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Abstract. Surface mass balance (SMB) of the Antarctic Ice
Sheet (AIS) is an important contributor to global sea level
change. We look to the Last Millennium (850-1850 CE) as a
period of relative climate stability to understand which pro-
cesses control natural variability in SMB, distinct from an-
thropogenic warming. With evidence for large regional dif-
ferences in climate and SMB trends over the Last Millen-
nium in Antarctic ice core proxy records, model simulations
need to be validated over such timescales to assess if they
capture those regional variations in order to have confidence
in end-of-century SMB projections. In this study, we provide
a quantitative evaluation of paleo-simulations in simulating
Last Millennium regional climate changes in Antarctica. We
evaluate model performance by comparing available Paleo-
climate Modelling Intercomparison Project (PMIP) past1000
models and the CESM Last Millennium Ensemble (CESM-
LME) to four sets of Last Millennium Antarctic proxy-based
reconstructions that are most relevant to the SMB: snow ac-
cumulation, surface air temperature (SAT), sea surface tem-
perature (SST) and Nifio 3.4 index, using a multi-parameter
scoring method. Our results show that no single model per-
forms consistently well across all variables. Models have rea-
sonable strength in capturing SATs and SSTs, while showing
strong biases for both snow accumulation and the Nifio 3.4
index. The best-performing model, CESM-LME, predicts
higher SMB by 2100, which implies stronger mitigation of
the projected dynamic ice loss contribution of the AIS to sea
level rise.

1 Introduction

The surface mass balance (SMB) of the Antarctic Ice Sheet
(AIS), defined as the balance at the surface of the ice sheet
between accumulation, in the form of precipitation, and abla-
tion, in the form of surface run-off, sublimation and blowing
snow erosion (Lenaerts et al., 2019), is important for its in-
fluence on sea level (Ligtenberg et al., 2013). An increase
in snowfall accumulation over the AIS is believed to have
mitigated 20th-century sea level rise (Medley and Thomas,
2019). However, the large range of natural climate variabil-
ity makes it difficult to determine if this is due to short-term
fluctuations in precipitation or a longer-term trend driven by
anthropogenic change (Lenaerts et al., 2019). Projections of
21st-century SMB span a large range and involve uncertain-
ties derived from insufficient understanding of processes im-
portant for polar climate and structural differences among
climate models (Li et al., 2023). In most parts of the Antarc-
tic continent, SMB is expected to increase as a result of en-
hanced snowfall in response to atmospheric warming (Frieler
et al., 2015; Lenaerts et al., 2019), while the run-off and sur-
face melt remain small (Winkelmann et al., 2012; Ligtenberg
et al., 2013; Lenaerts et al., 2016). Influences on SMB in-
clude large-scale atmospheric circulation and ocean condi-
tions, as well as small-scale topographic features, making it
challenging to model.

Numerous studies have evaluated climate models in their
ability to simulate Antarctic climate features related to SMB
over the historical period to help refine future projections
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(Agosta et al., 2015; Palerme et al., 2017; Gorte et al., 2020).
For example, Gorte et al. (2020) found that models which
best captured reconstructed historical SMB, based on mean
value, trend, temporal variability, and spatial distribution,
tended to project smaller SMB increase by the end of the
century. In contrast, Palerme et al. (2017) showed that mod-
els which compare best with observed historical snowfall
tended to project larger snowfall increase into the 21st cen-
tury. These different results highlight the importance of how
model performance is evaluated, and the potential limit of fo-
cusing on the historical period for understanding those future
end-of-century changes. Hence, if we want to improve con-
fidence and predict credible end-of-century SMB, we need
a longer time period to compare against. Other studies have
noted the importance of going beyond the historical period
and looking at past climate using proxy-based reconstruc-
tions to assess model skill (Hargreaves et al., 2013; Schmidt
et al., 2014; Bracegirdle et al., 2019). Performing a model-
proxy comparison provides us with an opportunity to evalu-
ate the performance of climate models in simulating climate
features over a time period that is commensurate with pro-
jected future changes (Hargreaves et al., 2013).

The Last Millennium (LM, 850-1850CE) is a climate
state of relative stability (Bradley et al., 2003; Jones et al.,
2001), making it an important period for past climate re-
search by providing the opportunity to study the variability
and response of Earth’s climate to small shifts in climate
forcings and by separating anthropogenic impacts from nat-
ural climate variability (Jungclaus et al., 2017). The LM is
therefore a useful candidate for understanding natural vari-
ability without having to disentangle the signal from anthro-
pogenic warming. The LM is primarily divided into two pe-
riods, the Medieval Climate Anomaly (MCA, 850-1350CE)
associated with warmer global temperatures and the Little
Ice Age (LIA, 1350-1850CE), a period of relatively colder
global temperatures (Hughes and Diaz, 1994; Bertler et al.,
2011; Rhodes et al., 2012).

Recent LM temperature reconstructions find no evi-
dence of a globally coherent warmer MCA over Antarctica
(Neukom et al., 2019; Perkins and Hakim, 2021) but rather
a long cooling across both MCA and LIA (Stenni et al.,
2017b). There is growing evidence from Antarctic ice core
records for large regional differences in SMB trends over
the LM (Thomas et al., 2017), with notably long-term neg-
ative trends — centennial-scale — over the West Antarctic Ice
Sheet and Victoria Land coast, and long-term positive trends
over the Antarctic Peninsula and Weddell Sea and Dronning
Maud Land coastal regions. The actual drivers for such re-
gional variations remain uncertain, demonstrating the need
for a regionally focused study. Assessing general circulation
model (GCM) skills in simulating LM climate features can
guide model development in capturing drivers of regional
SMB variability on a finer scale.

The LM is among the periods selected by the Paleoclimate
Modelling Intercomparison Project Phase 3 and 4 (PMIP3
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and PMIP4) for experiments contributing to the Coupled
Modelling Intercomparison Project Phase 5 and 6 (CMIP5
and CMIP6) (Jungclaus et al., 2017). The goals of the pre-
industrial millennium PMIP experiments (past1000, 850-
1850 AD) are to study the response to natural forcing under
stable climate and conditions resembling those of the cur-
rent climate. The relatively abundant proxy data available in
some regions makes the LM a valuable period for evaluating
model skills in capturing regional climate features, as this
broader spatial coverage allows for a better understanding of
regional trends (Cook et al., 2008; PAGES2k, 2013; Thomas
et al., 2017; Stenni et al., 2017b). The uneven regional dis-
tribution of the data will allow us to constrain some regions
better than others. PMIP past1000 models can be validated
over long timescales to assess if they capture those regional
variations.

To this end, we examine the model skill of the PMIP
model ensemble with a specific focus on variables that in-
fluence and are important to simulate SMB accurately. We
build on the scoring method in Gorte et al. (2020) to evaluate
the PMIP3/4 models that participated in the past1000 exper-
iments for which data is publicly available, using quantita-
tive Antarctic paleoclimate reconstructions as observations.
For this, two objectives were identified, including (1) evalu-
ation of model ability to simulate regional climate changes;
(2) multi-parameter evaluation of overall model skill. We dis-
cuss model biases, strengths and weaknesses and compare
results obtained with historical simulations in Gorte et al.
(2020). We also use this scoring method to guide the selec-
tion of models for Regional climate model (RCM) forcing.

2 Data

2.1 PMIP models

We assess all PMIP past1000 models for which SAT,
SST and snow accumulation (precipitation — evaporation)
are available, as well as the Community Earth System
Model (CESM) Last Millennium Ensemble, for a total
of twelve models, including eight PMIP3 models (MRI-
CGCM3, MIROC-ESM, MPI-ESM-P, CSIRO-Mk3L-1-2,
GISS-E2-R, BCC-CSM1-1, HadCM3 and the Community
Climate System Model version4 (CCSM4)) (Watanabe et al.,
2011; Gent et al., 2011; Yukimoto et al., 2012; Phipps et al.,
2012; Giorgetta et al., 2013; Wu et al., 2013; Schmidt et al.,
2014; Valdes et al., 2017; Gutjahr et al., 2019), three PMIP4
models (MRI-ESM2-0, MIROC-ES2L and ACCESS-ESM1-
5) (Yukimoto et al., 2019; Hajima et al., 2020; Ziehn et
al., 2020), and the CESM-LME model (Otto-Bliesner et
al., 2016). Additional PMIP past1000 models are excluded
from this analysis due to our initial selection criteria (see
Sect. 2.2). The resolutions and numbers of vertical layers for
both the atmosphere and ocean are shown in Table 1.

The past1000 simulations serve to investigate the response
to mainly natural forcing under background conditions re-
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Table 1. Atmospheric and oceanic model resolutions of the PMIP models analysed in this study, along with their respective numbers of

vertical layers.

Model Atmosphere Ocean PMIP phase
Horizontal Vertical Horizontal Vertical
(°)  (no. of layers) (°)  (no. of layers)

MRI-ESM2-0 1.125 x 1.125 80 0.5x1 60 PMIP4
MIROC-ES2L 2.8125 x 2.8125 40 14x14 62 PMIP4
ACCESS-ESM1-5 1.25 x 1.875 38 1x1 50 PMIP4
MRI-CGCM3 1.125 x 1.125 48 0.5x 1 50 PMIP3
MPI-ESM-P 1.875 x 1.875 47 1.5x 1.5 40 PMIP3
MIROC-ESM 2.8125 x 2.8125 80 14x14 44 PMIP3
CSIRO-MK3L-1-2 3.18 x 5.625 18 3.18 x 5.625 21 PMIP3
GISS-E2-R 2x25 40 1x1.25 32 PMIP3
BCC-CSM1.1 2.8125 x 2.8125 26 1x1 40 PMIP3
HadCM3 3.75x2.5 19 1.25 x 1.25 20 PMIP3
CCSM4 1.25x0.9 26 1x1 60 PMIP3
CESM-LME 2.5 x2.5 70 1x1 60 -

sembling those of the current climate, i.e. the pre-industrial
millennium. These simulations are based on a common pro-
tocol (Schmidt et al., 2011; Jungclaus et al., 2017), describ-
ing a variety of suitable forcing boundary conditions, such as
orbital parameters, solar irradiance, stratospheric aerosols of
volcanic origins, and atmospheric greenhouse gas concentra-
tions. The changes between the common protocol for PMIP3
and PMIP4 past1000 simulations are mostly derived from the
use of newly available records, permitting a more compre-
hensive reconstruction of external forcing.

The CESM-LME employs version 1.1 of CESM with the
Community Atmosphere Model version 5 (CESM1-CAMS)
(Otto-Bliesner et al., 2016). The CESM-LME provides the
largest ensemble of LM simulations with a single model to
date, including a total of 13 members for the full forcing ex-
periment. The only difference between ensemble members is
a small (order 10~1%) random roundoff difference in the air
temperature field at the start of each simulation. The forcing
over the LM includes orbital, solar, volcanic, changes in land
use/land cover and greenhouse gas levels, and their imple-
mentation follows those used in PMIP3 (Otto-Bliesner et al.,
2016).

2.2 Paleoclimate proxy records

Our knowledge of past Antarctic climate trends comes pre-
dominantly from a combination of proxy records from nat-
ural archives and paleoclimate models. To assess climate
model performance, we rely on proxy records of Antarctica’s
climate and Southern Ocean conditions. We assess model
skill by comparing the model outputs with four proxy-based
reconstructions that are most relevant to the SMB: snow ac-
cumulation, surface air temperature (SAT), sea surface tem-
perature (SST) and Nifio 3.4 index. Other variables are also
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important for these processes but we are constrained by what
reconstructions are available.

The past snow accumulation dataset is compiled by the
PAGES Antarctica2K working group (Thomas, 2017), which
presents annual Antarctic snow accumulation variability at
the regional scale over the past 1000 years. The dataset is
comprised of 79 Antarctic ice core records, 44 of which
cover the LM period (Fig. 1). The estimates of snow accu-
mulation are based on the physical distance between suitable
age markers (bulk changes in isotopic composition reflecting
glacial cycles, volcanic eruptions for decadal to millennial
timescales, seasonal variations in stable water isotopes, and
chemical species including sea salts, hydrogen peroxide, ra-
dio isotopes, and biologically controlled compounds within
the ice core (Dansgaard and Johnsen, 1969). These snow ac-
cumulation reconstructions provide valuable information on
changes in certain regions; however, poor spatial coverage in
some regions may result in misleading regionally averaged
trends. Thomas et al. (2017) suggest that a greater spatial rep-
resentation with a higher number of ice core records, espe-
cially in the East Antarctic Plateau and Weddell Sea coastal
regions, will improve the understanding of the true nature
of Antarctic SMB in the past. We thus compare the recon-
structed snow accumulation to GCMs output for each ice
core record individually.

The surface air temperature (SAT) is obtained from a
database compiled by the PAGES Antarctica2k working
group (Stenni et al., 2017a). Paleotemperatures are recon-
structed based on the statistical relationship between §'30 of
water/precipitation and SAT. The database consists of 112 ice
core records, shown in Fig. 1, which are temporally resolved
at a 10-year average and reconstruct the last 2000 years. The
reconstruction only provides regionally averaged LM SAT
anomalies (referenced to the 1900-1990 CE period) time se-
ries over seven Antarctic regions: the East Antarctic Plateau

Clim. Past, 21, 1611-1631, 2025
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Figure 1. (a) Locations of ice core sites with reconstructed SAT (black crosses) and snow accumulation (blue dots) (Thomas et al., 2017;
Stenni et al., 2017b) and the SAT regional boundaries from Stenni et al. (2017b) used in this study. (b) Sediment core locations for the South-
ern Ocean sea surface temperature reconstructions for annual (blue) and seasonally averaged over the austral spring (orange) (PAGES2k,

2013).

(EAP), Wilkes Land coast (WL), Weddell Sea coast (WS),
Antarctic Peninsula (AP), West AIS (WAIS), Victoria Land
coast (VL), and Dronning Maud Land coast (DML) (Fig. 1).
In addition to these seven regions, there are also reconstruc-
tions for a continent-wide Antarctic region, broad-scale West
and East Antarctic. Uncertainties arise from the uneven rep-
resentation of ice core spatial coverage (EAP and WS) and
the relative weak covariance on average between §'80 and
SAT (Klein et al., 2019).

In addition to Antarctic climate records, we use recon-
structions of Southern Ocean surface conditions. The PAGES
Ocean2k (PAGES2k, 2013) group provides 57 SST recon-
structions across the global ocean (McGregor et al., 2015).
Cores of sediment accumulated on the seafloor create ex-
cellent past archives and are used to reconstruct past ocean
changes (Moffa-Sanchez et al., 2019). Here, we focus on the
four reconstructions located in the Southern Ocean (Fig. 1).
Of these, two reconstructions are annual, and the other two
are seasonally averaged over the austral spring (SON). There
are two types of proxies with their respective calibration:
alkenones with the PRA1988 calibration (Prahl et al., 1988)
and TEX86 with the KIM2008 calibration (Kim et al., 2008).
The main uncertainty of those reconstructions is the rela-
tively low temporal resolution with decade-scale gaps.

Teleconnections arising from the El Nifio—Southern Oscil-
lation (ENSO) play a crucial role in shaping recent Antarc-
tic climate trends and SMB (Liining et al., 2019). ENSO
exercises an influence on Antarctic climate by weakening
or strengthening the Amundsen Sea Low, depending on its
phase, which directly influences the atmospheric moisture
over West Antarctica and, subsequently, the amount of pre-
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cipitation (Ding et al., 2011; Clem et al., 2018). As a result,
we include the ENSO index in the scoring. The ENSO in-
dex reconstruction is based on tree-ring data from Mexico
and Texas, USA (Cook et al., 2008). A tree ring is a natural
archive of past climate and has been widely used notably for
its high temporal resolution and accuracy of dating (Hughes,
2002). The dataset provides a reconstruction of Nifio 142
(0-10° S, 90-80° W), 3 (5°N-5°S, 150-90° W), 3.4 (5°N—
5°8S, 170-120° W), and 4 (5°N-5°S, 160° E-150° W) in-
dices over the past 700 years, extending back to 1300 CE,
with the best verified portion beginning in 1400 CE. In this
study, we focus on the Nifio 3.4 reconstruction as it is the
most commonly used index to define El Nifio and La Nifia
events.

3 Methods

To evaluate model outputs against the SAT, snow accumula-
tion (defined here as precipitation minus surface evaporation-
sublimation (P — E)) and SST LM time series, we use the
method developed by Gorte et al. (2020), which outlines
three criteria on which to score the time series variables —
mean, trends, and variability. Despite uncertainties, the re-
constructions offer robust and valuable information, and the
method we use for the evaluation explicitly accounts for
these uncertainties, supporting their use in assessing model
performance (Klein et al., 2019; Gorte et al., 2020). The
mean value is evaluated by giving a score x, based on how
many x times the reconstructed uncertainty (defined here as
+1 o) is required for the entire time series to be within the
reconstructed uncertainty. Models with a closer time series
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mean to the reconstructed mean will then be attributed a bet-
ter score, with a score of 1 being the best. Similarly, the time
series trend score y is the multiple of the reconstructed trend
uncertainty required to capture the model trend. Lastly, the
temporal variability is calculated on normalised time series
to avoid double-counting the impact of SMB mean value (be-
cause this is already covered by the first scoring criteria). A
score z is given for how many z times the normalised re-
construction standard deviation was required to capture the
normalised model standard deviation. For the SAT, the three
criteria are assessed on regionally averaged time series, and
for the snow accumulation and SST, we apply the criteria
on a pixel-to-ice core comparison, by extracting the model
pixel corresponding to the location of the ice core (Tables S1
and S2 in the Supplement). For CESM-LME, the use of the
ensemble mean time series will form temporal variability bi-
ases. Therefore, the CESM-LME score will be the average of
all 13 ensemble members’ scores.

For the Nifo 3.4 index, the focus is not on whether a par-
ticular model reproduces a particular El Nifio or La Nifia
event but rather on determining whether the model simu-
lates a similar number of events over a given time period of
X years, here 1400-1850 CE. We identify an EI Nifio and La
Nifia event with a threshold of +0.4 °C. Hence, we calcu-
late the absolute difference of the number of El Nifio and La
Nifia occurrences in the model output with occurrences from
the reconstruction over the period of X years. The score is
the addition of both El Niflo and La Nifia differences, with
the smallest score indicating that the model that simulates
the Nifio 3.4 index the best.

We normalised each set of scores to be on a scale from 1
to 10 to ensure that each criterion was equally weighted. The
total score is the average of all sets of normalised scores. The
score is an indication of the model’s performance in com-
parison to all the other models. Smaller total scores indi-
cate stronger model performance and higher scores indicate
poorer model performance.

4 Results

4.1 Snow accumulation

Overall the models show poor skill in simulating the snow
accumulation over the AIS. Figure 2 shows the normalised
regional snow accumulation score, calculated by averaging
the score of all ice cores within each region. This high-
lights the spatial variability in snow accumulation and helps
identify potential regional biases. The most consistent model
across all regions is CSIRO-MKk3L-1-2 and is the best-
scoring model in the AP and WS while maintaining a score of
3 or below everywhere else. CESM-LME mean is the best-
scoring model in the EAP, VL and WAIS but scores in the
bottom half of models in the WL. CCSM4 shows the same
strengths and weaknesses as CESM-LME mean but performs
slightly worse for all of them. MRI-ESM2-0 shows strength
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in the East Antarctic coastal region, as it is the best-scoring
model in both the WL and DML and maintains a score of 5
or below everywhere else. ACCESS-ESM1-5 performs well
in the WAIS and the EAP but scores in the bottom half of
models in the WL. MPI-ESM-P performs relatively well for
most regions but shows snow accumulation regional biases
in the AP. MIROC-ES2L shows regional biases in the EAP,
WAIS and VL as it consistently overestimates accumulation.

Figure 3 shows the mean, trends and temporal variability
values of reconstructed and modelled time series for each ice
core location allocated over their respective seven Antarc-
tic regions. Details of the ice core records are shown in Ta-
ble S1. Overall, the models show poor skill in simulating the
snow accumulation over the AIS. They tend to overestimate
the snow accumulation mean, while not capturing the trends
and magnitudes of temporal variability. The greatest accu-
mulation rates occur in the AP, WL and WAIS, while in the
interior, VL and WS show modest accumulation rates.

Ten ice core records are located in the WAIS region.
CESM-LME, MPI-ESM-P and ACCESS-ESM1-5 are mod-
els with mean accumulation within the reconstructed uncer-
tainty for most proxies, while MIROC-ES2L, MIROC-ESM
and MRI-CGCM3 consistently exhibit greater accumulation.
No models succeed in capturing the signs and magnitudes
of trends for locations with trends larger than 1.0 mmyr—2.
For locations with modest trends, models generally agree.
CESM-LME performs best in terms of capturing temporal
variability, while other models underestimate it.

Three ice core records are located in the AP region.
CSIRO-Mk31-1-2, MIROC-ES2I and BCC-CSM1-1 are al-
ways within the mean reconstructed uncertainty, and CSIRO-
Mk31-1-2 is the only model that captures the correct signs
and magnitudes of trends for all three sites. MPI-ESM-P un-
derperforms in this region and displays large differences in
the trends and temporal variability.

Two ice core records are located in the WL region. Models
underestimate the accumulation and fail to capture the signif-
icant trend of the second proxy, a recurrent issue in this study.
The model that manages the best is MRI-ESM2-0, for both
the mean and trends.

Only one proxy record exists for the WS. MIROC-ESM,
MPI-ESM-P and BCC-CSM1-1 are the only models within
the mean reconstructed uncertainty. Models agree with the
modest trend but fail to be within the trend uncertainty
and only CSIRO-MKk3L-1-2 captures the temporal variability.
GISS-E2-R and MRI-CGCM3 exhibit the largest discrepan-
cies in accumulation compared to the reconstruction.

Four ice core records are located in the VL region. CESM-
LME scores the best for all three criteria. MIROC-ES2L
shows potential regional bias as it displays the largest dif-
ferences for mean, trends and temporal variability.

The EAP has the largest number of records with 21 ice
core records, but most are located near the coast in close
proximity to DML, making EAP poorly represented spa-
tially. Proxies exhibit large annual temporal variations, sug-
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Figure 2. Normalised regional snow accumulation score of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM. All ice
core scores within one region are averaged together following Thomas et al. (2017) regional boundaries, which are slightly different than
those in Stenni et al. (2017b) (used in Fig. 1). The best score is 1 (off white), and the worst score is 10 (dark blue). The score is an indication
of the model’s performance in comparison with other models.
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Figure 3. Comparison of simulated and reconstructed mean, trends and temporal variability snow accumulation over the LM for each ice
core record (Table S1). Each ice core record is regrouped in seven Antarctic regions — WAIS, AP, WL, WS, VL, EAP and DML.
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gesting that the annual accumulation rates vary substantially.
This is not surprising considering that accumulation in this
region is so low that even a small absolute increase in accu-
mulation means a large relative increase (Frieler et al., 2015).
CESM-LME, GISS-E2-R, ACCESS-ESM1-5 and HadCM3
are the four models that best capture the mean. Models in
general struggle to capture the trends, but ACCESS-ESM1-
5 and MPI-ESM-P perform the best. Similarly, no models
consistently reproduce the large temporal variabilities, but
CESM-LME is consistently the closest. MIROC-ES2L ex-
hibits a strong regional bias in the EAP as it shows the largest
differences for all three criteria.

Because the time series only covers the last 100 years of
the LM, the reconstructed uncertainties from the three ice
core records in the DML, especially for the trends uncertain-
ties, are much larger. This means that, despite apparent dif-
ferences in sign and magnitude, most models fall within the
uncertainty range of the reconstruction.

4.2 Surface air temperature

In contrast with snow accumulation, the models show agree-
ment with the reconstruction in simulating SAT over the AIS.
MRI-CGCM3 is the best-scoring model over five regions but
is ranked last in the DML (Fig. 4). While ACCESS-ESM1-
5, GISS-E2-R and MIROC-ES2L are the top three scoring
models for the DML, they score relatively poorly for the rest
of the continent. It is important to note, however, that because
the ice core records do not cover the full LM in the DML,
this lack of temporal representation makes it difficult to rig-
orously assess the performance of the models in this region.
Other noteworthy models are the CESM-LME mean, which
is among the best-scoring models over six regions, and MPI-
ESM-P, which scores in the bottom half of models only in the
AP and DML. The warm bias of MIROC-ESM is reflected in
its regional normalised score, as it is the worst-performing
model in six regions out of seven and the second-worst in the
seventh region. Despite its overall warm bias, MRI-ESM2-0
shows a better score than the overall model average over five
regions (AP, WS, EAP, DML and WL), due to scoring bet-
ter for the temporal variability criteria compared to the other
models.

Figure 5 shows time series of the regionally averaged SAT
anomalies for both the reconstruction and model simulations.
Ice core reconstructions suggest a slight broad-scale cool-
ing trend over most of continental Antarctica, with mod-
est statistically significant temperature decreases over four
regions: the EAP, WAIS, VL, and WL. The WS and AP
do not display any statistically significant trends, while the
DML shows the greatest temperature change. In contrast to
these records, MIROC-ESM and MRI-ESM2-0 show posi-
tive trends for all regions, with the former starting to show
temperature increases at the 1000 CE mark, suggesting that
MIROC-ESM has a warm bias. For MRI-ESM2-0, the warm
bias is more modest in magnitude. All other models are con-
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sistent with the general broad-scale cooling trend and gener-
ally show similar trend magnitudes.

In terms of the models consistent with the sign of change
indicated by the reconstructions, only ACCESS-ESM1-5 and
MRI-CGCM3 show a positive trend in the DML. Models
show a slight cold bias in the WAIS and WL as the SAT
anomalies are slightly lower in the models compared to the
reconstructions. In each region, the main discrepancy be-
tween the models and the regionally averaged temperature re-
constructions is the temporal variability, with modelled SAT
exhibiting lower variability. Only in the WAIS region did the
reconstruction also exhibit a similar low magnitude of vari-
ability.

The best-scoring model for the continent-wide Antarctica,
West Antarctica (incorporating the AP and WAIS) and East
Antarctica (incorporating the EAP, WL, WS, VL and DML)
is MRI-CGCM3 (Fig. 6). The second best-scoring model
is CESM-LME mean. MPI-ESM-P performs slightly worse
than when factoring in all seven regions (Fig. 4) but still re-
mains better than the average. MIROC-ESM is the worst-
scoring model in terms of continent-wide Antarctica, West
Antarctica and East Antarctica, followed by MRI-ESM2-0
with a normalised score of 6, a 4-point score difference.

Figure 7 is the same as Fig. 5 but for time series averaged
for the continent-wide Antarctica, West Antarctica, and East
Antarctica and shows a cooling trend in both continent-wide
Antarctica and East Antarctica. Overall, the models show
reasonable agreement with the reconstructions over these
broader spatial scales. MIROC-ESM and MRI-ESM2-0 con-
tinue to show warm biases. Similar to the regional analysis
of the seven individual Antarctic regions, models continue to
show slightly colder SAT anomalies compared to the recon-
structions.

4.3 Sea surface temperature

Models show skills in capturing SST trends and tempo-
ral variability but exhibit a cool SST bias in all four loca-
tions. In Fig. 8, at site 1 (lat=—44.33°, long =—72.97°),
the best-scoring model is MIROC-ES2L, followed by
MRI-CGCM3 and GISS-E2-R. At site 3 (lat=—44.15°,
long = —75.16°), the best-scoring models are ACCESS-
ESMI-5, CSIRO-MK3L-1-2 and GISS-E2-R. At site 4
(lat=—41°, long= —74.45°), the best-scoring model is
MRI-CGCM3, followed by ACCESS-ESM1-5. MIROC-
ESM is the worst-scoring model for all of the sites. For the
second site (lat = —64.87°, long = —64.20°), off the western
coast of the AP with SST seasonally averaged over the austral
spring, all models disagree with the reconstruction and simu-
late SST at the freezing temperature. The models consistently
simulate sea ice over that time of the year for this location,
whereas the reconstruction implies the presence of sea ice
only towards the end of the LM. Considering this model-
proxy disagreement, we gave a score of 10 for all models.

Clim. Past, 21, 1611-1631, 2025
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Figure 4. Normalised regional SAT score of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM. The best score is 1 (off
white), and the worst score is 10 (dark blue). The score is an indication of the model’s performance in comparison with other models.

SST reconstructions show a modest temperature cool-
ing at all four marine sediment record sites (Fig. 9). Only
MRI-CGCM3 and ACCESS-ESM1-5 consistently show sim-
ilar temperature means at sites 1, 3 and 4. CESM-LME
mean, MPI-ESM-P and BCC-CSM1-1 display similar signs
of change and magnitude of cooling, while MRI-ESM2 and
MIROC-ESM are the only models that display warming
trends at all sites.

4.4 ENSO index

Overall, there is a strong disparity between models in their
ability to represent the Nifio 3.4 index. MIROC-ES2L is the
closest to the reconstruction at representing ENSO (Table 2).
It simulates a similar number of La Nifia events and slightly
fewer El Nifio events than the reconstruction. CESM-LME
mean and HadCM3 likewise capture well the number of La
Nifia events and slightly underestimates the number of El
Nifio events, followed closely by MRI-ESM2-0, which un-
derestimates the number of La Nifia events but shows a simi-
lar number of El Nifio events to the reconstruction. The other
models are scored more poorly with respect to ENSO. MPI-
ESM-P, MRI-CGCM3, CCSM4 and CSIRO-MKk3L-1-2 pro-
duce a similar number of La Nifia events to the reconstruc-
tion but differ considerably in terms of El Nifio. BCC-CSM1-
1, GISS-E2-R, MIROC-ESM and ACCESS-ESM1-5 differ
from the reconstruction for the numbers of both La Nifia and
El Nifio events.

4.5 Total score

Figure 10 shows the total score for each model along with
their respective normalised snow accumulation, SAT, SST
and Nifio 3.4 index scores. As described in the method sec-
tion, the best score is 1. The overall skill of the paleo-
simulations for the LM is uneven depending on the variable
considered, as no model performs equally well for all four
climate variables. The mean score across the 11 models is

Clim. Past, 21, 1611-1631, 2025

Table 2. The number of El Nifio and La Nifia events simulated
over 1400-1850 CE for each model and their respective normalised
score.

Model No. of No. of  Score
El Nifio events  La Nifia events
Reconstruction 92 100 -
MRI-ESM2-0 85 76 1.7
MIROC-ES2L 73 97 1
ACCESS-ESM1-5 26 128 6.4
MRI-CGCM3 40 80 4.8
MPI-ESM-P 44 107 3.5
MIROC-ESM 65 26 7
CSIRO-MK3L-1-2 22 93 5.2
GISS-E2-R 16 123 6.8
BCC-CSM1.1 11 160 10
CCSM4 56 118 34
HadCM3 70 92 1.6
CESM-LME 69 96 1.4

4.3. Gorte et al. (2020) stated that models that score above
the 90th percentile make up the subset of the best-scoring
models. Only one model comprises this top 90th percentile
— the CESM-LME mean with a score of 2.2. However, this
is the mean score for CESM-LME as we averaged all 13
ensemble member scores together. The best PMIP past1000
model is CSIRO-MKk3L-1-2 with a score of 2.9. The poorest-
performing models include MIROC-ESM and BCC-CSM1-
1, two PMIP3 models, with respective scores of 8.2 and 6.3.
The mean model score is 3.83 for PMIP4 models and 4.87 for
the PMIP3 models. No PMIP4 models are part of the best-
scoring models, but none are part of the poorest performing
models (i.e. with an total score in the bottom half of models).
All three PMIP4 models perform better than or equal to the
mean of all of the models, whereas the PMIP3 models cover
a more diverse range in scoring.
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Figure 5. Time series of 10-year average SAT anomalies (°C) of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM
relative to the pre-industrial era (1900-1990 CE) of all model outputs and regionally averaged ice core temperature reconstructions. The grey
shading indicates the reconstructed uncertainty (defined as £1 o).
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Figure 7. Time series of 10-year average SAT anomalies (°C) of three regions (continent-wide Antarctica, West Antarctica, and East Antarc-
tica) over the LM relative to the pre-industrial era (1900-1990 CE) of all model outputs and ice core temperature reconstructions. The grey
shading indicates the reconstructed uncertainty (defined as =1 o). For the continent-wide Antarctica, the ice core reconstruction is an average
of the regionally averaged EAP, WL, WS, AP, WAIS, VL and DML reconstructions. Here, West Antarctica is an average of the AP and WAIS
reconstructions, and East Antarctica is an average of the EAP, WL, WS, VL and DML reconstructions.

4.6 Modelled SMB future projections tion. Here we compare the modelled AIS SMB projections
between two scenarios, SSP2-4.5 and SSP5-8.5 (Fig. 11).
Of all the models we evaluated, future scenarios were not
available for three models, CSIRO-Mk3L-1-2, MPI-ESM-P
and HadCM3, and hence, we cannot examine their projected
AIS SMB. The spatially integrated AIS SMB is projected

After evaluating models based on variables important for
SMB over the LM, we now consider projections of AIS
SMB. Similarly to Gorte et al. (2020), we defined the spa-
tially integrated AIS SMB as precipitation minus sublima-
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Figure 9. SST time series (°C) of four Southern Ocean sites over the LM of all GCM outputs and ice core temperature reconstructions.

grey shading indicates the reconstructed uncertainty (defined as £1 o).

to increase for the following 75 years (2025-2100) in both
scenarios by all models. The spatially integrated AIS SMB
values from the best-scoring model CESM-LME (CESM1-
CAMS with the LM forcing protocol) are projected to be
3107 =292 Gt yr’] (the associated uncertainties are 1 o) for
SSP2-4.5 and 3521 +145Gtyr~! for SSP5-8.5 from 2070
to 2100. For the same time period, AIS SMB from models
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T T T
1400 1600 1800

The

scoring worse than the models mean (BCC-CSM1-1, GISS-
E2-R, MIROC-ESM, and MIROC-ES2L) is projected to be
2992+ 120Gtyr~! for SSP2-4.5, and 3216+ 148 Gtyr~!
for SSP5-8.5, which is slightly lower than the best-scoring
model.

In terms of trends, all models project positive SMB trends
in all scenarios. For CESM1-CAMS, SMB is projected to
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Figure 10. Heatmap of the normalised scores for all PMIP past1000
models and the CESM-LME mean.

have a mean trend of 5.2+ 0.4 Gt yr_2 for SSP2-4.5, and
13+0.5Gt yr’2 for SSP5-8.5, while, in the worst-scoring
models, the AIS SMB mean trend is projected to be at
2.5+0.6Gtyr for SSP2-4.5, and 6.8+0.7Gtyr? for
SSP5-8.5. The best-scoring model suggests stronger SMB
means and trends with lower uncertainties for both scenar-
ios compared with the worst-scoring models.

Figure 12 shows the projected regional changes in SMB
over the AIS under the high-emission SSP5-8.5 scenario.
Most of the future SMB changes are concentrated along the
coast, with some smaller changes in the WAIS interior. The
vast majority of coastal SMB changes are positive, with only
a few models showing negative changes — notably GISS-
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E2-R in WL, MIROC-ES2L in VL, MIROC-ESM in WAIS
and MRI-CGCM3 in WS. The ensemble mean only displays
positive changes, with maxima in the AP, western WAIS,
DML, and WL. The best-scoring model, CESM1-CAMS,
projects positive changes along nearly all coastal regions ex-
cept for VL and eastern WAIS, and shows strong agreement
with ACCESS-ESM1-5 and CCSM4, two models that score
slightly better than the model mean.

4.7 Relationship between climate variables

Here, we use the four best-scoring models overall (CESM-
LME, CSIRO-Mk3L-1-2, MPI-ESM-P and MRI-ESM2-0)
to investigate the relationship between climate variables dur-
ing the LM. Figure 13a shows the precipitation anomalies
relative to the historical period (1850—-1900 CE). While there
are some regional differences, particularly in coastal East
Antarctica where CESM-LME is the only one that shows no
notable anomalies, most of the best-scoring models show the
greatest precipitation changes along the coasts. The largest
discrepancy lies in the AP region, where both MRI-ESM2-
0 and MPI-ESM-P simulate positive precipitation anoma-
lies, while both CSIRO-Mk3L-1-2 and CESM-LME simulate
negative precipitation anomalies.

For the relationship between temperature and precipitation
(Fig. 13b), local precipitation sensitivities for all four best-
scoring models are not uniformly distributed. All four mod-
els agree and show a consistent local-scale positive linear re-
lationship and display similar regional sensitivity patterns.
In general, models show lower sensitivities in the EAP and
AP regions, ranging from 0% °C~! to 12 % °C~! and higher
sensitivities in the WS and VL regions with values that can
reach up to 20 % °C~!. CSIRO-Mk3L-1-2 is the only model
that shows a stronger positive relationship in the interior.

Southern Ocean conditions exert a strong influence on
Antarctic accumulation (Delaygue et al., 2000; Stenni et
al., 2010; Lowry et al., 2019). To examine the relation-
ship between ocean conditions and continental precipita-
tion in the AP region, we look at the Pearson linear cross-
correlation coefficients of modelled decadal SIC and precipi-
tation (Fig. 13c) and of modelled decadal SST and precipita-
tion (Fig. 13d). All four models agree and display similar cor-
relation patterns in West Antarctica, with SIC and SST show-
ing strong local spatial correlations with continental AP pre-
cipitation. The SIC-AP precipitation and the SST-AP precip-
itation correlations are slightly higher for MRI-ESM2-0 and
CESM-LME than MPI-ESM-P and CSIRO-Mk3L-1-2. The
models all exhibit high negative correlations between local
SIC in the Bellingshausen and Weddell seas and AP precip-
itation. MRI-ESM2-0 and CESM-LME exhibit a high posi-
tive correlation between SIC in the Amundsen Sea and pre-
cipitation in the AP region, while MPI-ESM-P and CSIRO-
Mk3L-1-2 exhibit a weaker one. For SSTs, here we show that
models exhibit opposite correlations with high positive corre-
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of the linear trend in spatially integrated AIS SMB from 2025-2100. The black cross denote the best overall scoring model (CESM1-CAMY).
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Figure 12. Spatial plot of the future [2025-2100] SMB change in [%] under the high-emission SSP5-8.5 scenario.

lations between local SST in the Bellingshausen and Weddell
seas and AP precipitation.

According to the four best-scoring models, regional pre-
cipitation patterns in West Antarctica are highly sensitive to
local temperature and Southern Ocean condition (SIC and
SST) changes. Even though the models disagree on the pre-
cipitation changes in the AP region, there is a consistent re-
lationship between variables, as all four models do agree in
the AP region in simulating a slightly positive linear rela-
tionship with local average warming, a strong negative cor-
relation with local SIC and a strong positive correlation with
local SST.
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5 Discussion

5.1 Regional climate features

Both Antarctic ice core records and model simulations
demonstrate clear regional differences during the LM. Some
models are better at representing those regional features and
some models show clear regional biases. However, several
elements are remarkably consistent. To start, models tend to
overestimate annual snow accumulation values everywhere
except in the DML and WL regions. A recent evaluation of
current and projected Antarctic precipitation in CMIP5 mod-
els has shown that compared with satellite data almost all the
models overestimate current Antarctic precipitation, some by
more than 100 % (Palerme et al., 2017). This is a recurrent
issue in current models that is likely due to poor represen-
tation of coastal topography which is a significant factor in
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Figure 13. (a) Precipitation anomalies during the LM period (850—-1850 CE) relative to the historical period (1850-1900 CE). (b) Spatial
distribution of relative changes in precipitation rates in terms of local warming during the LM period. (¢) Spatial correlation plots between
precipitation in the AP region and SIC during the LM period. (d) Spatial correlation plots between precipitation in the AP region and SST

during the LM period, for the four best-scoring models.

how precipitation is represented for the AIS (Genthon et al.,
2009; Gorte et al., 2020).

The snow accumulation trends provide a second example
of mismatch between models and reconstructions. Models
simulate the incorrect magnitudes of trends and for some,
they also simulate the wrong sign. Furthermore, snow accu-
mulation can be modulated by large-scale atmospheric circu-
lation and ocean conditions. Regional and global modes of
climate variability are suggested to be the dominant controls
on regional climate in Antarctica during the LM (Liining et
al., 2019). The mismatch in trends can be related to the model
bias in simulating realistic patterns of decadal climate vari-
ability. Current generations of models struggle to simulate
those features, especially in terms of their magnitude, spatial
patterns and their sequential time development (Kravtsov et
al., 2018; Mann et al., 2020).

Model-simulated SAT agrees with the reconstructed SAT
and shows generalised cooling over continental Antarctica

Clim. Past, 21, 1611-1631, 2025

but fails to reproduce the modest warming in the AP, and
most models fail to reproduce the warming in the DML.
Models that do reproduce the warming for both regions,
MIROC-ESM and MIROC-ES2L, also exhibit a global warm
bias. Therefore, their apparent agreement in these regions
should not be interpreted as an indicator of good overall per-
formance. Klein et al. (2019) found the overall skill in recon-
structed surface temperature based on §'80 in the seven re-
gions to be limited, but the reconstruction skill is higher and
more uniform among reconstruction methods when the re-
construction targets are the bigger aggregated regions (West
Antarctica, East Antarctica and Antarctica as a whole). Once
averaged over these larger geographic areas, models show
relatively strong agreement.

A final example of mismatch between models and recon-
structions is the underestimation of Southern Ocean temper-
atures in models. Using SST reconstructions to constrain the
model results is challenging, notably due to the large spatial
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gaps and temporal gaps in the records from the fact that few
marine sedimentary archives have the resolution and age con-
trol necessary to reconstruct LM decadal-scale SST variabil-
ity (Jones et al., 2009), and the potential for proxy-related bi-
ases (Lowry et al., 2019). We only compare four site records
with three of them located relatively close to one another.
Hence, there are too few Southern Ocean records that cover
LM to properly evaluate models on their ability to capture
SST trends. This study would be more robust with an overall
greater spatial coverage of proxy records.

5.2 Overall model skill

Evaluations of PMIP and CESM LM simulations based on
four different climate variables show that no model performs
equally well for all variables. In general, models are bet-
ter at simulating the SAT, and are substantially poorer at
simulating snow accumulation as they have no skill in re-
producing trends and temporal variabilities. LM has modest
trends compared to other time periods (Thomas et al., 2017);
our analysis suggests that capturing regional trends of such
small magnitudes that we observe in the LM is still beyond
current models’ ability in view of their coarse resolution,
among other limitations. Models show colder SST mean val-
ues but have skill in simulating trends and variabilities. Ad-
ditionally, only a handful of models show skill in simulating
ENSO (Bellenger et al., 2014). Nevertheless, some models
are clearly better than others at capturing LM climate.

Atmospheric and oceanic horizontal resolution and the
number of vertical layers vary widely among the models.
We found that models with relatively high resolution for the
atmosphere and ocean can perform equally as well as their
coarse-resolution counterparts. There does not appear to be
a clear relationship between horizontal resolution and model
performance. There is also a lack of a clear relationship be-
tween vertical layers and model performance. For simulated
snow accumulation, models participating in PMIP (but also
CESM-LME) are run at insufficient resolution to provide
accurate SMB estimates in the coastal regions (Lenaerts et
al., 2019). To resolve the SMB component characteristics
in some of the narrowest coastal regions of Antarctica with
complex topography, a grid spacing of about 50 km or finer
is needed (McGregor and Dix, 2008). There are two main
modelling tools to improve on the relatively coarse resolution
of GCMs: statistical and dynamical downscaling. Statistical
downscaling is based on the use of statistical relationships
between large-scale variables and local variables and has
the advantage of being computationally efficient (Hernanz
et al., 2023). Dynamical downscaling is based on the use of
a RCM forced at its boundaries with GCM data (Lenaerts
et al., 2019). Both tools enable finer resolutions, potentially
improving model performance.

There are many potential sources of model bias that are
beyond the scope of this study. A non-exhaustive list in-
cludes the use of different cloud physics schemes, which
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can strongly influence precipitation over the ice sheet (Mot-
tram et al., 2021), the difficulty in simulating sea ice, which
can affect moisture transport and precipitation on the con-
tinent (Roach et al., 2020), and the fact that models may
not adequately represent weather patterns that could impact
snow accumulation in certain regions of West Antarctica,
potentially leading to mismatches with Holocene snow ac-
cumulation reconstructions (Fudge et al., 2016). Such polar
processes remain priorities for climate model development
(Eyring et al., 2019).

In this study, we compare two generations of paleo-
simulations. The mean overall skill of PMIP4 models is
greater than the mean overall skill of PMIP3 models, but
there are more than twice as many PMIP3 models to anal-
yse. For Antarctic climate during the historical period (1850-
2000 CE), the latest generation of CMIP6 models has been
shown to present no significant improvement at simulating
some aspects of the modern climate with respect to CMIP5
models (Gorte et al., 2020). Similarly, for past climates,
within the few specific features we looked at, there seems
to be little improvement between the different generations of
models. It is possible that there are potential improvements
in processes that we did not examine.

Gorte et al. (2020) have evaluated CMIP5 and CMIP6
models over the historical period to look at which models
capture the influence of anthropogenic warming on SMB.
Although both studies share the same objective, our scor-
ing method differs in that we consider multiple parame-
ters important SMB as well as a longer timescale, and our
model ensemble is also more limited because fewer mod-
els have run the past1000 simulations. Hence, it is useful
to compare the results for models investigated by both stud-
ies. The two time periods have different forcing, which al-
lows for a contrast between model responses to either anthro-
pogenic or natural variability. GISS-E2-R and MPI-ESM-
P are the best-scoring models in Gorte et al. (2020), while
MIROC-ES2L and CCSM4 are the worst performing mod-
els. CESM1-CAMS performed worse than their model av-
erage. For both studies, MPI-ESM-P, ACCESS-ESM1-5 and
MRI-CGCM3 perform better than the model mean. Our re-
sults highlight that model evaluation studies should consider
covering longer time periods for the full context of natural
variability.

5.3 Implications for 21st-century sea level rise

Previous studies have considered the historical time period
to constrain future projections of Antarctic SMB. Palerme
et al. (2017) showed that models that best capture observed
historical snowfall rates tended to project larger snowfall in-
crease; although Gorte et al. (2020) found a similar increase
in SMB under the high-emission scenario, their subset of
best-scoring historical models suggest smaller increases. Our
sample size of available models is too small to be as con-
clusive as those studies, but with respect to the LM, the
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model that performs the best across multiple SMB-relevant
variables projects greater future increases in AIS SMB. To
strengthen the study, we encourage more climate modelling
groups to participate in experiments such as past1000 so that
projections can be constrained over timescales sufficient for
end-of-century projections.

A positive SMB trend means mass gain over the surface
of the ice sheet, a negative contribution to the global sea
level (Ligtenberg et al., 2013). According to the best-scoring
model, most of the SMB change at the year 2100 is concen-
trated along coastal regions, with maxima in the AP, western
WAIS, DML and WL. The AIS interior remains relatively
unchanged with the exception of small changes in the WAIS
interior. However, at present, the ongoing dynamic ice loss in
West Antarctica dominates the AIS mass balance (The IM-
BIE team, 2018). Medley and Thomas (2019) demonstrate
that the increase in snowfall over the AIS during the 20th
century did not offset the ocean-driven ice mass loss and only
mitigates the AIS sea level rise contribution. Some studies
have projected that ice discharge from West Antarctica will
continue to dominate Antarctica’s sea level contribution in
the future even under low-emission scenarios (Lowry et al.,
2021; DeConto et al., 2021). While some parts of the AIS
will likely experience mass gain by the projected increase in
SMB (Winkelmann et al., 2012; Seroussi et al., 2020), this
will likely not be enough to counteract the loss of mass from
the marine basins of West and East Antarctica, even though
the best-scoring model in our analysis shows an increasing
SMB trend of 13 + 0.5 Gt yr—2 over the next century.

Although Antarctic SMB is projected to increase overall,
there is still a question of how SMB changes may impact ice
shelf stability in the future. Kittel et al. (2021) discuss how
atmospheric warming may lead to diverging SMB responses
between grounded ice and lower-elevation ice shelves. Us-
ing an RCM to better represent changes in mass and en-
ergy fluxes at the surface, they find that the projected higher
temperatures are likely to decrease SMB over ice shelves,
mainly due to increased run-off and meltwater that can cause
ice shelves to hydrofracture. Ice shelf collapse substantially
increases the AIS sea level contribution in ice sheet model
projections over the next 3 centuries (Seroussi et al., 2024).
This highlights that regional downscaling of these coarser-
resolution global models is essential for fully grasping the
implications of these long-term SMB processes.

5.4 Process understanding gained from the
best-scoring models

The strong AP precipitation increase, seen in two of the four
best-scoring models (Fig. 13), is in part attributed to the lo-
cal atmospheric warming — MRI-ESM2-0 is the only model
that simulates consistent warming in the AP during the LM
period (Fig. 5). Sea ice trends have an important influence
on regional precipitation variations as sea ice-free and/or
warmer SSTs promote evaporation, increasing the moisture
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content of the atmosphere and enhancing local precipita-
tion (Bertler et al., 2018; Lenaerts et al., 2019; Kromer and
Trusel, 2023). Hence, the potential warmer SSTs and/or SIC
decline in the Bellingshausen and Weddell seas might have
led to the increase in precipitation in the AP region in MRI-
ESM2-0 and MPI-ESM-P models, while colder SSTs and/or
greater SIC extent in the Bellingshausen and Weddell seas
might have led to the decrease in precipitation in the AP re-
gion in the CSIRO-Mk3L-1-2 and CESM-LME models.

Sea ice trends can be driven by factors other than large-
scale atmospheric circulation modes, but Crosta et al. (2021)
suggested that natural variability has played a crucial role
over the last 2000 years, with the Southern Annular Mode
(SAM) and ENSO believed to be driving regional climate
heterogeneity for sea ice and sea surface temperature (SST)
in the Southern Ocean. Those two modes wield their influ-
ence on West Antarctica by directly influencing the Amund-
sen Sea Low (ASL). Figure 13c and d can be interpreted as
the ASL affecting the sea ice and precipitation rate for the
AP. The model with the best score for AP snow accumulation
(MIROC-ES2L) also has the best score for ENSO. CESM-
LME also ranks highly in terms of ENSO and the AP snow
accumulation. However, CSIRO-Mk3L-1-2 scores poorly in
terms of ENSO but performs well with respect to AP snow
accumulation.

Processes other than ENSO also impact how models sim-
ulate SAM and the ASL, which can impact precipitation
change in the AP. While we do not investigate the impact of
short-term fluctuations in precipitation in this study, this may
contribute to the discrepancy in the AP region. Extreme pre-
cipitation events, such as atmospheric rivers (ARs), defined
as long and narrow band of water vapour transport in the at-
mosphere (Gorodetskaya et al., 2014), have been shown to
impact the AIS mass balance (Wille et al., 2025). While oc-
curring relatively rarely over Antarctica — only a few days
per year — ARs transport large amounts of moisture from the
mid- to high-latitudes and can lead to extreme precipitation
and surface melt events (Wille et al., 2021). Model differ-
ences in the simulation of heat and moisture transport from
mid-latitudes to the Antarctic continent could potentially be
behind the discrepancy in the AP region, which is particu-
larly impacted by these processes, and needs to be further
assessed.

6 Conclusions

The goal of this study is to provide a quantitative evalua-
tion of GCMs in simulating LM regional climate changes in
Antarctica. We assess model performance with regard to the
output most relevant to AIS SMB, including snow accumu-
lation, SAT, SST and Nifio 3.4 index. The multi-parameter
score used in this study is an indication of the model’s per-
formance in comparison with other models and is designed
as a guide for choosing which GCMs best represent LM
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AIS SMB. We apply a similar scoring method to Gorte et
al. (2020) for our time series variables, as having several
criteria for each variable limits the possibility that models
are recreating one aspect well for the wrong reasons. Those
criteria were originally suited to gauge model performance
for capturing AIS SMB only, but they are also applicable to
the wider range of climate variables that we consider in this
study (snow accumulation, SAT and SST). For scoring the
Nifio 3.4 index, we evaluate whether models simulate a sim-
ilar number of El Nifio and La Nifia events over a given time
period.

CESM-LME mean is the best overall scoring model.
CESM-LME is an ensemble mean composed of 13 individual
members but presents very little internal variability, meaning
that, if we were to look at only a single member, CESM-LME
would still rank as the best overall scoring model. It shows
strength in simulating SAT, snow accumulation and Nifio 3.4
index while performing better than the average mean in sim-
ulated SST. Out of all the models studied here, CESM-LME
mean is the recommended choice for forcing RCMs over
Antarctica for the Last Millennium.

In general, the models show poor skill in simulating re-
gional snow accumulation. They tend to overestimate accu-
mulation in the WAIS, AP, WS, VL and EAP, while showing
strong discrepancies with reconstructions of accumulation
trends and temporal variability. The best performing model
in terms of snow accumulation, CSIRO-Mk31-1-2, shows the
greatest skill in simulating accumulation mean value over
West Antarctica (AP and WAIS) and the EAP but does not
capture the accumulation trends and temporal variability in
every Antarctic region. MIROC-ES2L shows regional biases
in the WAIS, VL and EAP regions.

Regional SATs reconstructed from the proxy record are
reasonably captured by the GCMs in this study. The models
are relatively consistent in displaying the modest broad-scale
cooling trend over most of continental Antarctica but fail to
capture the modest warming in the AP and DML. The excep-
tions are MIROC-ESM and MRI-ESM2-0, which both show
an overall warm bias.

The models display a cool bias in simulating Southern
Ocean SST. ACCESS-ESM1-5 and MRI-CGCM3 are able to
capture consistent mean, trends and temporal variability val-
ues in all but one proxy record site. For the site on the west-
ern coast of the AP, representing SST over the austral spring,
all models simulate SST at freezing temperature, suggesting
that there is persistent spring sea ice cover at that location,
in contrast to the proxy record, which indicates sea ice only
towards the end of the LM.

The greatest model—proxy mismatch occurs in simulating
the Nifio 3.4 index, where only three models, MRI-ESM2-
0, MIROC-ES2L and the CESM-LME mean simulate a rela-
tively similar number of El Nifio and La Nifia events to the re-
construction. All of the remaining models fail to simulate re-
alistic ENSO behaviour. These results are not surprising con-
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sidering that some GCMs have been demonstrated to struggle
with representing ENSO (Bellenger et al., 2014).

For the models where future scenarios were available, they
all show an increase in the spatially integrated AIS SMB by
the end of the 21st century. The model that performs best
in simulating regional climate features over the LM and its
range of natural variability implies that increases in SMB will
more strongly mitigate future dynamic ice loss and sea level
rise contribution from the AIS.

Our results provide some sobering evidence of the limits
of the current generation of models in their ability to prop-
erly simulate regional LM climate features over Antarctica.
Given the limited number of models and proxy records, it
remains challenging to assess the precise reasons for the re-
gional model—proxy mismatches, and further investigation is
required. The community would be well served by additional
models participating in the past1000 experiments and better
proxy spatial coverage overall but, more importantly, in the
WS and EAP. Although there can be large uncertainties and
model biases in some cases, the PMIP past1000 models are
beneficial for investigating long-term climate variability in
this region. Notably, our quantitative evaluation serves as a
guide for the selection of GCM forcings for model weighting
of future projections, dynamical downscaling and/or statisti-
cal downscaling.
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are publicly available from the Earth System Grid Federation
(ESGF) and are publicly available for download after free reg-
istration (https://aims2.1lnl.gov/search/cmip6, last access: 8 Jan-
uary 2024). The CESM-LME simulations are publicly available at
https://doi.org/10.1175/BAMS-D-14-00233.1 (Otto-Bliesner et al.,
2016, last access: 8 January 2024). The snow accumulation re-
construction data are available from the UK Polar Data Centre
at https://doi.org/10.5285/cc1d42de-dfe6-40aa-ala6-d45cb2£c8293
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World Data Center for Paleoclimatology (WDC Paleo), the SAT re-
constructions at https://doi.org/10.25921/h6nr-kt92 (Stenni et al.,
2017a, last access: 8 January 2024), the SST reconstructions at
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