leads to an abrupt change in the mean of
the dependent variable y;.

The Fixed AR model extends the Mean model by incorpo-
rating an autoregressive term. We obtain the model

ye=cj+oy—1+u, t=Tj1+1,...,Tj, (6)

for j=1,...,m+1, where y;_ is the dependent variable
lagged by one period, and ¢ is the autoregressive coefficient
that is constant over the whole sample. In this model, the
effect of a change in the coefficient c¢; is more gradual, since
it depends on the autoregressive dynamics. The Fixed AR
model is obtained from Eq. (1) by specifying x; = y;_1, B =
¢,z =1,and §; =c;.

The general AR specification also allows the autoregres-
sive term to be state-dependent, resulting in the AR model,

yi=cj+@iyi—1+u, t=T; 1 +1,....Tj, @)

for j =1,...,m+ 1, where the autoregressive coefficient ¢
in Eq. (6) is now state-dependent and is denoted by ¢;.
This model is obtained from Eq. (1) by setting x; =0,
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zr =(1,y1—1),and §; = (c;, ;). Here, both the intercept and
the autoregressive coefficient are state-dependent. Thus, the
three specifications are nested: The AR model is the most
general, the Fixed AR model is nested in the AR model by
setting 91 = @2 = ... = @m+1 = @, and the Mean model is
nested in the Fixed AR model by setting ¢ = 0.

Figure 2 illustrates how the models capture breakpoints.
The Mean model is designed to detect abrupt breaks in the
mean of a time series, while the Fixed AR model is for
smoother breaks. The AR model is more flexible, allowing
for both relatively gradual (e.g., 77) and abrupt (e.g., T3)
breakpoints compared to the Fixed AR model.

2.4 Implementation

The Bai-Perron framework is implemented using mbreaks,
an R package specifically designed for this purpose (Nguyen
et al., 2023). For all model specifications, we set the mini-
mum length of a state, &, to 2.5 million years (Myr), facilitat-
ing the estimation of shorter climate states. Also, we let the
variance of the error term, denoted as O’jZ, be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation
is permitted in the regression residuals. However, the time se-
ries of 8'80 is likely subject to both autocorrelation and het-
eroscedasticity, as documented in ice core records (Davidson
etal., 2015; Keyes et al., 2023). Autocorrelation occurs when
current values correlate with past values, which in paleocli-
mate data arises from both long-term persistence in climate
dynamics (Mudelsee et al., 2014) and taphonomic processes
such as bioturbation (Kunz et al., 2020). Since only up to one
lag is included in the covariates in the model specifications
in this paper, residual serial correlation is likely to remain.
Heteroscedasticity, or time-varying error variance, is already
partially addressed in the model specifications through state-
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Figure 2. Simulated time series using the three model specifica-
tions, each with breakpoints 77 = 25 and 7, = 75, and total sample
size T = 100. For the Mean model, we set c; = 1.0, cp = 1.2, and
c3 = 0.8. In the Fixed AR model, the parameters are ¢ = 0.7, c| =
0.30, cp =0.36, and c3 = 0.24, chosen to yield comparable state-
wise means. Likewise in the AR model, we set ¢; = 0.7, ¢ =0.9,
03 =0.4,c1 =0.30, cp =0.12, and c3 = 0.48. In all specifications,
we set u; = 0 for all .

dependent variance. However, additional heteroscedasticity
may arise within the estimated states due to factors such as
orbital forcing and changes in ice sheet extent. Addressing
both autocorrelation and heteroscedasticity is essential to en-
sure unbiased parameter estimates and valid confidence in-
tervals for the estimated breakpoints.

To account for these issues, we use the autocorrelation and
heteroscedasticity consistent (HAC) covariance matrix esti-
mator with prewhitening in the Bai-Perron framework. The
prewhitening procedure, proposed by Andrews and Monahan
(1992), entails applying an autoregressive model with one
lag to z;4,, where ii; denotes the residuals. The HAC covari-
ance matrix estimator by Andrews (1991) is then constructed
based on the filtered series using the quadratic spectral kernel
with bandwidth selected by an AR of order one approxima-
tion. This approach is used for all model specifications and is
straightforward to implement using the R package (Nguyen
et al., 2023).

2.5 Constant data frequency

To conduct breakpoint estimation using the Bai-Perron
framework, we need a regularly sampled time series. We use
a binning approach to construct a dataset with evenly spaced
observations, which is common practice in the analysis of
paleoclimate data; see for instance Boettner et al. (2021).
We divide the dataset into bins of fixed time intervals and
compute the mean of the observations within each bin. In the
case of gaps in the binned data, we use the values immedi-
ately preceding and succeeding the section with missing data
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to perform linear interpolation. We consider six different bin
sizes, namely 5, 10, 25, 50, 75, and 100 kyr (Fig. 3). Sum-
mary statistics for the full sample length and for each climate
state identified by Westerhold et al. (2020) for all binning fre-
quencies are provided in Appendix B1.

Data binned at higher frequencies follow the variations in
the dataset more closely, whereas data binned at lower fre-
quencies tend to be smoother (Fig. 3). In case of large gaps,
a high binning frequency results in linear interpolation be-
tween observations (Fig. 3 bottom left). This effect does not
occur for periods with many observations, where low bin-
ning frequencies capture only a small part of the variation in
the original data (Fig. 3 bottom right). Binning offers a sim-
ple approach to handle the uneven frequency of the dataset.
However, it leads to data loss at lower binning frequencies
and to the introduction of artificial data points resulting from
linear interpolation at higher binning frequencies. The selec-
tion of binning frequencies can therefore alter the properties
of the time series, potentially misrepresenting the dynamics
of the original data.

The Bai-Perron framework is developed for estimating and
testing for multiple breakpoints in linear regression models
where the regressors are non-trending or state-wise station-
ary (Bai and Perron, 2003). A time series is considered sta-
tionary if its statistical properties, such as mean and vari-
ance, do not change over time. The §'30 data appears non-
stationary over most of the record, even within climate states
found by Westerhold et al. (2020). As pointed out by Kejri-
wal et al. (2013), if the time series maintains its stationarity
properties over the respective states, the methods developed
for stationary data are still applicable for these cases. How-
ever, if the process alternates between stationary and non-
stationary states, the theoretical properties of the methodol-
ogy are unknown.

To investigate whether the time series is non-stationary, we
apply the Augmented Dickey-Fuller (ADF) test (Dickey and
Fuller, 1979), with the null hypothesis of non-stationarity.
For the entire 25 kyr-binned data sample, the ADF test does
not reject the null hypothesis at the 1 % significance level,
indicating non-stationarity. However, when examining the
binned data for each climate state identified by Westerhold
et al. (2020) separately, the ADF test rejects the null hypoth-
esis at the 1 % significance level for the Warmhouse II, Cool-
house I, and Icehouse states. These tests indicate the pres-
ence of state-wise non-stationarity, and we therefore need to
examine whether the Bai-Perron framework is applicable to
data-generating processes that are state-wise non-stationary
or alternating between stationary and non-stationary states.
For this purpose, we conduct a large simulation study to ver-
ify that the Bai-Perron framework works as intended when
applied to these types of data-generating processes using the
three model specifications. The study is conducted for both
independent and identically distributed (i.i.d.) error terms
and serially correlated error terms (Appendix C1 and C2, re-
spectively). The results show that the procedure works well
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Figure 3. Top panel: Benthic foraminiferal 8180 data from Westerhold et al. (2020), along with 5 and 100 kyr-binned versions. The record
spans 67.10-0.0006 Ma and is based on cores from 14 ocean drilling sites. The vertical dashed lines show transitions between the climate
states by Westerhold et al. (2020). Bottom left: 36-35 Ma with an average resolution of approximately 17.2 kyr. Bottom right: 3-2 Ma with
an average resolution of approximately 0.9 kyr. Epoch abbreviations: Cret.: Cretaceous; Plio.: Pliocene; Pleist.: Pleistocene.

with non-stationarity and is robust to processes with one sta-
tionary and one non-stationary state for Fixed AR and AR
models. However, the Mean model performs poorly when
the data-generating process exhibits high persistence. In the
case of serial correlation, the results are less conclusive, but
if the states are sufficiently different, the methodology ap-
pears effective. The study reveals that the coverage rates for
confidence intervals are generally adequate for the Fixed AR
model, while the confidence intervals of the AR model are
too narrow in many cases. Overall, the Fixed AR model per-
forms best across the data-generating processes considered.

Clim. Past, 21, 1981-2008, 2025

3 Results

3.1 Fixed number of breakpoints

As an initial step, we fix the number of breakpoints to 5,
which is the number used in the recurrence analysis pre-
sented in Westerhold et al. (2020). We estimate the break-
points and corresponding 95 % confidence intervals for each
of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr, us-
ing Mean, Fixed AR, and AR models for each (Appendix B2
and Fig. 4). The estimated confidence intervals around the
breakpoints are often asymmetrical. Bai and Perron (2003)
advocate the use of asymmetric confidence intervals, as
these provide better coverage rates when the data are non-
stationary.

https://doi.org/10.5194/cp-21-1981-2025
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For the Mean model, the estimated breakpoints generally
remain at the same dates throughout as the binned data fre-
quency decreases step-by-step from 5 to 100 kyr (Fig. 4a).
The width of the 95 % confidence intervals increases as the
frequency decreases, which can be attributed to the resultant
decrease in the number of binned observations available for
estimation at the lower frequencies. All the breakpoints align
with those identified by recurrence analysis in Westerhold
et al. (2020). A similar pattern of alignment is observed in
the Fixed AR model, albeit with tighter confidence intervals
(Fig. 4b). The AR model exhibits more sensitivity to the fre-
quency of the binned data (Fig. 4c). At higher frequencies,
the breakpoints tend to appear in the more recent parts of
the sample. However, as the frequency decreases further, the
breakpoints are estimated to be in the older parts of the sam-
ple period.

For the results using 25kyr, we find that the estimated
breakpoints from the three model specifications align closely
with each other and nearly perfectly with those identified by
Westerhold et al. (2020). The three model specifications esti-
mated using the 25 kyr-binned data yield parameter estimates
that differ across states, reflecting differences in mean and
autoregressive dynamics (Appendix B3).

As a robustness check, we re-estimate the model specifica-
tions for 5 breakpoints using the 25 kyr-binned data reversed
with respect to the time dimension, so that the time series is
ordered from present to past rather than past to present (Ap-
pendix Al). We find that the results of the Mean and Fixed
AR models are robust to the ordering of the time axis, with
almost unchanged estimated breakpoints. Conversely, the AR
model leads to estimated breakpoints in the more recent part
of the sample, resulting in breakpoints at 16.9 and 9.7 Ma,
which differ from those estimated using the same model and
binning frequency with time running forward (Fig. 4).

In summary, changing the binning frequency mainly af-
fects the width of the confidence intervals, while the esti-
mated breakpoint timing remains largely unchanged for both
the Mean and Fixed AR models. In contrast, the AR model
is more sensitive to resolution and the direction of the time
frame. As detailed in the simulation study (Appendix C), the
Mean model fails to accurately detect breakpoints in highly
persistent data-generating processes. Consequently, in what
follows, we focus on the Fixed AR model for the estimation
of breakpoints in the §'80 time series. Among the binning
frequencies, we proceed with 10 and 25 kyr, as these yield
the most consistent results across model specifications and
strike a good balance between temporal resolution and sig-
nal quality. For the 25 kyr bin width, the mean number of
observations per bin is approximately 9, and 3.6 for 10kyr.
However, these numbers vary across the sample, being only
3.5 and 1.4, respectively, in the Warmhouse II and increasing
to 28.3 and 11.3, respectively, in the Icehouse period. This
highlights the importance of accounting for varying sam-
pling resolution when selecting bin widths. For applications
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of this framework to other paleoclimate records, we recom-
mend seeking a similar balance.

3.2 Flexible number of breakpoints

We now relax the assumption of a pre-specified number of
breakpoints and use information criteria to guide the choice
of the number of breakpoints. These criteria are model selec-
tion tools that balance goodness of fit with model complexity,
helping to avoid overfitting. We initially consider the follow-
ing three criteria: the Bayesian Information Criterion (BIC)
by Yao (1988), the modified Schwarz Information Criterion
(LWZ) by Liu et al. (1997), and the modified BIC (KT) by
Kurozumi and Tuvaandorj (2011). For all criteria, the pre-
ferred number of breakpoints is determined as the number of
breakpoints that minimizes the information criterion in ques-
tion.

Bai and Perron (2006) note that the BIC and LWZ crite-
ria perform well in the absence of serial correlation, but both
lead to overestimation of the number of breakpoints in case
of serial correlation in the error term. In simulation studies,
we find that the KT information criterion performs poorly,
and hence, we exclude it from the subsequent analysis (Ap-
pendix C1 and C2). We also find that the number of break-
points determined using the Mean model specification is gen-
erally too large when employing the information criteria. For
the Fixed AR and AR models, the BIC and LWZ criteria typ-
ically perform well, especially in data-generating processes
with a large break. With serial correlation in the error term,
the BIC criterion tends to slightly overestimate the number of
breakpoints, whereas the LWZ criterion generally performs
well in the Fixed AR and AR model specifications.

We use the BIC and LWZ information criteria for each
model specification and binning frequency to determine the
number of breakpoints, and set the minimum state length
to h =2.5Myr (Appendix B4). For our preferred specifica-
tion, the Fixed AR model with 25 kyr binning frequency, the
LWZ and BIC criteria suggests 6 and 12 breakpoints, respec-
tively. For a 10 kyr binning frequency, the estimated number
of breakpoints are 7 and 14, respectively. Thus, the informa-
tion criteria indicate that the number of distinct climate states
in the 8'30 record is larger than the 5 suggested in Wester-
hold et al. (2020).

To further investigate the potential for a higher number of
breakpoints, we consider the estimation of up to 15 break-
points with the minimum length of a state set of 7 = 1 Myr.
This analysis is conducted with the Fixed AR model and
25 kyr-binned data (Fig. 5). These findings show that the
breakpoints identified by Westerhold et al. (2020) are pre-
served in estimations which include 5 or more breakpoints.
Furthermore, the additional breakpoints are, in most cases,
also very stable and consistently reappear across specifica-
tions with a higher number of breakpoints. The same anal-
ysis using 10kyr-binned data led to nearly identical break-
point estimates, while the Mean and AR models with 25 kyr-
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Figure 4. A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr from top to bottom,
fixing the number of breakpoints to 5 for each model specification. The black dots represent estimated breakpoints, while colored shaded
rectangles indicate 95 % confidence intervals. The results overlay the & 180 data from Westerhold et al. (2020) (blue dots) and their transitions
(vertical dashed lines). Panels: (a) Mean model, (b) Fixed AR model, (¢) AR model.

binned data yielded estimates that align in certain cases (Ap-
pendix A2, A3, and A4).

The final estimated breakpoint is placed at 1.425 Ma for
the Fixed AR model, just below the upper boundary of the
detection window at 1 Ma, imposed by the minimum state
length of 1 Myr. Additionally, the estimated breakpoint is lo-
cated near the midpoint of a linear trend in the time series
from approximately 3.3 Ma to the present, suggesting it may
be driven by the trend rather than representing a break in the
time series (cf. Fig. 5). To investigate this further, we re-
estimate the breakpoints for the Fixed AR model, focusing

Clim. Past, 21, 1981-2008, 2025

solely on the Icehouse period, with the minimum length of
a state set to 250 kyr and using 5 kyr binned data, leveraging
the denser sampling in this part of the record. For the Fixed
AR model, the LWZ criterion suggests one breakpoint, while
the BIC indicates two. With one breakpoint, the estimate is
1.355 Ma, and with two, the estimated breakpoints are 2.54
and 0.95 Ma (Fig. 6). Estimating more than two breakpoints
leads to overlap between the estimated confidence intervals,
reducing the interpretability, and these models are therefore
excluded. The results are comparable for the Mean and AR
models (Appendix AS and A6).
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Figure 5. A comparison of estimated breakpoints using the Fixed AR model for 1 to 15 breakpoints on 25 kyr-binned data. The minimum
state length is set to 4 = 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95 % confidence
intervals. The results overlay the 8180 data from Westerhold et al. (2020) and their transitions.
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Figure 6. A comparison of estimated breakpoints using the Fixed AR model for 1 and 2 breakpoints on 5 kyr-binned data for the Icehouse
period. The minimum state length is set to # = 250 kyr. The black dots represent estimated breakpoints, while colored shaded rectangles
indicate 95 % confidence intervals. The results overlay the 8180 data from Westerhold et al. (2020).

3.3 Limitations of the Bai—Perron framework

Although the Bai—Perron framework provides a flexible and
well-established method for detecting breaks, it has some
limitations. First, the approach assumes piecewise linear-
ity and white noise residuals (Bai and Perron, 2003). How-
ever, in the estimations conducted in this study, the residu-
als are not white noise, indicating that some dynamics are
left unexplained. The simulation results show that the Bai-
Perron framework nevertheless performs well even when
residuals exhibit complex dynamics (Appendix C). Confi-
dence intervals should still be interpreted with caution. Sec-
ond, the method is also computationally demanding for high-
resolution data, although it remains possible to run on per-
sonal computers.

Thirdly, the method does not account for age model un-
certainty, which is important for interpreting the timing and
significance of time series analytical output (Marwan et al.,
2021). In the Westerhold et al. (2020) data, dating uncertainty
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ranges from about +10 kyr in the younger parts to £100 kyr
in the older parts. This can affect the timing of break-
points and lead to differences when comparing across records
(Franke and Donner, 2019). Previous work has shown that
age-depth models often underestimate the true uncertainty in
the chronology, which would amplify these effects (Telford
et al., 2004). While some progress has been made in in-
cluding age uncertainty into recurrence analyses (Goswami
et al., 2018), incorporating it into the Bai-Perron frame-
work remains a challenge. One could however consider the
use of age ensembles which are multiple plausible realiza-
tions of the time axis to assess robustness of the estimated
breakpoints. Fully integrating age uncertainty into the esti-
mation process, for example by modeling timestamps as ran-
dom variables, would require further methodological devel-
opment. However, since the age model uncertainties reported
by Westerhold et al. (2020) are small compared to the dura-
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tion of the estimated climate states, we expect our main find-
ings to be robust.

In addition to age uncertainty, another direction for
methodological advancement is developing a breakpoint de-
tection framework for irregularly spaced time series. This
would obviate the need for aggregating the data to fixed time
intervals, preserving more of the original record. Steps in
this direction have already been made in concurrent research
(Bennedsen et al., 2024), where the full §'80 and §'3C stacks
(Westerhold et al., 2020) are analyzed while taking the cli-
mate state transitions as given and addressing measurement
errors.

4 Discussion

Our results demonstrate that the Bai-Perron time-domain
framework is a flexible and effective tool for detecting break-
points in paleoclimate time series. When fixing the number
of breakpoints to 5, all model specifications lead to break-
point estimates that closely match those identified by West-
erhold et al. (2020), providing strong statistical support for
their climate-state classification. The results of this work are
also consistent with the findings by Rousseau et al. (2023).

Information criteria point to a higher number of transitions
than previously reported (Westerhold et al., 2020), suggest-
ing the potential for a more detailed classification of Ceno-
zoic climate variability. To explore this, we estimate between
1 and 15 breakpoints using the Fixed AR model (Fig. 5). Us-
ing the BIC, we find statistical justification for 12 breakpoints
in the time series (Table 1). Some of the 12 estimated break-
points align with major transitions in benthic §'3C (Wester-
hold et al., 2020), atmospheric CO;, concentration estimates
(Honisch et al., 2023), and global sea level estimates (Miller
et al., 2020) (Fig. 7). This alignment may reflect episodes
of large-scale reorganization in the Earth system, potentially
involving coupled changes in the carbon cycle, temperature,
and ice volume.

Five of these breakpoints (BP3, BP5, BP;7, BPy, and BP1)
closely match the five major transitions identified by West-
erhold et al. (2020), each corresponding to a well-known
climatic event. Specifically, BP3 aligns with the Paleocene—
Eocene Thermal Maximum (PETM, 56 Ma), a short-lived
but intense global warming event (Mclnerney and Wing,
2011). BPs marks the end of the Early Eocene Climate Opti-
mum (EECO, 47 Ma), a peak in long-term warmth during the
early Cenozoic (Westerhold et al., 2018). BP; captures the
Eocene—Oligocene Transition (EOT, 34 Ma), when Antarc-
tic glaciation began and global temperatures declined sharply
(Coxall et al., 2005; Spray et al., 2019). BP9 corresponds to
the Middle Miocene Climate Transition (MMCT, 13.9 Ma),
which is associated with expansion of the Antarctic ice sheets
(Flower and Kennett, 1994). Finally, BP;; is close to the
M2 glaciation event (3.3 Ma), which preceded the onset of
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Table 1. Estimated breakpoints and 95 % confidence intervals (CI)
in Ma for the Fixed AR model with 12 breakpoints determined using
the BIC.

Breakpoint name  Estimate 95 % CI
BP 61.250 (61.375, 60.525)
BP, 58200 (58.275, 57.825)
BP3 55.975 (56.275, 55.700)
BP4 48.825  (49.000, 47.675)
BP;5 46.725  (46.800, 46.475)
BPg 39.650  (39.750, 39.375)
BP; 34.025 (34.050, 33.850)
BPg 16.950 (18.175, 16.225)
BPy 13.875  (13.900, 13.675)
BPyo 9.975 (10.075, 9.700)
BPy 3.400 (3.625, 3.325)
BPy 1.425 (1.850, 1.225)

sustained Northern Hemisphere glaciation in the Pleistocene
(Lisiecki and Raymo, 2005).

Several of the remaining seven estimated breakpoints also
coincide with known climate events. For instance, BPg aligns
with the cooling following the Middle Eocene Climatic Op-
timum (MECO), originally described by Bohaty and Zachos
(2003), and occurs after a peak in atmospheric CO» concen-
trations inferred from boron isotope records (Henehan et al.,
2020) (Fig. 8). Another breakpoint, BPjg, is estimated at
9.975Ma and broadly coincides with the expansion of Cy4
grasslands (Fig. 9), which altered the global carbon cycle
and land surface with potential downstream effects on cli-
mate (Polissar et al., 2019; Stromberg, 2011). Notably, both
of these breakpoints are also identified by Rousseau et al.
(2023), who applied recurrence analysis and a Kolmogorov—
Smirnov test to the same 8180 dataset. BPg matches the onset
of the Mid-Miocene Climatic Optimum (MMCO), estimated
at 16.95 Ma (Flower and Kennett, 1994; Zachos et al., 2001).
BP; aligns with the maximum in both the §'3C and sea level
records at 58.03 and 58.21 Ma, respectively (Fig. 7). This pe-
riod has also been described by Harper et al. (2024) as the
peak of the Paleocene Carbon Isotope Maximum (PCIM).

Particularly noteworthy is the lack of breakpoints, even
with 15 detections, between the EOT at 34 Ma and the onset
of the MMCO around 17 Ma. This is consistent with the idea
that this interval is especially stable in the Cenozoic Era, fol-
lowing the establishment of the Antarctic ice sheet (Zachos
et al., 2001; Mudelsee et al., 2014).

We now focus on the breakpoints estimated within the Ice-
house period, which has an average resolution of 0.88 kyr
compared to 2.77 kyr for the full record (Fig. 6). The esti-
mation yields a single breakpoint at 1.355 Ma, which may
reflect a midpoint in the record rather than a distinct cli-
matic shift. When allowing for two breakpoints, as suggested
by the BIC, they are estimated at 2.54 and 0.95 Ma, coin-
ciding well with the intensification of Northern Hemisphere
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Figure 7. Overview of key paleoclimate proxies across the Cenozoic Era. From top to bottom: Benthic foraminiferal 8180 (Westerhold
et al., 2020), sB3c (Westerhold et al., 2020), atmospheric CO, concentration estimates from multiple proxy records (Honisch et al., 2023),
and global sea-level estimates relative to present (Miller et al., 2020). Breakpoints (black dots) and confidence intervals (light green bars) are
estimated using the preferred 12-breakpoint model on the 8180 record. The vertical dashed lines show the transitions found by Westerhold
et al. (2020). Notable alignments of features in the records with estimated breakpoints include the PETM (56 Ma), EOT (34 Ma), and MMCO
(17 Ma), supporting the interpretation of the breakpoints as indicators of major climate transitions.
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Figure 9. C4 grassland expansion, inferred from plant wax carbon
isotopes in marine sediments (Polissar et al., 2019), shown along-
side 8180 values. The estimated breakpoint, BP1( (black dot), and
its confidence interval (light green bar), align with this ecological
transition.

Figure 8. Boron isotope measurements (611 B) from multiple ocean
drilling sites compiled by Henehan et al. (2020), shown alongside
8180 values. The estimated breakpoint, BPg (black dot), and its
confidence interval (light green bar), align with the post-MECO
cooling.

https://doi.org/10.5194/cp-21-1981-2025 Clim. Past, 21, 1981-2008, 2025



1992

Glaciation (iNHG) (Lisiecki and Raymo, 2005) and the Mid-
Pleistocene Transition (MPT) (Pisias and Moore, 1981),
respectively. The iNHG marks the initiation of sustained,
large-scale glaciation in the Northern Hemisphere, beginning
around 2.6 Ma, as evidenced by increasing ice-rafted debris
and declining sea level (McClymont et al., 2023). The MPT
marks a change in the periodicity and amplitude of glacial—
interglacial cycles, which Clark et al. (2006) describe as a
gradual transition occurring between 1.25 and 0.7 Ma. James
et al. (2024) provide a dynamical argument supporting this
view, while others identify a more abrupt increase in ice vol-
ume and deep-ocean cooling centered around 0.9 Ma (Elder-
field et al., 2012). Both the iNHG and the MPT are thought to
be relatively gradual and complex events, which is supported
by the long, asymmetrical confidence intervals, ranging from
2.92 to 2.41 Ma for the first breakpoint and from 1.545 to
0.66 Ma for the second.

These results underscore the capability of the Bai-Perron
framework to detect key transitions in Earth’s climate history
but also emphasize the importance of prior understanding of
the climate system when interpreting breakpoint estimates.

5 Conclusion

This study presents a statistical time-domain approach to
estimate breakpoints in the Cenozoic Era using the econo-
metric tools developed by Bai and Perron (1998, 2003). We
analyze the time series of benthic §'80 compiled by West-
erhold et al. (2020), which is a widely cited foundational
record particularly for the field of paleoclimatology. West-
erhold et al. (2020) identified 5 breakpoints using recurrence
analysis, and our analysis strongly corroborates the place-
ment of these breakpoints across various model specifica-
tions and binning frequencies. Our approach offers the ad-
vantage of constructing confidence intervals for the ages of
the breakpoints, providing a measure of estimation uncer-
tainty. Based on the results of our simulation study, we advo-
cate using the model specification with a state-independent
autoregressive term and state-dependent intercept.

By selecting the number of breakpoints using information
criteria, we provide statistical justification for more than 5
breakpoints in the time series. For instance, the BIC sug-
gests 12 breakpoints. For these, the 5 transitions identified
by Westerhold et al. (2020) are preserved, while the addi-
tional breakpoints suggest further divisions of the climate
states they found. This points to the potential for a more de-
tailed classification of Cenozoic climate states, adding to our
understanding of Earth system dynamics.

Although we focus on the benthic §'30 stack (Wester-
hold et al., 2020) in this study, the Bai—Perron framework
is broadly applicable across paleoclimate research and re-
lated disciplines. To guide its use in other contexts, we of-
fer several general recommendations based on our findings:
(1) Careful consideration should be given to the choice of
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binning frequency. While finer binning enhances temporal
resolution, it may also preserve measurement errors and in-
troduce artifacts by linear interpolations, particularly in un-
evenly sampled records. Conversely, coarser binning can lead
to loss of information. In our application, we find that the bin
width 10 and 25 kyr provide a good balance between detail
and signal quality. For other records, we recommend seeking
a similar balance. (2) The model specification should reflect
the statistical features of the data, such as trends and autocor-
relation. Although the Fixed AR model has performed well
in our study, the flexibility of the Bai—Perron framework al-
lows users to adapt the model specification to suit different
datasets. (3) The number of breakpoints should be selected
based on information criteria, such as the BIC or LWZ, which
may yield different outcomes depending on model complex-
ity. In our analysis, the BIC tends to favor more breakpoints
than the LWZ. We recommend complementing statistical se-
lection with a careful assessment of the climatic relevance of
the estimated breakpoints.

These recommendations support the broader application
of the framework to other paleoclimate records, like the
Cenozoic-spanning reconstructions of 8'3C or paleo-CO,.
The method is suitable for detecting both gradual and abrupt
transitions, including climatic events such as Dansgaard-
Oeschger events (Dansgaard et al., 1993; Livina et al., 2010).
In addition to its versatility in application, the framework al-
lows for the inclusion of covariates, opening up many pos-
sibilities for future applications. As such, incorporating or-
bital parameters (e.g., eccentricity, obliquity, and precession;
Laskar et al., 2004) could create the potential for detecting
transitions while controlling for these external drivers. Addi-
tionally, one could investigate breaks in the relationship be-
tween orbital forcings and paleoclimate variables, reflecting
changes in how strongly these external factors influence cli-
mate dynamics. A key example is the MPT, marked by a shift
in the dominant glacial cycle from 41 to 100kyr (Berends
et al., 2021; Barker et al., 2025), the timing of which could
be estimated using the Bai—Perron framework.

These examples highlight the broader potential of the
framework as a flexible tool for paleoclimate data analysis.
Understanding when and how breakpoints in the climate sys-
tem occurred is essential for interpreting past climate vari-
ability, events, and shifts, and ultimately for informing pro-
jections of future climate change. The Bai—Perron frame-
work provides a statistically rigorous way of estimating these
breakpoints, offering new opportunities to deepen our under-
standing of long-term climate dynamics.
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Appendix A: Graphs

A1 Reversed time
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Figure A1. A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five breakpoints on 25 kyr-
binned data where the time frame is reversed. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95 %
confidence intervals. The results overlay the § 180 data from Westerhold et al. (2020) and their transitions.

A2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure A2. A comparison of estimated breakpoints using the Fixed AR model for 1 to 15 breakpoints on 10 kyr-binned data. The minimum
state length is set to 4 = 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95 % confidence
intervals. The results overlay the & 180 data from Westerhold et al. (2020) and their transitions.
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A3 One to 15 breakpoints: Mean model
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Figure A3. A comparison of estimated breakpoints using the Mean model for 1 to 15 breakpoints on 25 kyr-binned data. The minimum
state length is set to 7 = 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95 % confidence
intervals. The results overlay the § 180 data from Westerhold et al. (2020) and their transitions.

A4  One to 15 breakpoints: AR model
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Figure A4. A comparison of estimated breakpoints using the AR model for 1 to 15 breakpoints on 25 kyr-binned data. The minimum
state length is set to 7 = 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95 % confidence
intervals. The results overlay the & 180 data from Westerhold et al. (2020) and their transitions.
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A5 One and two breakpoints in the Icehouse: Mean
model 5 kyr
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Figure A5. A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr-binned data for the Icehouse
period. The minimum state length is set to & = 250 kyr. The black dots represent estimated breakpoints, while colored shaded rectangles
indicate 95 % confidence intervals. The results overlay the § 180 data from Westerhold et al. (2020).
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Figure A6. A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr-binned data for the Icehouse

period. The minimum state length is set to # = 250 kyr. The black dots represent estimated breakpoints, while colored shaded rectangles
indicate 95 % confidence intervals. The results overlay the § 180 data from Westerhold et al. (2020).
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Appendix B: Tables
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B1 Summary statistics: State-wise and full sample

Table B1. Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100kyr) and the §130 data without binning for each

of the states identified by Westerhold et al. (2020) and the full sample period.

Bin size State Mean SD  Max. Min. Data points
5 ‘Warmhouse I 0417  0.249 1.07 —0.215 2221
5 Hothouse —-0.269 0.261 0.391 —2.014 1800
5 ‘Warmhouse II 0.897 0366 1.894 —0.254 2600
5 Coolhouse T 2239 0233 2991 1.266 4020
5 Coolhouse 1T 3.072 0237 4.172 1.885 2120
5 Icehouse 4.037 0463 5405 3.05 660
5 Full sample period 1.561 1277 5405 -2.014 13421
10 Warmhouse I 0.417 0245 0977 —0.12 1111
10 Hothouse —0.269 0.256 0.308 —2.014 900
10 Warmhouse II 0.897 0366 1.777 —0.254 1300
10 Coolhouse I 2239 0221 2877 1.324 2010
10 Coolhouse 1T 3.072 0228 4.122 1.975 1060
10 Icehouse 4.034 0447 533 3.181 330
10 Full sample period 1.561 1276 533 —-2.014 6711
25 Warmhouse I 0418 0237 0912 —0.065 445
25 Hothouse —0.269 0.245 0.218 —1.871 360
25 Warmhouse 1T 0.898 0.358 1.688 0.01 520
25 Coolhouse I 2239 0202 2749 1.391 804
25 Coolhouse 1T 3.073 0213 3.793 2.087 424
25 Icehouse 4.033 0401 5.158 3.258 132
25 Full sample period 1.561 1273 5.158 —1.871 2685
50 Warmhouse I 0.419 0233 0.867 —0.042 223
50 Hothouse —0.268 0.233 0.197 —1.871 180
50 ‘Warmhouse 1T 0.898 0.354 1.656 0.182 260
50 Coolhouse T 224 0.188 2.713 1.567 402
50 Coolhouse 1T 3.072  0.206 3.72 2.156 212
50 Icehouse 4.042 0359 4757 3.264 66
50 Full sample period 1.562 1271 4757 —1.871 1343
75 ‘Warmhouse 1 042 0229 0.837 0.006 148
75 Hothouse —-0.26 0203 0.167 —0.985 120
75 Warmhouse II 0.894 0351 1.553 0.156 173
75 Coolhouse I 2239 0.181 2717 1.691 268
75 Coolhouse 1T 3.068 0214 3.652 2.072 142
75 Icehouse 4.041 0351 4753 3.283 44
75 Full sample period 1.563 1268 4753 —0.985 895
100 Warmhouse I 042 0229 0.832 0.007 112
100 Hothouse —0.263  0.203 0.155 —0.985 90
100 Warmhouse 1T 0.898 0.349 1.601 0.228 130
100 Coolhouse T 2241 0175 2.685 1.739 201
100 Coolhouse 1T 3.073 0201 3.625 2.353 106
100 Icehouse 4.047 0344 4.673 3.4 33
100 Full sample period 1.562 1269 4.673 —0.985 672
Without binning ~ Warmhouse I 0.428 0.25 1.07 —0.215 2761
Without binning ~ Hothouse —0.279 0.255 0.391 —2.46 3030
Without binning ~ Warmhouse II 0916 0357 1.894 —0.254 1786
Without binning  Coolhouse I 2251 0242 3.263 1.026 6669
Without binning  Coolhouse II 3.102  0.254 4.49 1.84 6282
Without binning  Icehouse 4.064 0.533 5.53 2.66 3731
Without binning  Full sample period 2.128  1.445 5.53 —2.46 24259
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B2 Estimated breakpoints: 5 breakpoints

1997

Table B2. Estimated breakpoints and their 95 % confidence intervals (in Ma) where the number of breakpoints is fixed to 5, and all values
are rounded to three decimals. The table shows estimates for each method across bin sizes 5, 10, 25, 50, 75, and 100 kyr.

Binsize BP index Mean ‘ Fixed AR ‘ AR

Estimate 95 % CI ‘ Estimate 95 % CI ‘ Estimate 95 % CI
5 1 55.965 (56.085, 55.885) 55.995 (56.085, 55.92) 33.745 (33.745, 33.72)
5 2 46.725 (46.845, 46.675) 46.73 (46.76, 46.68) 16.96 (17.365, 16.78)
5 3 34.02 (34.025,33.915) 34.05 (34.075,34.015) 13.825 (13.84, 13.775)
5 4 13.36  (13.395, 13.325) 13.41 (13.465, 13.34) 9.555 (9.585, 9.505)
5 5 2.735 (2.845,2.715) 2.74 (3.1,2.715) 3.36 (3.815, 3.355)
10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)
10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)
10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)
10 4 13.36 (13.4,13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)
10 5 2.73 (2.81,2.7) 2.74 (3.18,2.71) 2.74 (2.88,2.72)
25 1 55.975 (56.3,55.1) 56.025 (56.575,55.7) 55.825 (55.85,55.675)
25 2 46.725 (47.3, 46.55) 46.725 (46.825, 46.45) 48.35 (48.625,47.85)
25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)
25 4 13.4  (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)
25 5 2.725 (2.8,2.625) 2.775 (3.075,2.7) 2.575 (2.6, 2.55)
50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)
50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)
50 3 34.05 (34.05, 32.8) 34.2 (34.3,33.9) 33.75 (33.75, 33.6)
50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)
50 5 2.75 2.9,2.5) 3.15 (3.4,3.0) 14.3 (14.55, 12.8)
75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)
75 2 46.725  (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)
75 3 34.05 (34.05, 30.9) 342 (34.425,33.675) 34.05 (34.05, 33.825)
75 4 13.35 (13.8, 12.975) 13.875 (14.1, 13.125) 16.95 (17.325,16.5)
75 5 2.775 (3.375,2.4) 3.15 (3.525, 2.925) 14.475  (15.075, 14.25)
100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)
100 2 46.7 (52.5,46.3) 47.1 (477, 46.3) 53.4 (53.8,52.1)
100 3 34.1 (34.1,29.4) 34.2 (34.5,33.4) 49.1 (50.8, 48.8)
100 4 13.8 (14.7,13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)
100 5 2.9 “4.2,2.3) 34 (3.8,3.2) 13.8 (15.7,12.9)
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B3 Estimated parameters: 5 breakpoints and 25 kyr
binned data

Table B3. Estimated parameters and their corresponding standard errors (SE) for each model specification. Parameters absent in a given
model specification are denoted by x. The number of breakpoints is set to 5, and the parameters are estimated with a binning frequency of
25kyr and h = 2.5 Myr. All values are rounded to three decimals.

Mean | FixedAR | AR
Parameter  Estimate SE ‘ Estimate SE ‘ Estimate SE
c] 0.418 0.051 0.069  0.008 —0.001 0.026
¢ —0.256  0.040 —0.043  0.007 —0.108 0.015
c3 0911 0.072 0.153 0.013 0.028  0.007
c4 2.247 0.017 0.373  0.031 0.660 0.061
cs 3.119 0.027 0.519 0.043 0.421 0.073
¢ 4.140 0.051 0.698 0.057 2423 0.326
1) X X 0.833 0.014 X X
01 X X X X 0.990 0.054
v X X X X 0.631 0.037
©3 X X X X 0.970  0.008
©4 X X X X 0.706  0.027
@5 X X X x 0.865 0.024
06 X X X X 0.419 0.081
ol 0.237 x 0.095 x 0.106 x
O'& 0.255 X 0.154 X 0.140 X
022 0.347 X 0.112 X 0.107 X
o 0.210 x 0.141 x 0.140 x
045& 0.208 X 0.111 X 0.116 X
of 0351 x 0.340 x 0315 x

B4 The number of breakpoints selected by information
criteria

Table B4. The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies considered. The mini-
mum state length is set to 27 = 2.5 Myr and the maximum number of breakpoints is 26.

Bin size Mean | Fixed AR | AR

BIC LWZ \ BIC LWZ \ BIC LwWZ

5 19 17 17 7 15 5
10 17 17 14 7 14 3
25 17 14 12 6 8 3
50 17 14 10 0 7 0
75 17 14 6 0 5 0
100 17 12 6 0 5 0
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Appendix C: Simulation study

C1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai
and Perron (1998, 2003) can be used to accurately estimate
the number and timing of breakpoints in a state-wise non-
stationary time series. We conduct 1000 simulations for each
data-generating process (DGP) with a sample size of 500. All
the DGPs considered have the following form,

e =cC1+@1Yi—1+ &, & i /\/(0102> fort <T/2
Vi=cateyi e, & /\/(0,02) fort > T/2. (Cl)
Hence, we consider a single breakpoint in the middle of the
sample interval, namely at = 250. We examine eight DGPs,
each specified and described in Table C1.

The DGPs range from random walk models with a break
in the drift term to models with breaks in both the intercept
and the AR coefficient. For comparison, we include a ran-
dom walk without breakpoints as the sixth model. For each
of the DGPs, we are interested in the performance of the
methodology by Bai and Perron (1998, 2003) in estimating
the breakpoint and confidence intervals. The model specifi-
cations from Sect. 2.3 are estimated on the data generated
by the DGPs, and we use the implementation outlined in
Sect. 2.4. We use the R-package mbreaks by Nguyen et al.
(2023), and we impose a single breakpoint in the estima-
tion. The left and right panels of Figs. C1 through C8 display
realizations of the DGP and density plots of the estimated
breakpoints for each of the models, respectively. The results
are summarized in Table C2, which provides the mean of
the estimated breakpoints, and medians of the lower and up-
per boundaries of the estimated 95 % Cls are tabulated along
with their coverage rates for each model and DGP.

In the first DGP, a random walk with a small drift term
break, we observe that the mean of the estimated breakpoints
is later than the true breakpoint in all model specifications.
Additionally, the density plots exhibit asymmetry around the
true breakpoint. This is expected due to the low magnitude of
the break in the drift term, which creates a subtle change in
the overall stochastic trend, making accurate breakpoint de-
tection difficult. In the second DGP with a larger drift term
break, the estimated breakpoints exhibit a narrower and more
bell-shaped density. The mean estimated breakpoints for the
Fixed AR and AR models slightly precede the true break-
point. However, the Mean model performs poorly, with the
mean of the estimated breakpoints far from the true break-
point.

In the third DGP, both the Fixed AR and AR models pro-
duce mean estimated breakpoints slightly later than the true
breakpoint. The Mean model exhibits better performance in
this DGP than in the second DGP. The fourth DGP has a
break in the intercept and the AR-coefficient from 0.95 to 1,
resulting in a state-wise non-stationary model. This change

https://doi.org/10.5194/cp-21-1981-2025
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leads to breakpoint estimates very close to the true break-
point, except in the Mean model. A similar outcome is ob-
served in the fifth DGP, which features a larger increase in
the AR-coefficient. In the sixth DGP, which is defined with-
out any breakpoints, the Mean model estimates breakpoints
near the midpoint of the sample period, while the other two
specifications yield inconclusive results. In the seventh DGP,
the AR and Fixed AR models produce estimates close to the
true breakpoint. However, the Mean model continues to pro-
duce breakpoint estimates far from the true value. Examin-
ing the eighth DGP, the three models perform almost equally
well.

Overall, the Fixed AR and AR models tend to perform well
in non-stationary scenarios, estimating breakpoints close to
the true breakpoints. The methodology, however, appears to
struggle with accurately estimating the true breakpoint in
cases of minor changes between states and large error term
variance. In contrast, the Mean model does not perform well
in DGPs featuring gradual changes, aligning with theoretical
expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the
CI covers the true breakpoint, here at t =250. We find that
the CIs of the Mean model are generally very wide and have
varying coverage. In the Fixed AR and AR models, the CIs
are typically narrower. The coverage rates are best in the
DGPs with large differences between the states as seen in
DGPs 4, 5, 7 and 8 using the Fixed AR model specification,
which is in line with the findings of Bai and Perron (2003).
For the AR model, the coverage rates are only close to the
desired 95 % in the seventh and eighth DGP, indicating that
the CIs are inadequate in most of the DGPs considered.

Table C3 shows the mean number of breakpoints estimated
for each DGP and method, along with the proportion of cor-
rectly estimated breakpoints. The difficulty in accurately es-
timating gradual changes using the Mean model is also evi-
dent when estimating the number of breakpoints. This model
specification leads to overestimating the number of break-
points in all DGPs considered except DGP 8, where it per-
forms well. The BIC criterion in the Fixed AR specification
performs very well, with an estimated number of breakpoints
equal to the true number in most simulations in DGP 2-8.
The LWZ criterion performs almost equally well except in
the third DGP, while the KT criterion vastly overestimates
the number of breakpoints in DGP 1-7. In the AR model, the
information criteria all perform well in DGPs 2—-8 except for
the third DGP where the LWZ criterion underestimates the
number of breakpoints.

C2 Serially correlated error term
A possible extension of the simulation study outlined in

Eq. (C1) is allowing the error term to exhibit serial corre-
lation. We use the same DGPs as before, but generate {g; }tT=1

Clim. Past, 21, 1981-2008, 2025
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Table C1. Data-generating processes for the simulation study and short descriptions. RW: random walk.

DGP o cl ) 01 ¢>  Description

1 1 01 02 1 1 Small break in the drift term of a RW

2 1 0.1 1 1 1 Large break in the drift term of a RW

3 1 0.1 1 095 095 Large break in the intercept and a fixed AR-coefficient

4 1 01 1 095 1 Break in the intercept and small break in the AR-coefficient
5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient
6 1 1 1 1 1 RW with a drift without a breakpoint

7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance

8 1 0.1 1 0.5 0.5 Large break in the intercept and a low fixed AR-coefficient

Table C2. Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence intervals, along with
the coverage rates for each model specification and DGP. DGP 6 is simulated without a breakpoint, so the coverage rate is irrelevant and

indicated by x.

DGP Mean \ Fixed AR \ AR

BPest. Lower Upper Coverage ‘ BPest. Lower Upper Coverage ‘ BPest. Lower Upper Coverage
1 301 174 655 57.1% 251 216 336 43.4 % 290 240 316 22.7 %
2 333 —386 332 95.4 % 249 237 262 93 % 249 236 256 77.2 %
3 263 253 284 41.4 % 256 239 260 89.9 % 251 241 260 85.9%
4 340 —190 340 97.5% 249 239 260 95.8 % 249 238 250 65.8 %
5 340 —114 340 97.1 % 250 239 258 97 % 250 241 250 72.9 %
6 249  -3325 3976 x 253 142 371 X 254 202 312 X
7 333 —282 330 92 % 249 246 253 97.8 % 249 246 253 96 %
8 249 237 264 95.1 % 248 236 263 95.2 % 248 236 263 94.5 %

Table C3. Means of the estimated number of breakpoints for each model specification across different DGPs, rounded to one decimal.
Percentages indicate the proportion of estimates equal to the true number of breakpoints.

DGP Mean \ Fixed AR \ AR

BIC LWZ KT | BIC

LWZ KT | BIC LWZ KT

1 3000%) 300%) 3.00%) | 02(15%)
2 300%) 3.00%) 3.00%) | 1.0(97%)
3 290%) 27(@4%)  3.00%) | 1.0(94%)
4 3000%) 3.00%) 3.00%) | 1.0(98%)
5 3000%) 3.00%) 3.00%) | 1.0(99%)
6
7
8

0.00%) 3.0(0%) 0.1 (6%) 0.0 (0 %) 0.0 (3%)
0.8(82%) 3.00%) | 1.094%) 05(@6%)  1.0(93%)
02(16%) 290%) | 0.9(85%) 000%) 0.7(70%)
1.0(98%) 280%) | 1.0(99%) 09(92%)  1.0(99%)
1.0(97%) 270%) | 1.099%) 1.0(100%) 1.0 (99 %)
3000%) 300%) 3.00%) | 0.0098%) 00(100%) 3.00%) | 0.0(100%) 0.0 (100%) 0.0 (100 %)
3000%) 300%) 300%) | 1.099%) 1.0(100%) 3.00%) | 1.0(98%) 1.0(100%) 1.0 (98 %)
1.5(63%) 1.098%) 13(72%) | 1.0(99%) 1.0(100%) 13(73%) | 1.0(100%) 1.0(98%) 1.0 (100%)

as follows,

i.i.d.
& =Yer1+0n-1+n, ﬂzl’l" /\/‘(O,anz) Vt. (C2)

We conduct 1000 simulations for each, with a sample size of
500. Here, we consider DGPs 2, 3, 4, 5, 7, and 8 as outlined
in Table C1 and refer to these DGPs in the serially correlated
cases as models 2g, 3, 45, 55, 75, and 8. We set y =60 = 0.5
and the standard deviation o, such that the standard devia-
tion of &; corresponds to the ¢ in Table C1. This is accom-

Clim. Past, 21, 1981-2008, 2025

plished as follows,

Var(g;) = Var (Y &;—1 +0n,—1 +ny)
= y*Var(e;—1) + 607 Var (n,_1)
+2¢0Cov (g1, 1m:—1) + Var(n,).
= y?Var(e,_1) + 070, +2¥ 00, + 0.
since &—1 and n,—; have zero means and E[gn;] =

SE [er—1n |+ O0E [nini—1] +E[n?] = 0772. Given stationarity
of the process, which implies o= Var (&) for all 7, we de-
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Figure C1. DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C2. DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C3. DGP 3: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.

1— 2
02202 w

n 14624296

This adjustment ensures the comparability of the results be-
tween the two error term types.

In Figs. C9 through C14, we plot examples of realizations
and frequency plots of the estimated breakpoints using each
of the models while imposing a single breakpoint in the esti-
mation. The results are summarized in Table C4, which pro-
vides means of the estimated breakpoints and medians of the
lower and upper boundary of the estimated confidence inter-
vals, along with the coverage rates for each model specifica-
tion and DGP. Generally speaking, the mean of the estimated
breakpoints are further from the true breakpoint and the CIs

https://doi.org/10.5194/cp-21-1981-2025

become wider compared to the results from the correspond-
ing DGPs without serial correlation. It is evident that serial
correlation in the error term makes it more difficult to esti-
mate the dating of breaks. We find that the Fixed AR and AR
models perform well for DGP 7, which has a large differ-
ence between the states and low variance. This is in line with
the theoretical framework by Bai and Perron (2003), who
note that the estimated break dates are consistent even in the
presence of serial correlation. The Fixed AR model performs
well in DGPs 24, 4 and 55 where the mean of the estimated
breakpoints is close to the true breakpoint, and confidence
intervals are reasonably wide with acceptable coverage rates.
The results of the AR model are less conclusive.

For the Mean and Fixed AR models, the coverage rates are
generally close to the desired 95 % and even higher in some

Clim. Past, 21, 1981-2008, 2025
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Figure C4. DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C5. DGP 5: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C6. DGP 6: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.

DGPs. However, the Cls are also extremely wide, reaching
outside the sample window in many DGPs. The CIs seem
reasonable in the Fixed AR model for DGPs 2, 4, 55, and 75,
where the coverage rates are close to 95 % and the medians of
the lower and upper bounds of the CIs are not too extreme.
The CIs for the AR model are generally wider than in the
version without serial correlation in the error term. In the AR
model, the coverage rates are lower than the desired 95 %,
but it seems that DGPs with large breaks have higher cover-
age rates. The relatively poor performance is in line with the
theoretical framework by Bai and Perron (2003). The authors
note that the construction of the CIs rely on having no serial
correlation in the error term if a lagged dependent variable is
included as a regressor that has coefficients that are subject
to breakpoints.

Clim. Past, 21, 1981-2008, 2025

Table CS5 shows the mean number of breakpoints esti-
mated for each DGP and method, along with the proportion
of correctly estimated number. In the Mean model, all in-
formation criteria overestimate the number of breakpoints.
An important exception is the eighth DGP, where the per-
formance is better, as in the case without serial correlation.
In the Fixed AR and AR model specifications, the LWZ cri-
terion generally performs well, while both the BIC and the
KT criteria generally overestimate. However, the LWZ cri-
terion leads to underestimating the number of breakpoints
in DGPs 3 and 8. These two DGPs are characterized by
fixed AR-coefficients that are lower than one. This implies
that these two processes do not exhibit an autoregressive unit
root. Hence, it seems that the LWZ criterion performs well
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Table C4. Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence intervals, along with

the coverage rates for each model specification and DGP.

DGP Mean \ Fixed AR \ AR

BPest. Lower Upper Coverage ‘ BPest. Lower Upper Coverage ‘ BPest. Lower Upper Coverage
2 332 —1400 335 95.9 % 247 188 312 95.7 % 261 190 299 79.9 %
3 266 60 787 90.6 % 285 —112 656 97.2 % 276 156 421 77.1 %
4 340 =776 339 94.9 % 252 197 301 96.9 % 264 195 2717 84.9 %
S 342 —329 340 96.2 % 256 196 266 96.4 % 259 192 250 70.8 %
Ts 333 —1708 329 92.3 % 249 230 270 97.6 % 251 230 267 92.8 %
8s 250 122 370 98.3 % 245 =5 492 99.8 % 247 23 490 97.4 %

Table C5. Means of the estimated number of breakpoints for each model specification across different DGPs, rounded to one decimal.

Percentages indicate the proportion of estimates equal to the true number of breakpoints.

DGP Mean Fixed AR AR
BIC LWZ KT | BIC LWZ KT | BIC LWZ KT
2 3000%) 300%) 300%) | 1.932%) 09(70%) 290%) | 1.8(37%) 0.7(61%) 1.9(33%)
3 3000%) 28Q2%) 3.00%) | 0.733%) 000%) 27(3%) | 03(19%) 0.00%) 04(17%)
4s 3000%) 300%) 300%) | 1.745%) 1.085%) 28(1%) | 1.6(51%) 08(79%) 1.6 (47%)
5 3000 300%) 300%) | 18(5%) 11(385%) 280%) | 1.7(40%) 1.0(92%) 1.6 (49%)
7s 3000%) 3.00%) 3.00%) | 1.934%) 1.1(89%) 3.000%) | 1.934%) 1.0(96%) 1.9 (32%)
8s 2221%) 12(78%) 22(23%) | 04(35%) 000%) 1936%) | 00(4%) 000%)  0.0(3%)
https://doi.org/10.5194/cp-21-1981-2025 Clim. Past, 21, 1981-2008, 2025
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Figure C9. DGP 2;: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C10. DGP 3;: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C11. DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C12. DGP 5;: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C13. DGP 7: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C14. DGP 8: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.

in cases of state-wise non-stationarity or switching between
stationary and non-stationary states.

Compared to the findings in the DGPs without serial cor-
relation, it is clear that the proportion of correct estimates are
lower for most DGPs and model specifications. Overall, the
best performing criterion seems to be the LWZ criterion in
the Fixed AR and AR models, while the Mean model typi-
cally leads to overestimating the number of breakpoints.
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