Supplement of Clim. Past, 21, 1585–1594, 2025 https://doi.org/10.5194/cp-21-1585-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

500 000-year-old basal ice at Skytrain Ice Rise, West Antarctica, estimated with the $^{36}{\rm Cl}\,/\,^{10}{\rm Be}$ ratio

Niklas Kappelt et al.

Correspondence to: Niklas Kappelt (niklas.kappelt@geol.lu.se)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1 visualises the uncertainty of age estimates, which results from the measurement uncertainty of the δ^{18} O detrended 36 Cl/ 10 Be ratio (shown as vertical error bars) and the uncertainty of the present-day value, represented by the shaded area around the decay curve.

Figure S1: Age estimates for five deep samples of the Skytrain ice core based on the δ^{18} O detrended 36 Cl/ 10 Be ratio.

Figure S2 shows the δ^{18} O detrended and decay corrected 36 Cl concentration with a standard deviation of 17 % of the mean. The resulting age estimates for deeper samples lack the production rate correction provided by 10 Be concentrations and have larger uncertainties than estimates with the 36 Cl/ 10 Be ratio, but suggest older ages for four out of five samples.

Figure S2: Age estimates for five deep samples of the Skytrain ice core based on the δ^{18} O detrended 36 Cl concentration.