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Abstract. Quantifying past ocean nitrate concentrations is
crucial for understanding the global nitrogen cycle. Here,
we reconstruct deglacial bottom-water nitrate concentrations
([NO−3 ]BW) in the oxygen-deficient zones of the Sea of
Okhotsk, the Gulf of California, the Mexican Margin, and
the Gulf of Guayaquil. Using the pore density of denitri-
fying benthic foraminifera as a nitrate proxy, differences
in [NO−3 ]BW are observed at the study sites spanning the
Last Glacial Maximum to the Holocene. Changes in water-
column denitrification, water-mass ventilation, primary pro-
ductivity, and sea surface temperatures may account for ni-
trate differences at the study sites. The [NO−3 ]BW in the Sea
of Okhotsk, the Gulf of California, and the Gulf of Guayaquil
are influenced by the intermediate water masses while, the
[NO−3 ]BW at the Mexican Margin is likely influenced by
deglacial changes in the Pacific Deep Water. The comparison
of past and present [NO−3 ] shows that the modern Gulf of
Guayaquil and the Gulf of California currently have stronger
oxygen-deficient zones with higher denitrification than dur-
ing the Last Glacial Maximum. In contrast, the modern Mex-
ican Margin and the Sea of Okhotsk may have higher oxy-
gen than during the Last Glacial Maximum, indicated by low
modern denitrification.

1 Introduction

The marine nitrogen cycle is a complex web of microbially
mediated processes controlling the inventory and distribution
of bioavailable nitrogen in marine environments (Casciotti,
2016). Biological nitrogen fixation by nitrogen-fixing dia-
zotrophs (e.g., cyanobacteria) in the surface layer is the main
source of bioavailable nitrogen in the ocean, and denitrifi-
cation and anammox, are the main fixed nitrogen loss pro-
cesses (Lam and Kuypers, 2011), both of which occur under
low-oxygen conditions. The primary form of bioavailable ni-
trogen in the ocean is nitrate (NO−3 ), (Casciotti, 2016), which
is a limiting nutrient throughout the tropical and subtropical
oceans (Moore et al., 2013).

Oxygen-deficient zones (ODZs) are regions of very low
dissolved oxygen (O2) where the O2 concentration is less
than 22 µmol kg−1, usually within depths of 100–1200 m
(Levin, 2003; 2018). Oxygen plays a key role in the marine
nitrogen cycle (Keeling et al., 2010) because some micro-
bial processes require oxygen while others are inhibited by
it (Voss et al., 2013). For example, denitrification (reduction
of nitrate to dinitrogen gas) in the ocean occurs in suboxic
(oxygen < 5 µmol kg−1) conditions (Codispoti et al., 2001;
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Levin, 2018). On a global scale, ∼ 30 %–50 % of fixed ni-
trogen loss in the world’s oceans occurs in ODZs (Gruber,
2008), either through denitrification or anammox (Devol et
al., 2006; Lam and Kuypers, 2011; Evans et al., 2023). Due
to the complex interactions and feedbacks within the biogeo-
chemical nitrogen cycle, the amount of benthic denitrifica-
tion also influences other important processes, such as global
nitrogen fixation and net primary production (Somes et al.,
2017; Li et al., 2024). Oxygen Deficient Zones cover only
1 % of the world’s seafloor (Codispoti et al., 2001), however,
10 % of the global benthic denitrification occurs in these re-
gions (Bohlen et al., 2012). Observations and climate model
simulations have predicted that ODZs will continue to ex-
pand until at least the year 2100 (Stramma et al., 2008, 2010;
Schmidtko et al., 2017; Oschlies, 2021). However, the long-
term evolution of ODZs remains uncertain (Yamamoto et
al., 2015; Takano et al., 2018; Fu et al., 2018; Frölicher et
al., 2020). There is growing evidence that ODZs may con-
tract during transient and equilibrium climate warmings over
timescales of millennia and beyond (Auderset et al., 2022;
Moretti et al., 2024). Considering the role of ODZs in modu-
lating the marine nitrogen cycle, it is of key scientific interest
to understand how nitrogen cycling works in these ecosys-
tems and the potential factors that influence the nitrogen cy-
cle.

In this study, we use the pore density (number of pores
per unit area) of Bolivina spissa and Bolivina subadvena
as a NO−3 proxy (Fig. 1a) to reconstruct bottom-water ni-
trate [NO−3 ]BW in intermediate water depths of the Sea of
Okhotsk, the Gulf of California, the Gulf of Guayaquil, and
in the Pacific Deep Water (PDW) depths of the Mexican Mar-
gin (Figs. 2 and 3). The [NO−3 ]BW calibration using the pore
density of B. spissa and B. subadvena (see Fig. 1b) devel-
oped in Govindankutty Menon et al. (2023) is applied in the
current study. Combining a proxy for [NO−3 ]BW (pore den-
sity of denitrifying foraminifera) and a proxy for N-cycle
processes in the water column (δ15Nbulk) facilitates a more
comprehensive understanding of past N-cycling in different
zones of the water column. Here, we try to understand 1)
whether there are differences in reconstructed [NO−3 ]BW be-
tween today, deglacial, and glacial periods in the four studied
sites, and 2) whether the reconstructed [NO−3 ]BW records are
in agreement with insights drawn from δ15Nbulk data.

1.1 Application of δ15Nbulk and its potential limitations

The stable isotope signature of nitrogen in the sedimentary
organic matter (δ15Nbulk) is an established proxy for water-
column denitrification and for understanding changes asso-
ciated with nutrient utilization (Thunell et al., 2004; Robin-
son et al., 2009; Martinez and Robinson, 2010; Dubois et al.,
2011, 2014; Tesdal et al., 2013; Wang et al., 2019; Riechel-
son et al., 2024). An increase (or decrease) in nutrient avail-
ability in relation to nutrient demand results in an increase
(or decrease) in δ15N values (Wada and Hattori, 1978; Mon-

toya et al., 1990). When the oxygen in the ocean is depleted,
either due to global warming or increased remineralization,
denitrification rates in the water column are also increasing
and so is δ15N (Wang et al., 2019). Therefore, δ15Nbulk can
be an important tool for reconstructing past changes in deni-
trification in the ODZs.

The δ15N records from the bulk sediment can be sub-
ject to interlinked processes/or sources which can complicate
their interpretation. For example, diagenetic alteration dur-
ing sinking in the water column and burial in the sediment
(Altabet and Francois, 1994; Lourey et al., 2003), as well as
terrestrial or shelf sources of organic and inorganic nitrogen
(Schubert and Calvert, 2001; Kienast et al., 2005; Meckler et
al., 2011), and remotely advected water masses with differ-
ent δ15N values (for e.g., Southern Californian margin; Liu
and Kaplan, 1989), could influence the δ15N signatures in
sediments. Nevertheless, Tesdal et al. (2013) proposed that
δ15Nbulk can be a reliable indicator for individual locations
reflecting the oceanographic conditions of the surrounding
environments.

The nitrogen isotopes of organic matter bound and pro-
tected within the calcite shell of planktic foraminifera
(δ15NFB) are less subjected to diagenesis or sedimentary
contamination than δ15Nbulk and can be used to under-
stand major nitrogen transformations occurring in the ocean
(Ren et al., 2012; Studer et al., 2021). There are well-
documented disagreements between bulk sediment δ15N and
foraminifera-bound δ15N records, particularly in glacial-
interglacial comparisons (Studer et al., 2021). While δ15Nbulk
suggests strong variability in water-column denitrification
between the LGM and deglaciation, δ15NFB records indicate
a more moderate change, with a peak during deglaciation but
relatively stable values during the LGM and Holocene. This
highlights that δ15Nbulk and δ15NFB may reflect different as-
pects of the nitrogen cycle (Studer et al., 2021). Recent stud-
ies (Auderset et al., 2022; Hess et al., 2023; Moretti et al.,
2024) based on δ15NFB have shown that water column den-
itrification decreased and ODZs contracted during warmer-
than-present periods of the Cenozoic. In contrast, Riechelson
et al. (2024) used δ15Nbulk and hypothesized that the decrease
in δ15Nbulk values over the Holocene is related to a decrease
in Southern Ocean nutrient utilization and not due to a de-
crease in denitrification.

1.2 Pore density of benthic foraminifera as a
bottom-water nitrate proxy

Foraminifera account for a major part of benthic denitrifica-
tion in the ODZs (up to 100 % in some environments) (Piña-
Ochoa et al., 2010a, b; Glock et al., 2013; Dale et al., 2016;
Choquel et al., 2021; Rakshit et al., 2025). Some species,
for example B. spissa, which are abundant in ODZs in and
around the Pacific Ocean (Glock et al., 2011; Fontanier et
al., 2014) can use NO−3 as an electron acceptor (see Fig. 1a)
and thus can denitrify (Risgaard-Petersen et al., 2006; Piña-
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Figure 1. The (a) schematic view of nitrate (NO−3 ) uptake, and the excretion of nitrogen gas (N2) by the benthic foraminifera Bolivina
spissa. The step-wise denitrification pathway from NO−3 to N2 involving enzymes such as nitrate reductase (Nr Nar), nitrite reductase (Nir),
nitric-oxide reductase (Nor), and nitrous oxide reductase (Nos) is also shown. (b) Correlation between pore density of Bolivina spissa from
Peru, off Costa Rica, Sagami Bay, and Bolivina subadvena with bottom-water nitrate [NO−3 ]BW from Govindankutty Menon et al. (2023).
If no species name is indicated in the legend, the analysed species was B. spissa. The error bars are 1 standard error of the mean.

Ochoa et al., 2010a, b). A study by Glock et al. (2019)
proposed for some denitrifying foraminifera, denitrification
is their preferred respiration pathway. The uptake of NO−3
by these foraminifera is likely through pores in the test
(see Fig. 1a). Nitrate is completely denitrified to dinitrogen
gas (N2) partly by the foraminifera themselves (Risgaard-
Petersen et al., 2006; Woehle and Roy et al., 2018; Orsi et al.,
2020; Gomaa et al., 2021), and partly supported by prokary-
otic endobionts (Bernhard et al., 2012a, Woehle and Roy
et al., 2022). To date, benthic foraminifera are the only eu-
karyote holobiont known to perform complete heterotrophic
denitrification (Risgaard-Petersen et al., 2006; Kamp et al.,
2015). Every Bolivina species tested so far (including Bo-
livina seminuda), can denitrify (Piña-Ochoa et al., 2010a;
Bernhard et al., 2012b), suggesting that denitrification is
a common survival strategy of Bolivinidae under oxygen-
depleted conditions (Glock et al., 2019). This makes species
of this genus particularly suitable candidates for reconstruct-
ing past nitrate levels using pore characteristics as a proxy.
In low-oxygen environments, such as the ODZs off Peru,
Costa Rica, and the hypoxic Sagami Bay, B. spissa increase

their pore density with decreasing ambient NO−3 availabil-
ity (Govindankutty Menon et al., 2023). Thus, the pore den-
sity of several Bolivina species, such as B. spissa, and B.
subadvena, is an empirically calibrated proxy that shows
the strongest correlation with the bottom-water nitrate con-
centration (see Fig. 1b) (Glock et al., 2011; Govindankutty
Menon et al., 2023) rather than bottom-water oxygen, tem-
perature, water depth, salinity or pore water nitrate.

2 Materials and methods

2.1 Study area and sampling of sediment cores

We used downcore samples from the Eastern Tropical South
Pacific, ETSP (Gulf of Guayaquil (M77/2-59-01), Eastern
Tropical North Pacific the ETNP (Mexican Margin, MAZ-
1E-04), the Gulf of California (Guaymas Basin, DSDP-
64-480), and the Sea of Okhotsk (MD01-2415), over the
last ∼ 20 000 years (Fig. 3). The Gulf of Guayaquil sed-
iment core M77/2-59-01 (03°57.01′ S, 81°19.23′W, recov-
ery 13.59 m) was collected from the northern edge of the
ODZ at a water depth of 997 m during the RV Meteor cruise
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Figure 2. Location of sediment cores used in the current study and mean annual oxygen concentrations at 700 m depth (Garcia et al., 2019).
Sediment cores are indicated by yellow triangles: Sea of Okhotsk (core MD01-2415; water depth: 822 m), Gulf of California (DSDP Site-
480; water depth: 747 m), Mexican Margin (core MAZ-1E-04; water depth: 1463 m), and Gulf of Guayaquil (core M77/2-59-01; water depth:
997 m). Map created with Ocean Data View (Schlitzer, 2023).

M77/2 in 2008 (Mollier-Vogel et al., 2013, 2019; Nürnberg
et al., 2015). The piston core MAZ-1E-04, Mexican Margin
(22.9° N, 106.91° W) was collected on board the RV El Puma
at a water depth of 1463 m. The CALYPSO giant piston core
MD01-2415 (53°57.09′ N, 149°57.52′ E, recovery 46.23 m)
was recovered from the northern slope of the Sea of Okhotsk
at 822 m water depth during the WEPAMA cruise MD122
of the RV Marion Dufresne (Holbourn et al., 2002; Nürn-
berg and Tiedemann, 2004). The Deep-Sea Drilling Project
core DSDP-480 (27°54′ N, 111°39′W) from the Gulf of Cal-
ifornia was retrieved at a water depth of 747 m close to
the Guaymas Basin. For details on the sampling procedure
of foraminiferal specimens, please refer to the Supplement
Methods section in the Supplement.

2.2 Automated image analysis

All specimens of B. spissa and B. subadvena were imaged us-
ing a Scanning Electron Microscope (Hitachi Tabletop SEM
TM4000 series) at Hamburg University, Germany with an ac-
celerating voltage of 15 kV using a back-scattered electron
(BSE) detector (Further methodological details are provided
in the Supplement).

Following the image analysis, pore density data of ben-
thic foraminifera from the four ODZs were used for the
quantitative reconstruction of [NO−3 ]BW (Fig. 4). We dis-
tinguished five different time intervals, including the Last
Glacial Maximum (LGM; 22–17 ka BP), Heinrich Stadial 1
(H1; 17–15 ka BP), Bølling – Allerød (BA; 14.7–12.9 ka BP),
Younger Dryas (YD; 12.9–11.7 ka BP), Early Holocene (EH;

11.7–8.2 ka BP) and Middle to Late Holocene (MLH; 8–
0 ka BP) to describe the [NO−3 ]BW in the East Pacific and the
Sea of Okhotsk. We present updated chronostratigraphies of
the studied cores, primarily based on accelerator mass spec-
trometry (AMS) radiocarbon (14C) dating, as detailed in the
Supplement Methods.

The [NO−3 ]BW from all cores were calculated using the
calibration equation;

[NO−3 ]BW =−3896(±350)PD+ 61(±1) (1)

where PD is the pore density of benthic foraminifera (Govin-
dankutty Menon et al., 2023).

The standard error of the mean (SEM) for one sample was
calculated using the equation;

SEM
[NO−3 ]BW

=

SD
[NO−3 ]BW
√

n
(2)

where n is the number of specimens analyzed in each sam-
ple and SD is 1 standard deviation of mean reconstructed
[NO−3 ]BW.

SD
[NO−3 ]BW

=

√
(350XPD)2+ (−3896X SDPD)2+ (1)2 (3)

A complete error propagation was done for the calculation
of the errors of the reconstructed [NO3]BW including both
the uncertainty of the mean PD within the samples and the
uncertainties of the calibration function. The reconstructed
[NO−3 ]BW and the calculated SEM and SD of each sample
are shown in the Supplement.
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Figure 3. Modern (a) salinity and (b) nitrate distribution along a N–S transect across the Pacific (Garcia et al., 2019) with major subsurface
and deep-water masses (blue arrows) and formation areas of North Pacific Intermediate Water (NPIW) and Southern Ocean Intermediate
Water (SOIW) are included. Sediment cores used for [NO−3 ]BW reconstruction are shown (red crosses) projected to the N-S hydrographic
transect. Equatorial Pacific Intermediate Water (EqPIW), Equatorial Undercurrent (EUC), NPIW, SOIW, Pacific Deep Water (PDW), Antarc-
tic Bottom Water (AABW), and Circumpolar Deep Water (CDW). Profiles generated by Ocean Data View (Schlitzer, 2023) using the data
from World Ocean Atlas 2018 (Garcia et al., 2019).

2.3 Sedimentary nitrogen isotope (δ15Nbulk)
measurements

We have measured sedimentary nitrogen isotope (δ15Nbulk)
rather than δ15NFB from cores taken from the Sea of
Okhotsk, and Gulf of California, because the low abundances
of foraminifera were utilized for other analysis. The analysis
of bulk sediments allows for high-resolution records. Prior to
the δ15Nbulk measurements, the Total Nitrogen (TN %) con-
tent of 20 sediment samples from the Sea of Okhotsk and
54 samples from the Gulf of California were measured at
the Institute for Geology, Hamburg University, Germany us-

ing a flash combustion method with a Eurovector EA-3000
analyzer. The δ15Nbulk measurements for both the Sea of
Okhotsk and the Gulf of California were accomplished at
the Max Planck Institute for Chemistry (Mainz), Germany
using a DELTA V ADVANTAGE Isotope Ratio Mass Spec-
trometer (IRMS) equipped with a FLASH 2000 Organic El-
emental Analyzer. The results were expressed in standard
δ-notation (Eq. 4). The standard deviation (± SD) of all
individual analysis runs based on a certified international
reference standard (USGS65) and internal laboratory stan-
dards (L-Phenylalanine and L-Glutamic acid) referenced to
certified international reference standards was < 0.3‰. The
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δ15Nbulk data for the Sea of Okhotsk and the Gulf of Califor-
nia are shown in Supplement Table S1.

δ15N(‰)= [(15N:14Nsample/
15N:14Nair)− 1]× 1000 (4)

For the Gulf of Guayaquil core M77/2-59-01, the δ15Nbulk
data published by Mollier-Vogel et al. (2019) was used. Their
measurements were done on∼ 5–50 mg of homogenized and
freeze-dried bulk sediments using a Carlo-Erba CN analyzer
2500 interfaced directly to a Micromass-Isoprime mass spec-
trometer at Bordeaux University. Results are expressed in
standard δ-notation (Eq. 4) relative to atmospheric dinitro-
gen gas (N2).

2.4 Nitrate offset to present conditions

The reconstructed [NO−3 ]BW from each location is subtracted
from the modern [NO−3 ] present at the respective locations
from similar water depths the cores were retrieved from. This
provided the [NO−3 ] offset which is the difference (1[NO−3 ]
(µM)) between the modern [NO−3 ] and the past reconstructed
[NO−3 ]BW. The modern [NO−3 ] for each location was taken
from World Ocean Atlas 2018 (Garcia et al., 2019). The de-
tails are given in the Supplement.

3 Results

We reconstructed deglacial [NO−3 ]BW using downcore sed-
iment samples from the Sea of Okhotsk (MD01-2415), the
Gulf of California (DSDP- 480), the Mexican Margin (MAZ-
1E-04), and the Gulf of Guayaquil (M77/2-59-01). The re-
constructed [NO−3 ]BW was compared to δ15Nbulk records of
all cores (Fig. 4). All data records presented cover the time
period starting from the Last Glacial Maximum, except for
the core from the Sea of Okhotsk, which covers the late
deglacial to the Holocene.

3.1 Sea of Okhotsk (MD01-2415)

The Sea of Okhotsk core MD01-2415 covers the Younger
Dryas, (YD, 12.8 ka BP) until the Middle to Late Holocene
(MLH, 4.9 ka BP). The reconstructed [NO−3 ]BW values range
from 32.8 to 44.1 µmol kg−1 (Fig. 4a). A gradual increase
in [NO−3 ]BW is observed from the Younger Dryas to the
Middle to Late Holocene. At the beginning of the Younger
Dryas at 12.8 ka BP, [NO−3 ]BW were relatively high and
then decreased to a minimum value of 32.8 µmol kg−1 at
12.4 ka BP. Since then, [NO−3 ]BW steadily increased until the
Middle to Late Holocene (MLH, 44.1 µmol kg−1) (Fig. 4a).
The [NO−3 ]BW during the Middle to Late Holocene (mean
= 41.2 µmol kg−1) is significantly (t-test, p = 0.023) higher
than during the Younger Dryas (mean = 36.7 µmol kg−1).
The sedimentary δ15Nbulk record covers the interval from
the Late Heinrich Stadial 1 (H1, 15.4 ka BP) to the Mid-
dle Holocene (6.1 ka BP). The δ15Nbulk values were rela-
tively high ranging from 7.1 ‰ to 9.4 ‰ with an average

of 8.7 ‰. The δ15Nbulk values increased steadily from the
Late Heinrich Stadial 1 (15.4 ka BP) to the Early Holocene
(EH, 10 ka BP) with higher values centered between the Late
Younger Dryas (11.9 ka BP) and the beginning of the Early
Holocene. Since then, the δ15Nbulk values decreased until the
Middle to Late Holocene.

3.2 Gulf of California (DSDP-480)

The analyzed sections of DSDP Site 480 covered the
Last Glacial Maximum (22 ka BP) until the Early Holocene
(10.8 ka BP). The reconstructed [NO−3 ]BW ranged from 41.4
to 49.1 µmol kg−1. The highest [NO−3 ]BW of 49.1 µmol kg−1

occurred during the Last Glacial Maximum (18.2 ka BP).
The data points from the Early Holocene (11.6–10.8 ka BP)
were the only Holocene data from this core providing the
lowest [NO−3 ]BW estimate of 42.1 µmol kg−1 during the
Early Holocene (10.8 ka BP) (Fig. 4b). A distinct differ-
ence in [NO−3 ]BW between the glacial period (mean =
46.1 µmol kg−1) and the Early Holocene (42.7 µmol kg−1)
was observed with [NO−3 ]BW found to be substantially higher
during the glacial period (t-test, p = 0.0067) (Fig. 4b). Ac-
cordingly, the [NO−3 ]BW followed a decreasing pattern from
the glacial period to the Early Holocene. The δ15Nbulk values
varied between 6.4 ‰ and 13 ‰ with an average of 10.2 ‰
(Fig. 4b). The δ15Nbulk values from the Guaymas Basin were
similar to the δ15Nbulk values (average 9.6 ‰) of Pride (1997)
and Altabet et al. (1999). During the last glacial period, the
δ15Nbulk values were low ranging from 8.5 ‰ to 9 ‰. At the
onset of the deglaciation, the δ15Nbulk values increased by
more than 2 ‰ with large-scale changes reaching a maxi-
mum of 13 ‰ during the Younger Dryas. Afterward, we ob-
served a gradual decline in δ15Nbulk values throughout the
Middle to Late Holocene (mean 10.7 ‰) and this pattern con-
tinued to the present.

3.3 Mexican Margin (MAZ-1E-04)

This core MAZ-1E-04 covered the Last Glacial Maximum
(20.5 ka BP) until the Early Holocene (10.47 ka BP). The
[NO−3 ]BW values range from 37.7 to 43.5 µmol kg−1. We
observed the highest [NO−3 ]BW during the Younger Dryas.
From the beginning to the end of the Last Glacial Maxi-
mum, [NO−3 ]BW followed a decreasing trend (Fig. 4c). The
[NO−3 ]BW levels continued to steadily decrease until Hein-
rich Stadial 1 and consistently stayed low throughout this pe-
riod. There was a strong change in [NO−3 ]BW from the end of
Heinrich Stadial 1 to the end of Younger Dryas (Fig. 4c). We
observed a peak in [NO−3 ]BW from the beginning of Bølling-
Allerød, BA (14.29 ka BP) and it continued throughout the
Younger Dryas (Fig. 4c). Afterwards, [NO−3 ]BW declined
during the Early Holocene. The δ15Nbulk values taken from
Alcorn et al. (2025) followed an increasing trend from the
glacial towards the deglacial period (Fig. 4c).
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3.4 Gulf of Guayaquil (M77/2-59-01)

This core covered the Last Glacial Maximum (18 ka BP) until
the Middle to Late Holocene (0.18 ka BP). The reconstructed
[NO−3 ]BW values range from 40.5 to 46.5 µmol kg−1. The
highest [NO−3 ]BW occurred during the Last Glacial Maxi-
mum (Fig. 4d). The reconstructed [NO−3 ]BW levels during
the Last Glacial Maximum (mean = 45.6 µmol kg−1) were
slightly higher than during the Middle to Late Holocene
(mean = 44.9 µmol kg−1) (t-test, p = 0.046). The δ15Nbulk
values were relatively low ranging between 4 ‰ and 6 ‰
(Fig. 4d). During the Last Glacial Maximum, the δ15Nbulk
values were low, varying between 4.4 ‰ and 4.6 ‰, close
to the typical mean range of dissolved nitrate in the ocean
(Sigman et al., 1997). Subsequently, the δ15Nbulk values in-
creased from 16.7 ka BP (4.9 ‰), where we observed a de-
cline in [NO−3 ]BW to 8.9 ka BP (5.6 ‰). The highest δ15Nbulk
values centered at ∼ 14 ka BP (5.9 ‰). From 8.9 ka BP on-
wards, a long-term decrease in δ15Nbulk (< 4.4‰) was ob-
served until the Latest Holocene, consistent with higher
[NO−3 ]BW levels during the Holocene (Fig. 4d). Despite
higher [NO−3 ]BW levels, our reconstruction doesn’t show any
strong variations during the Holocene.

4 Discussion

The pore density of benthic foraminifera represents a promis-
ing but still developing proxy for reconstructing past nitrate
dynamics. Like most proxies based on biology, it reflects
an indirect physiological response rather than a direct mea-
sure of nitrate. In addition, species-specific variability re-
quires careful taxonomic control or its interpretation carries
inherent limitations especially since not many records are
available, yet, for this proxy. Thus, we used a multiproxy
approach and combined it with δ15Nbulk, which provides a
complementary perspective that strengthens reconstructions
of nitrogen-cycling processes in oxygen-deficient zones.

4.1 Sea of Okhotsk

Our data show that [NO−3 ]BW levels gradually increased
through time and reached modern concentrations during the
Middle-Holocene (Fig. 4a). Most of the nutrients in the
northwestern Pacific including the Sea of Okhotsk are sup-
plied by the upwelling of the North Pacific Deep Water
(NPDW) (Gorbarenko et al., 2014). The weakened Kuroshio
current (Ujiié and Ujiié, 1999) and increased sea ice extent
(Ternois et al., 2001) weakened the upwelling of NPDW dur-
ing the Last Glacial Maximum (LGM). Subsequent studies
(Gray et al., 2020; Rae et al., 2020) have shown that the ex-
pansion of the North Pacific Gyre also resulted in less up-
welling of NPDW during the LGM.

During the LGM, the subpolar North Pacific was better
ventilated at intermediate depths (Keigwin, 1998) and ex-
port productivity was reduced (Ternois et al., 2001; Narita

et al., 2002; Seki et al., 2004). This is consistent with a
strengthened meridional overturning circulation, with en-
hanced formation of intermediate waters and advection of
nutrient-depleted subtropical waters to high latitudes (Rae
et al., 2020). Furthermore, the North Pacific subpolar gyre
extended ∼ 3° further south during the LGM (Gray et al.,
2020), which shifted the westerly winds southward. This
may have resulted in less upwelling of the NPDW during the
LGM.

The prolonged ice cover with low biological productivity
(Ternois et al., 2001; Narita et al., 2002; Seki et al., 2004;
Rae et al., 2020) and well-oxygenated water masses (Keig-
win, 1998) might have prevented the formation of an oxy-
gen deficient zone (ODZ) in the Sea of Okhotsk (Buben-
shchikova et al., 2015). This is supported by the absence of
B. spissa, which are adapted to living in dysoxic conditions,
in our records during the LGM.

Deglacial low [NO−3 ]BW which correspond to higher
δ15Nbulk values (Fig. 4a) could be due to enhanced primary
productivity. It is important to note, however, that δ15Nbulk is
influenced by diagenetic alteration and the incorporation of
allochthonous nitrogen, which can obscure the local denitri-
fication signal. Therefore, interpretations of δ15Nbulk trends
should be made cautiously and ideally corroborated with
complementary proxies, such as foraminiferal pore density.
Increased nutrient supply from the Asian continental shelves
and sea-ice retreat (Ternois et al., 2001) strengthened pri-
mary productivity. Indeed, the accumulation rate of total or-
ganic carbon was relatively higher during the Younger Dryas
(Bubenshchikova et al., 2015) in our core (Fig. 4a). The
increased oxygen demand and weakened ventilation of in-
termediate waters in the subarctic Pacific (Lembke-Jene et
al., 2018) gradually intensified the ODZ. These poorly oxy-
genated conditions conceivably strengthened denitrification,
resulting in low deglacial [NO−3 ]BW levels. However, during
the Middle to Late Holocene (MLH) a reorganization in at-
mospheric circulation favored enhanced formation of oxy-
genated North Pacific Intermediate Water (NPIW) (Wang
et al., 2020). Thus, mid-depth ventilation was closely asso-
ciated with atmospheric circulation in the Holocene and a
weakened ODZ (Ohkushi et al., 2013; Bubenshchikova et
al., 2015; Wang et al., 2020). These rising oxygen concentra-
tions probably reduced denitrification (low δ15Nbulk) in the
Sea of Okhotsk, resulting in higher [NO−3 ]BW comparable
to today’s conditions (Fig. 4). The δ15Nbulk values show a
maximum from 13 ka to 10 ka BP, which indicates increased
water-column denitrification during that time. Nevertheless,
the [NO−3 ]BW increased during this time, which indicates a
decoupling from denitrification in the oxygen minimum in
the water column and the [NO−3 ]BW. This could be related to
the sea level rise during that time (Waelbroeck et al., 2008),
which increased the vertical distance of the sediments (i.e.,
bottom water) at the sampling site from the center of denitri-
fication.
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Figure 4. Quantitative [NO−3 ]BW reconstruction using the pore density of fossil specimens of B. spissa, B. subadvena from (a) the Sea of
Okhotsk (MD01-2415), (b) the Gulf of California (DSDP-480), (c) the Mexican Margin (MAZ-1E-04), and (d) Gulf of Guayaquil (M77/2-
59-01). The sedimentary nitrogen isotope (δ15Nbulk) records from the Sea of Okhotsk, and the Gulf of California are measured in this study,
and the Gulf of Guayaquil is from Mollier-Vogel et al. (2019), and the Mexican Margin δ15Nbulk data is from Alcorn et al. (2025). The
error bars of [NO−3 ]BW represent 1 SEM including a complete error propagation (using Eqs. 3 and 4). The accumulation rate of total organic
carbon (Supplement) calculated from published literature (Bubenshchikova et al., 2015; Leclaire and Kerry, 1982; Mollier-Vogel et al., 2019)
is shown in blue dashed lines for the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil cores respectively. The black dashed
lines indicate the modern nitrate concentration of each location. Time intervals Middle to Late Holocene (MLH), Early Holocene (EH),
Younger Dryas (YD), Bølling-Allerød (BA), Heinrich Stadial 1 (H1), and Last Glacial Maximum (LGM) are shown in the figure.

4.2 Gulf of California

The Gulf of California ODZ is influenced by both intermedi-
ate and deep-water properties, similar to that of the open Pa-
cific Ocean. Thus, the ODZ intensity in the Guaymas Basin
is largely dependent on the oxygen content and ventilation of
inflowing NPIW from the Sea of Okhotsk (Pride et al., 1999)
and the demand for oxygen at depth. During the glacial pe-
riod, the dissolved oxygen concentrations were higher due to
better-ventilated NPIW at intermediate depths of the North-
east Pacific (Keigwin and Jones, 1990; Ganeshram et al.,
1995; Keigwin 1998; Duplessy et al., 1988; Herguera et al.,

2010; Cartapanis et al., 2011). Modeling studies show that
the Laurentide and Cordilleran ice sheets increased in size
(Benson et al., 2003), lowering the temperature of North
America (Romanova et al., 2006) during the glacial pe-
riod. The cold sinking air over the ice sheet established a
semi-permanent high-pressure cell (Kutzbach and Wright
Jr., 1985; Romanova et al., 2006) causing a substantially
weaker North Pacific High (Ganeshram and Pedersen, 1998)
or the southward displacement of the Inter Tropical Con-
vergence Zone (Cheshire and Thurow, 2013). This resulted
in a weak California Current along the coast and reduced
upwelling-favorable winds (Cartapanis et al., 2011) along the
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North American coastline and reduced primary productivity
(Ganeshram and Pedersen, 1998; Hendy et al., 2004; Carta-
panis et al., 2011; Chang et al., 2015) within the ETNP and
the Gulf of California during the glacial period. The nitrogen
isotope ratios in the Guaymas Basin can be affected by sub-
surface denitrification in the Gulf and in the ETNP (Pride et
al 1999). The increase in dissolved oxygen during the glacial
period might have reduced water column denitrification (low
δ15Nbulk) thereby increasing the [NO−3 ]BW (Fig. 4b).

Our study finds a declining trend in reconstructed
[NO−3 ]BW during the Early Holocene, slowly approaching
modern concentrations. This coincides with a maximum
in δ15Nbulk values, suggesting elevated denitrification. This
agrees with previous studies in the ETNP (Kienast et al.,
2002) and within the Gulf of California (Pride et al., 1999),
which showed that high denitrification most likely was asso-
ciated with warming temperatures that occurred during this
period. Furthermore, the scarcity of benthic foraminifera af-
ter the Early Holocene in our study coincides with lamina-
tions of the sediment core (Keigwin and Jones, 1990) be-
low 10.8 ka BP, where reconstructed [NO−3 ]BW begins to de-
crease. It is possible that redox conditions were too hos-
tile for benthic foraminifers in the time periods when lam-
inated sediments formed. We acknowledge limitations in our
Holocene reconstruction due to the low abundance of B. sub-
advena and the limited calibration dataset available for this
species, which may introduce a systematic offset (Govin-
dankutty Menon et al., 2023). Bolivina subadvena was used
in this core due to the unavailability of B. spissa, and some
values fall outside the existing calibration range. We also
cannot rule out other factors influencing the proxy signal,
such as microhabitat variability. Additional data and further
proxy calibration are therefore essential to improve the ro-
bustness of Holocene bottom-water nitrate reconstructions.

4.3 Mexican Margin

Our study finds a steep rise in [NO−3 ]BW between the
Bølling-Allerød (BA) and the Younger Dryas (YD) (Fig. 4c).
The transition period from the BA to the Holocene involved
rapid oxygenation with increased oxygen levels at the onset
of the YD (Jaccard and Galbraith, 2012; Ohkushi et al., 2013;
Taylor et al., 2017). This has been linked to active ventila-
tion by increased NPIW production at high latitudes in the
North Pacific (Van Geen et al., 1996; Emmer and Thunell,
2000; Okazaki et al., 2010; Cartapanis et al., 2011; Chang
et al., 2014). In addition, there was low primary productivity
(Hendy et al., 2004; Pospelova et al., 2015), and a higher in-
flux of freshwater (Broecker et al., 1985; Clark et al., 2002)
during the YD. However, considering the deep location of
the Mexican Margin core below the direct influence of in-
termediate water masses (Fig. 3), it is less likely to be re-
flected in the [NO−3 ]BW. Bulk sediment δ15N records in the
ETNP (Ganeshram et al., 1995; Pride et al., 1999; Emmer
and Thunell, 2000; Kienast et al., 2002; Hendy et al., 2004)

found a decrease in δ15Nbulk during the YD due to reduced
denitrification. Furthermore, a foraminifera-bound nitrogen
isotope (δ15NFB) study (Studer et al., 2021) in the eastern
tropical Pacific also found a decrease in δ15NFB signatures
during the Younger Dryas (Fig. 4c). In contrast to this, a bulk
sediment δ15N record of MAZ-1E-04 (Alcorn et al., 2025)
depicts an increase in water column denitrification during the
Younger Dryas. Thus, reduced denitrification may not be the
dominant factor that led to the elevated [NO−3 ]BW during this
time. Instead, the Mexican Margin may be more influenced
by the NO−3 variability from the Pacific Deep Water, PDW
(see Fig. 3). Deep-sea reorganization and ventilation during
the deglaciation may have influenced the [NO−3 ]BW. At the
onset of the deglaciation, deep Southern Ocean ventilation
(reduced 14C ventilation ages) and atmospheric carbon diox-
ide (CO2) synchronously increased (Robinson et al., 2009;
Burke and Robinson, 2012; Rae et al., 2018). This deglacial
increase in 14C ventilation in the Pacific Ocean suggests that
most of the increase in atmospheric CO2 is derived from
old carbon in the Southern and Pacific Oceans (Rafter et al.,
2022). The increase in reconstructed [NO−3 ]BW during the
YD may thus reflect the release of sequestered nutrient- and
carbon dioxide-rich waters during the deglaciation (Robin-
son et al., 2009; Rafter et al., 2022).

The relatively high [NO−3 ]BW during the glacial period
(Fig. 4c), before its decline in Heinrich Stadial 1, is likely in-
dicative of reduced water-column denitrification (Ganeshram
et al., 1995, 2000) due to reduced productivity (Ganeshram
et al., 1995; Ganeshram and Pedersen, 1998) and low organic
matter flux through the oxygen minimum zone (Ganeshram
et al., 2000). In the ETNP, including the Mexican Margin,
coastal upwelling is driven by trade winds generated by sub-
tropical high-pressure centers. These high-pressure centers
largely result from differential heating of the land and the
ocean. As a result of glacial cooling on land, these high-
pressure systems and the associated trade winds that drive
the upwelling have likely been weakened (Ganeshram and
Pedersen, 1998).

4.4 Gulf of Guayaquil

The core M77/2-59-01 is in a region that is sensitive to
changes in subsurface denitrification in the ETSP (Robinson
et al., 2007, 2009; Dubois et al., 2011, 2014). The elevated
reconstructed [NO−3 ]BW levels (Fig. 4d) during the glacial
period suggest decreased water-column denitrification (Sal-
vatteci et al., 2014; Erdem et al., 2020; Glock et al., 2022)
and relatively low local productivity (Ganeshram et al., 2000;
Robinson et al 2007, 2009; Martinez and Robinson et al.,
2010; Salvatteci et al., 2016). Nutrient export to the deep
Southern Ocean waters increased due to the sluggish Atlantic
Meridional Overturning Circulation (Skinner et al., 2010),
and increased atmospheric iron (Fe) deposition (Somes et al.,
2017) during the glacial period. This reduced the transport of
preformed NO−3 to the tropics via the Subantarctic Mode Wa-
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ter (SAMW), limiting productivity. In fact, the total organic
carbon (Fig. 4d) depicts low productivity during this period.
Furthermore, the colder sea surface temperature (SST) and
the accelerated formation of SAMW and Antarctic Interme-
diate Water masses (Russell and Dickson, 2003; Galbraith et
al., 2004) and the stronger high-latitude winds in the South-
ern Hemisphere (Karstensen and Quadfasel, 2002) increased
the ventilation rate (Meissner et al., 2005; Jaccard and Gal-
braith, 2012; Muratli et al., 2010) during the glacial period.
The resulting increased oxygen concentrations (Robinson et
al., 2005; Robinson et al., 2007) decreased the volume of
ODZs, and nitrogen loss processes (lower δ15Nbulk values,
Fig. 4d) during the glacial period. In addition, enhanced Fe
deposition (Somes et al., 2017), and the glacial low sea level
(Clark and Mix, 2002; Wallmann et al., 2016), may have in-
fluenced the nitrate inventory in the tropical and subtropical
southern hemisphere.

A study by Glock et al. (2018) on core M77/2-52-2 from
Peru applying the pore density of B. spissa also shows ele-
vated [NO−3 ]BW during the Last Glacial Maximum, a sim-
ilar decline in [NO−3 ]BW during the Heinrich Stadial 1 and
thereafter a steady decrease in [NO−3 ]BW throughout the
Holocene.

The deglacial decline in [NO−3 ]BW, especially during
Heinrich Stadial 1 in this study (Fig. 4d), indicates a grad-
ual increase in surface productivity and bottom-water de-
oxygenation. High export production strengthened the ex-
pansion of the ETSP ODZ during the deglaciation as com-
pared to LGM and MLH (Salvatteci et al., 2016; Glock et
al., 2018; Mollier-Vogel et al., 2019). This is consistent with
the denitrification signal in the Eastern Equatorial Pacific
through westward advection from the Southeast Pacific mar-
gins (Martinez and Robinson, 2010).

The shift towards generally higher reconstructed
[NO−3 ]BW from the Middle-Holocene, (Fig. 4d), im-
plies a profound change in the climatic state of the Peruvian
upwelling system and the associated ODZ during this time.
From the deglaciation toward the Late Holocene, there was a
general increase in productivity (Mollier-Vogel et al., 2019)
as shown by organic carbon accumulation rates (Fig. 4d).
This increase in organic matter input and/or preservation
was likely related to an increase in upwelling-driven delivery
of nutrients towards the surface. The gradual decrease in
δ15Nbulk values and higher [NO−3 ]BW was likely related to
a relaxation in nutrient utilization with a nutrient supply
exceeding the biological demand (Riechelson et al., 2024).
Moreover, the core M77/2-59-01 was retrieved outside of the
core ODZ and is under the strong influence of the oxygen
and nutrient-rich Equatorial Under Current subsurface
waters (Salvatteci et al., 2019; Mollier-Vogel et al., 2019).
These waters might have ventilated the Northern Peru-
vian margin and deepened the oxycline at this site during
the Middle-Holocene. Furthermore, enhanced zonal SST
(Koutavas et al., 2006) and a northward shift of the ITCZ
strengthened the Pacific Walker and Hadley circulation

during the Middle-Holocene across the tropical Pacific
(Koutavas et al., 2006; Mollier-Vogel et al., 2013; Salvatteci
et al., 2019). These enhanced atmospheric circulations
brought oxygen-rich waters to intermediate depths off Peru
via the equatorial subsurface countercurrents (Koutavas et
al., 2006; Mollier-Vogel et al., 2013; Salvatteci et al., 2019).
Hence, increased ventilation of subsurface water masses
reduced the strength of nitrogen loss processes and nutrient
uptake during the MLH.

At present, the only quantitative reconstruction of bottom-
water oxygen from these locations is the core M77/2-59-01
from the Gulf of Guayaquil reported by Erdem et al. (2020).
Their record suggests a decline in bottom-water oxygen from
the deglacial period to the Holocene. Future more detailed
comparisons of the nitrate reconstructions with quantitative
bottom water oxygen records at the same cores will further
improve our understanding about variability in redox condi-
tions and nitrogen cycling.

4.5 Comparison of past and present [NO−
3

] at the
studied locations

The [NO−3 ] during the present and past are compared to as-
sess the resilience of our chosen study locations towards
environmental and ecological impacts of climate change.
The generally positive 1[NO−3 ] that we found (Fig. 4b) in
the Gulf of California (Guaymas Basin) and the Gulf of
Guayaquil indicate that today the [NO−3 ] is lower than in the
past. This suggests that today the nitrogen loss processes at
these two core sites are stronger, most likely related to ocean
warming and a decline in oxygen concentration of bottom
waters. The Gulf of California core is within the heart of the
oxygen-deficient zone, and thus changes in ODZ oxygena-
tion or denitrification will be more evident in this core than
in any other core studied. Under nitrogen limitation, negative
feedbacks (e.g., anammox) result in a decline in productivity
(Naafs et al., 2019; Wallmann et al., 2022), which will stabi-
lize the oxygen concentration. In the case of the Gulf of Cal-
ifornia, sediments are enriched in reactive iron (Fe) (Scholz
et al., 2019). The decreasing NO−3 concentrations in the bot-
tom water reduce the flux of NO−3 into the surface sediment.
This leads to the release of sedimentary Fe, which enhances
nitrogen fixation in the Guaymas Basin (Scholz et al., 2019).
Thus, increased denitrification might not act as negative feed-
back in the Gulf of California because it might be countered
by increased nitrogen fixation (White et al., 2013).

In the case of the Gulf of Guayaquil (Fig. 4d), whether to-
day’s elevated denitrification could enhance N2 fixation also
depends on the availability of Fe (Pennington et al., 2006).
The primary productivity of the Peruvian ODZ is Fe limited
due to the reduction of particular Fe oxides in shelf and slope
sediments (Scholz et al., 2014). Modeling studies show that
primary productivity will be amplified in the Peruvian ODZ
due to the release of Fe from shelf and slope sediments (Wall-
mann et al., 2022). This may induce deoxygenation and drive
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the expansion and intensification of Peruvian ODZ resulting
in a positive feedback loop, like in the Gulf of California.
This situation is indicated by lower [NO−3 ] today compared
to the past ∼ 20 000 years.

The negative nitrate 1[NO−3 ] in the Sea of Okhotsk and
the Mexican Margin (Fig. 4a and c) indicates that modern
[NO−3 ] levels are higher than in the reconstructed past. This
suggests that modern nitrogen loss is decreased at these two
core sites compared to the last deglaciation. The higher mod-
ern [NO−3 ] in the Sea of Okhotsk is likely associated with less
primary productivity and more oxygen in the water column
similar to the situation established in the MLH. The higher
modern [NO−3 ]BW in the case of the Mexican Margin could
be associated with sea level rise. The ODZ in the Mexican
Continental Margin might have shifted to shallower depths
today with less/or no benthic denitrification in intermediate
water depths at the core site, resulting in high [NO−3 ]BW
levels. During the glacial period, continental shelves were
exposed due to sea-level lowstands (Clark and Mix, 2002;
Kuhlmann et al., 2004; Wallmann et al., 2016), the main
areas of primary productivity may have migrated offshore
from the shallow shelf towards the continental slope relative
to their Holocene positions. A similar situation occurred at
the Benguela upwelling system during the LGM: TOC accu-
mulation at the continental slope increased during the LGM
in response to the seaward shift of centers of enhanced pro-
ductivity (Mollenhauer et al., 2002). This offshore shift of
the productivity centers and the most likely reduced rem-
ineralization rates, due to lower temperatures, indicate that
the center of the ODZ at the Mexican Margin before sea
level rise was possibly deeper than today. However, with the
deglacial eustatic sea-level rise, the ODZ may have shifted to
shallower depths. This shifted the main zone of denitrifica-
tion further away from the seafloor, resulting in the increased
modern [NO−3 ]BW in comparison to the LGM.

5 Conclusions

The quantitative reconstruction of [NO−3 ]BW using the pore
density of denitrifying benthic foraminifera over the last
deglaciation at the four studied ODZs provides a comprehen-
sive understanding of the past [NO−3 ]. The Gulf of Guayaquil
and Gulf of California data shows elevated [NO−3 ]BW during
the glacial period compared to deglacial and modern con-
ditions. Considering the well-ventilated intermediate water
masses in the Sea of Okhotsk, the Sea of Okhotsk may have
also elevated [NO−3 ]BW in the glacial period. For the Mexican
Margin core, [NO−3 ]BW was particularly strong during the
Younger Dryas. The reconstructed [NO−3 ]BW from the Sea of
Okhotsk, the Gulf of California, and the Gulf of Guayaquil
are influenced by the formation of the North Pacific Interme-
diate Water. However, the [NO−3 ]BW in the deeper site, the
Mexican Margin is likely influenced by the NO−3 variability
in Pacific Deep Water. The modern Gulf of Guayaquil and the

Gulf of California have low [NO−3 ] associated with increased
denitrification and a strengthening ODZ. In contrast, higher
modern [NO−3 ] was observed in the Sea of Okhotsk and the
Mexican Margin, suggesting that these two study areas have
higher oxygen.
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