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Abstract. This study introduces a novel dynamical systems
model designed to capture the highly non-periodic nature of
Dansgaard–Oeschger (DO) events. Such events are difficult
to model adequately due to their variable durations (some
lasting around 1 century, while others span multiple millen-
nia) and the occurrence of short precursor events that precede
longer DO events despite similar boundary climate condi-
tions. Utilising a simplified two-equation framework derived
from the Stommel model, our approach integrates an internal
control parameter which acts as a feedback parameter on the
Antarctic Bottom Water (AABW) formation. Through both
analytical and numerical methods, we establish a suitable
parameter domain within which the newly adjusted models
can accurately replicate the palaeoclimatic records of DO
events as described by summary statistics derived from ice-
core data. The analysis also shows that, without the novel
control parameter, the model does not have a suitable pa-
rameter domain in which it can reproduce the wide range
of event characteristics seen in the ice-core record. The study
provides new insights into the underlying mechanisms driv-
ing these highly significant climate phenomena and the nec-
essary timescale in which they are forced by allowing the
new model’s parameters to vary through time. This allows
our model to achieve unprecedented precision in capturing
a realistic sequence of DO events with timing characteris-
tics matching those of the observational record. This refined
model not only enhances our understanding of the DO cy-
cles but also demonstrates the potential of simple dynamical
systems to simulate complex climate interactions.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC)
is a critical component of the global climate system, respon-
sible for transporting vast amounts of heat and influencing
the oceanic and atmospheric circulation worldwide (Pedro
et al., 2018; Broecker, 1998; Li and Born, 2019, and ref-
erences therein). Variations in the AMOC have far-reaching
effects on regional and global climate patterns, including sur-
face temperature and precipitation (Pratap et al., 2023; Bel-
lomo et al., 2023; Frankignoul et al., 2013). Therefore, un-
derstanding the behaviour of the AMOC and its response to
various climate forcings in the past is essential for the predic-
tion of future climate change and its impacts on society and
ecosystems.

It has been proposed that the strength of the AMOC is
linked to the observed abrupt changes in climate over the
northern Atlantic during the last glacial (Henry et al., 2016).
These Dansgaard–Oeschger (DO) events are characterised
by a dramatic rise in temperature that transitions from a
cooler stadial phase to a warmer interstadial phase, with
temperature changes of around 5–16.5 K occurring over the
North Greenland Ice Core Project (NGRIP) drilling site,
sometimes within a couple of decades (Kindler et al., 2014).
The abrupt warming is followed first by a gradual cooling,
then often by an abrupt jump back to the cool stadial, af-
ter a period that can last from a century to millennia (Ras-
mussen et al., 2014). Notably, the DO events show compara-
ble shape and magnitude while exhibiting substantial irreg-
ularity in duration and in the time between events. Coincid-
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ing with the DO events, Antarctica exhibits a contrasting cli-
matic pattern, where interstadial warm phases in the North-
ern Hemisphere correspond to phases of cooling conditions
in the south, and vice versa. This observed interhemispheric
connection through an ocean thermal reservoir is well cap-
tured in the empirical bipolar seesaw (BPS) model (Stocker
and Johnsen, 2003; Pedro et al., 2018, 2022).

Several conceptual models based on a few coupled or-
dinary differential equations have been proposed to model
DO cycles (Mitsui and Crucifix, 2017; Kwasniok, 2013;
Berglund and Gentz, 2010; Roberts and Saha, 2017). In a
broad sense, some emphasise the bimodality as in Stommel’s
model of the thermohaline circulation (Stommel, 1961), and
others emphasise the oscillatory nature of the DO events
(Roberts and Saha, 2017). Other studies focus on the stochas-
tic nature of the events and whether these climate events
arise from purely random processes (Ditlevsen, 1999) or are
significantly influenced by external factors (Schulz, 2002).
While some aspects of these events can be modelled as
stochastic, the sequence and modulation over time appear
to be strongly shaped by external climatic effects (Mitsui
and Crucifix, 2017; Lohmann and Ditlevsen, 2018). Another
method employed in the dynamical systems regime accen-
tuates the stochastic nature of climate transitions, provid-
ing a bridge between deterministic dynamical systems and
real-world data that exhibits random variability (Kwasniok,
2013).

These models neglect the BPS interhemispheric elements,
which are critical for a complete understanding of global cli-
mate interactions during these abrupt events (Pedro et al.,
2018). Including the Antarctic climate record as well, fast–
slow dynamical models, such as the FitzHugh–Nagumo
model, have been proposed (Mitsui and Crucifix, 2017),
which also fits well with the self-sustained DO oscillations
found in a comprehensive ocean model (Vettoretti et al.,
2022).

Advances in global climate modelling, particularly with
the Community Climate System Model 4 (CCSM4) (Gent
et al., 2011; Vettoretti and Peltier, 2018; Vettoretti et al.,
2022), have successfully simulated spontaneous, unforced
DO events within the climate system (Vettoretti and Peltier,
2016); for an overview of other models, see Malmierca-
Vallet et al. (2023). Analysis of the CCSM4’s phase-space
trajectories, in particular, comparing the AMOC strength
against the Antarctic Bottom Water (AABW) strength, has
led to the development of a simplified model whose phase-
space behaviour aligns closely with that predicted by more
comprehensive models like CCSM4 (Vettoretti et al., 2022).
This indicates that simpler dynamical systems models can
effectively encapsulate the core dynamics of DO events de-
spite the complexity inherent in comprehensive models. For
simple models, a difficult aspect of the DO cycles to cap-
ture is the existence of the so-called precursor events, a term
coined by Capron et al. (2010). These events are short inter-
stadials lasting 100 to a couple of hundred years, followed

by a brief stadial phase, directly followed by an intersta-
dial of longer duration (typically more than 1000 years).
The extreme examples – which are the ones highlighted in
Capron et al. (2010) – are the precursors to interstadials 23
and 21, denoted GI-23.2 and GI-21.2 following Rasmussen
et al. (2014), but the short events, GI-16.2, GI-15.1, and, to
some degree, GI-17.2, within Marine Isotope Stage (MIS)
3 share the key characteristics, being short interstadials just
prior to interstadials of much longer duration. The precursor
events are shown in red in Fig. 1. This behaviour is not eas-
ily captured in simple models without requiring the addition
of large amounts of noise or unrealistically quick changes to
the model’s control parameters, neither of which are aligned
with our understanding of the underlying physical system.

In this paper, we present a simple two-equation model of
the Atlantic Ocean circulation. Our model is derived from a
formulation similar to a simple ocean box model (Stommel,
1961) but incorporates a time-dependent dynamic forcing
that introduces variations between monostable fixed points
and limit cycles. Our model introduces a novel control pa-
rameter that represents a feedback between changes in the
AMOC and AABW. Our objective is to capture more of
the observed variability in DO events in terms of duration
and temporal spacing and ultimately to reproduce precursor
events. We provide a physical process-based motivation for
our model from modifications to the system described in Vet-
toretti et al. (2022). We also perform a stability analysis of
our model to evaluate its theoretical behaviour under varying
boundary conditions following the methodology established
in Berglund and Gentz (2010). Specifically, we utilise a novel
visualisation technique that involves solving the eigenvalues
of the system’s Jacobian and illustrates the parametric stabil-
ity of the phase space of the dynamical system.

2 Methods

We first describe the statistical methodology used to charac-
terise and examine the dynamics of DO events. Our method
applies a statistical framework for comparing our concep-
tual model outcomes with the palaeoclimate records from the
NGRIP ice-core record. Then, the conceptual model of Vet-
toretti et al. (2022) is introduced as a simplified, buoyancy-
driven box model, adapted to simulate the rapid transitions
and slow climatic shifts associated with DO events. The con-
ceptual model and its connection to the physical world are
first discussed in Sect. 2.2 in order to explain the overall
model design and behaviour with only the necessary math-
ematical details. We then argue for why an extra factor has
to be added to the model: a critical component of our anal-
ysis is the introduction of the α parameter, which modulates
the model’s sensitivity to changes in Southern Ocean (SO)
buoyancy fluxes, directly impacting the dynamics of AABW
formation and the AMOC strength. A more rigorous theoreti-
cal approach is developed in Sect. 2.3. Readers not interested
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Figure 1. The ice-core record. (a) The δ18O record from NGRIP with the classification of interstadials by Rasmussen et al. (2014). All ages
are given in thousands of years relative to the year 2000 CE (denoted ka b2k). The precursor interstadial events from left to right, GI-23.2,
GI-21.2, GI-17.2, GI-16.2, and GI-15.1, are shown in red. (b) The number of DO events, E(t), and the fraction of time spent in stadial
conditions, P (t), within running 20 kyr long windows, following Lohmann and Ditlevsen (2018).

in the theoretical background can skip Sect. 2.3 and jump
directly to Sect. 3.

2.1 The statistical framework

As a basis for our analysis of the characteristics of the mod-
elled and observed DO variability, we make use of the statis-
tical framework proposed by Lohmann and Ditlevsen (2018).
This allows a quantitative comparison of the behaviour of
our conceptual model with the palaeoclimate records from
NGRIP. Here, the observations are regarded as a specific re-
alisation of a stochastic process, acknowledging that another
realisation of the climatic evolution of the last glacial pe-
riod would likely come out differently. Thus, a model should
not necessarily reproduce the NGRIP record but rather have
similar characteristics, and, rather than over-fitting to obser-
vations, our focus is on a few so-called summary statistics,
characterising the observed record and the underlying dy-
namics. Therefore, we have constructed the model such that
it is computationally light enough that robust statistics can be
obtained for a large number of realisations.

In our statistical framework, the time series are charac-
terised by two summary statistical parameters: the number
of DO events E(t) in a 20 kyr window centred at a given
time t and the fraction of time spent in stadial-like condi-
tions P (t) within the same 20 kyr window. We use this sta-
tistical framework to compare our model with the NGRIP
ice-core records, thereby enabling us to assess the likelihood
that the observed summary statistics could be drawn from
the distribution of summary statistics produced by the model
as seen in Fig. 1. We then utilise a grid-search method to
explore the parameter space and identify the optimal set of

parameters that best fit the data. We constrain the grid search
using the parameter intervals derived from the stability anal-
ysis (Sect. 2.3.5).

2.2 The physical conceptual model

Here we present a thorough introduction to the simple model
briefly introduced in Vettoretti et al. (2022) and describe the
relationship between the model physics and the time series
it generates. Then, we briefly explain our extension of the
model of Vettoretti et al. (2022). We do this with a minimum
of formalism and concepts from dynamical system theory.
Readers with an interest in the detailed derivation and stabil-
ity analysis of the set of governing equations for the dynam-
ical system are referred to Sect. 2.3.

The model consists of two non-dimensional governing
equations. The non-dimensionality is discussed in more de-
tail in Sect. 2.3.2:

1̇b =−B − |q|(1b− b0)+ σdW, (1)

Ḃ =
1
τ

(1b− γ )+ σdW. (2)

The first variable is the meridional buoyancy gradient, 1b,
which describes the buoyancy difference between the north-
ern and southern Atlantic, akin to changes in the AMOC.
1b is driven by the transport factor q (explained further in
Sect. 2.3.2), which, depending on the value of 1b, can re-
verse the direction of transport (illustrated in Fig. 2) and
thereby induce the abrupt changes in the AMOC we wish
to simulate. The second variable is the buoyancy flux, B,
which describes the combined heat and freshwater flux into
or out of the ocean surface. B is applied to the SO with a
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Figure 2. The box model. The Stommel-like box model illustrates
the simplified physical transport system described by the governing
equations. The focus is on the meridional buoyancy difference (1b)
between the northern and southern Atlantic regions driven by the
transport factor q. The buoyancy flux, B, describes the combined
heat and freshwater flux into or out of the ocean surface, applied to
the SO with a corresponding balance to the north.

corresponding balance to the north and is physically related
to changes in the AABW formation. Through this mecha-
nism, our model incorporates the fundamental principles of
the BPS (Vettoretti et al., 2022). b0 is a tuning parameter, in-
troduced to shift the system along the 1b axis. The factor
dW is Gaussian noise added at each time step scaled by σ .
This represents the internal climatic variability and can lead
to noise-induced tipping; see the end of Sects. 2.3.5 and 3.1
for more details on the properties of the noise.

The presence of 1/τ in the so-called slow equation,
Eq. (2), with τ � 1, means that the two equations describe
a slow–fast system; thus any change in the 1b parameter
will be much faster than a corresponding change in the B pa-
rameter, mimicking the fast response of an interstadial onset,
compared to the much slower corresponding BPS response in
and around Antarctica. The behaviour of the system is con-
trolled by the relative position of the two nullclines (1̇b = 0
and Ḃ = 0) as seen in Fig. 3. The 1b nullcline corresponds
to the inverted S-shaped curve, while the B nullcline corre-
sponds to the flat horizontal line. In this paper, we refer to the
1b nullcline as the slow manifold, the curve where the sys-
tem evolution is dominated by the slow parameter, following
the formalism outlined in Berglund and Gentz (2010). We
note that nullclines and manifolds are generally not identi-
cal for finite values of τ , but the difference is not impor-
tant in this case, especially due to the presence of noise.
As Ḃ = 0⇔1b = γ , γ can be seen as a control parame-
ter (in Vettoretti et al., 2022, taken to be the CO2 concentra-
tion expressed in units of buoyancy) that moves the B null-
cline up and down. The location of the intersection of the two
nullclines determines the dynamics of the model. When the
nullcline intersects the slow manifold in either the upper or
lower part (either above or below the corresponding bifurca-

Figure 3. Different regimes of the simple model. The 1b nullcline
(the multi-coloured inverted S-shape) and its stability regimes are
constant through the three panels. (a) When the horizontal B null-
cline intersects the upper part of the 1b nullcline, the system is in
a stable interstadial state. (b) If the intersection takes place in the
middle, the system oscillates and follows the limit cycle. (c) If the
intersection of the nullclines is located on the lower part of the 1b
nullcline, the system is in a stable stadial state. As γ changes (the
cases γ = 1.5,1.2,0.7 are shown), the B nullcline moves up and
down, and bifurcations take place at the green points which sepa-
rate the three regimes.

tion points marked by green points in Fig. 3), the model has
a stable fixed point and will tend towards this fixed point.
These represent a stable interstadial or stadial state, as seen
in Fig. 3a and c, respectively.

When the B nullcline intersects the middle part of the slow
manifold, shown as the dashed line in Fig. 3b, the fixed point
is unstable and the system will perform oscillations by fol-
lowing the limit cycle, shown as the two arrows in Fig. 3.
The diagram in Fig. 4 demonstrates the relationship between
the model’s phase space and the resultant time series it gen-
erates when it is oscillating. In panels (a), (b), (c), and (d),
we observe how the state of the system traverses around the
limit cycle, with each transition between points linked to
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Figure 4. Schematic representation of the behaviour of the model. The sequence from panel (a) to panel (d) showcases the system’s pro-
gression between stadials and interstadials when it is in the oscillatory regime (as shown in Fig. 3b). The coloured points demonstrate how
various segments of the time series (e–f) align with the different states (a–d) as the system oscillates along the slow manifold. The inner
part details key physical processes driving the transitions within the comprehensive climate model, which has been shown to have the same
qualitative behaviour as our conceptual model (Vettoretti et al., 2022).

the specific events happening here. The inner red section of
this panel shows the physical processes associated with these
transitions, as inspired by the comprehensive model simu-
lations in Vettoretti et al. (2022). Meanwhile, the generated
time series are seen in panels (e) and (f), marked by coloured
points and intervals aligned with the system’s position on the
limit cycle.

This simple model has its limitations in terms of mim-
icking observed DO variability by exhibiting a high degree
of periodicity when the system is oscillating and by having

limited variability in the duration of the interstadial–stadial
configurations: when γ attains higher values, the system ex-
hibits longer interstadials and short stadials, and vice versa.
To better mimic the behaviour seen in ice-core records, one
can force the system with a high-amplitude, fast-varying γ
value, which is not consistent with the idea that γ repre-
sents the CO2 concentration. To address this limitation, we
propose adding another term, αB/τ , to Eq. (2), represent-
ing a feedback mechanism that changes the rate at which the
ocean takes up heat or gives off heat during a DO cycle. The
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α parameter affects the rate of change of AABW production,
reducing the rate of change of buoyancy flux in interstadials
and increasing it in stadials. Physically, it is associated with
an SO warming or freshwater-flux parameter, described in
more detail in Sect. 2.3.4. We call α the “slope parameter”
because it leads to a non-zero slope of the B nullcline, as
seen in Fig. 5. By introducing the combination of changing
the magnitude of the slope and moving the nullcline up and
down, it is possible to more dynamically control the dura-
tions of both the stadials and interstadials and the periodicity
of DO events through time.

2.3 Detailed model description and stability analysis

In the following sections, we provide an in-depth description
of our extended model, which is formulated in terms of buoy-
ancy, and the link between the non-dimensional model for-
mulation and the physical world. We then introduce the slope
parameter α as an extra term in the governing equations and
analyse the extended model’s stability. Readers mainly inter-
ested in how the model performs compared to the observed
DO cycle can move directly to the results in Sect. 3.

2.3.1 The buoyancy framework

We employ a simplified box model with the flow driven by
buoyancy differences based on the principles of the multi-
vessel Stommel model (Stommel, 1961), as described in Vet-
toretti et al. (2022). The conceptual model (illustrated in
Fig. 2) is formulated in terms of buoyancy and buoyancy
fluxes, with 1b defined as the meridional gradient between
the buoyancy of the southern box (bS) and the northern box
(bN). The southern box’s buoyancy is greater than the north-
ern box’s buoyancy; ergo, 1b is always positive in our stan-
dard conceptual model. Therefore, one might think of this
difference in physical terms as sinking in the north with
denser northern waters returning at intermediate depths, e.g.
Stommel (1961). The buoyancy flux (B) captures the ha-
line and thermal forcing of the ocean surface. Classically,
boxes are forced by an equal amount of freshwater leaving a
southern or equatorial box and entering a northern box, with
the density gradient mainly being driven by salinity changes
(Cessi, 1994). In a similar methodology, here the buoyancy
flux always removes buoyancy at the southern box, while the
northern box gains buoyancy, and the transport q (which may
be positive or negative) keeps this 1b gradient in balance,
either in a strong positive (interstadial) or weak positive (sta-
dial) state. As outlined in Fig. 4, there are four essentially dif-
ferent states of the DO cycle. Starting our description in the
mode of strong AMOC and weak AABW (a), correspond-
ing to the beginning of an interstadial period, the southern
buoyancy flux is weak and the circulation is largest (q > 0).
As the system is autonomous, the AMOC decreases, and
the southern buoyancy flux begins to increase and removes
more buoyancy from the southern box (in Fig. 2, the buoy-

ancy flux moves buoyancy out of the SO, decreasing bS).
While the transport acts to move some of the less buoyant
water from the southern box to the northern box, it does not
fully compensate for the decreasing buoyancy in the south-
ern box, and the circulation weakens. This is typically under-
stood as a freshwater feedback, where the freshwater trans-
port is out of the northern box southwards, which creates a
feedback where more salt is brought into the North Atlantic
by a stronger AMOC. This results in a feedback of more
freshwater transport out of the northern box with the stronger
AMOC. Here we describe how the buoyancy decreases (or
density increases) in the southern box, so this mimics a trans-
port of freshwater to the northern box, which weakens the
circulation. This is the negative salt-advection feedback.

Conversely, the equal and opposite buoyancy flux in the
north is adding buoyancy to the northern box, the combi-
nation of which weakens the buoyancy gradient to bring us
to a strong (but not maximum) AMOC and strong AABW
mode (b); here q = 0, and there is no salt-advection feed-
back. The system then tips abruptly into the mode with weak
AMOC and strong AABW (c), and q reverses (the posi-
tive salt-advection feedback). The buoyancy flux removal in
the southern box remains strong while the system transitions
to the lower stable branch. The flow then gradually moves
buoyancy, via the positive salt-advection feedback, from the
northern box to the southern box to slowly increase the pos-
itive buoyancy gradient. At the same time, the buoyancy
flux (AABW) begins to weaken in the southern box; con-
versely, the buoyancy flux into the northern box strengthens.
The strong reversed flow begins to weaken, and we enter a
mode with weak but slightly strengthened AMOC and weak
AABW (d). As the system approaches the lower bifurcation
point and then jumps to the upper part of the slow manifold,
the transport switches sign (q > 0) and the removal of buoy-
ancy remains weak while the circulation is strongest (when
1b is large), and the cycle repeats.

The behaviour of the conceptual DO box model can be
related to physical processes. The removal of buoyancy in
the southern box represents AABW formation through the
removal of buoyancy at the surface, which one might physi-
cally think of as brine rejection from forming sea ice, or the
removal of heat from the ocean surface by katabatic winds
blowing downslope over the Antarctic Peninsula, forming
latent-heat polynyas. The increase in buoyancy associated
with a positive buoyancy flux into the northern box can be
related to the transport of thick Arctic sea ice into regions
of North Atlantic Deep Water formation. Removal of heat
would act to decrease buoyancy, but haline influences on
buoyancy dominate at high latitudes. The transport q can be
related to the Fov parameter used in many studies that inves-
tigate the bistability of the AMOC, e.g. Cimatoribus et al.
(2014). It can reflect the convergence or divergence of salt
into the North Atlantic which helps to act as positive or neg-
ative feedback.
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Figure 5. The phase space of the system and the eigenvalues of the Jacobian for three different configurations of the model: (a, b) α = 0.6,
(c, d) α = 0 (equivalent to the cases in Fig. 3), and (e, f) α =−0.6. (a, c, e) Phase space of 1b and B showing the 1b and B nullclines,
bifurcation points, and fixed points in different colours based on their stability. (b, d, f) The stability is determined from the system’s Jacobian
J which has two eigenvalues whose real and imaginary components are shown.

2.3.2 Model formalism

Based on the physical arguments, in Sect. 2.2 we derived
the set of stochastic ordinary differential Eqs. (1) and (2)
for the conceptual model of Vettoretti et al. (2022). Ignor-
ing for a moment the stochastic noise terms, the determinis-
tic part of the model is of the general form dy

dt = (f (y)− x),
dx
dt = (y− γ )/τ . With the choice f (y)= a(y− y3)+ b, the
model becomes the FitzHugh–Nagumo model, previously
used in simple models of DO events (Mitsui and Crucifix,
2017). Instead, our model is formulated as a simplified box
model with the flow driven by buoyancy differences based on
the principles of the multi-vessel Stommel model (Stommel,
1961), as described in Vettoretti et al. (2022), but with model
overturning described in terms of the meridional buoyancy
gradient rather than density (as in Stommel, 1961) using the
following equivalency:

1b =
−g

ρ0
1ρ, (3)

where g is the gravitational acceleration and ρ0 is a reference
density.

The parameters used in our model are inferred from the
comprehensive modelling study of DO variability (see the
Supplement of Vettoretti et al., 2022). In the CCSM4 simu-
lations of glacial climate, a linear relationship between the
meridional buoyancy gradient (1b) in the Atlantic and the
strength of the AMOC was observed. A relation for the
box-model transport was presented (q = q0+ q1(1b− b0))
as a process-based relationship with salt-advection feedback,
where the non-dimensional constants are q0 =−9 and q1 =

12. Inserting q = q0+ q1(1b− b0) into Eq. (1), we arrive at
the first equation of the non-dimensional conceptual model
of Vettoretti et al. (2022):

1̇b =−B − |q0+ q1(1b− b0)|(1b− b0)+ σdW, (4)

where we have introduced a Wiener process, dW , with a scal-
able σ parameter to describe the internal variability of the
system.
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In the following section, we explain the relationship be-
tween the flow parameter, q, and the strength of the AMOC.
Additionally, we will outline the process of converting the
non-dimensional equations into the appropriate physical
units.

2.3.3 Coupling of flow with AMOC strength and
redimensionalisation

In the simple model, we can replicate the range of values
of the AMOC in the comprehensive model simulations of
the DO oscillation by introducing constants that describe the
characteristic scales of transport (ψ0,ψ1) in the ocean to
obtain physically meaningful values. The AMOC is then a
function of the buoyancy gradient through the following re-
lationship: ψ0 =−4.5×106 m3 s−1, ψ1 = 20.0×106 m3 s−1,
AMOCdim = ψ0+ψ11b. This redimensionalisation of the
AMOC ensures that it is positive definite at all times as in
the real ocean, where the non-dimensional q is a transport
which can switch directions as in the classic Stommel model
and represents a transport of buoyancy in either direction (the
thermal and haline modes). The buoyancy and buoyancy flux
can be redimensionalised to physical units with the charac-
teristic values used to non-dimensionalise the physical equa-
tions, bc = 0.004 m s−2 and Bc = 3.8× 10−10 m−2 s−3.

Additionally, connection is made in our formulation be-
tween the buoyancy flux and AABW production or transport
suggesting that the density change in the southern box is re-
lated to AABW production and therefore there is an interplay
between the AABW and AMOC strength (Klockmann et al.,
2018; Nadeau and Jansen, 2020). Following Vettoretti et al.
(2022), AABW production is proportional to B. The non-
dimensional buoyancy flux can be transformed to AABW
units (Sv) as follows:

AABWdim = ψA+χA
Bc

bc
B, (5)

where χA is a scaled area of the Atlantic where buoyancy
is fluxed downwards, with the following values, A= 7.0×
1012 m2, χ = 2.5, and ψA = 5.0× 106 m3 s−1, as derived in
the Supplement of Vettoretti et al. (2022).

In this parametrisation, the flow q reaches zero at the end
of the interstadial period at the upper bifurcation point (see
Fig. 3), which results in bifurcation-induced tipping into the
stadial period. At this point, the flow reverses (q < 0, but the
AMOC remains positive). While the transport q in the non-
dimensional form used here transports buoyancy, it captures
freshwater transport between boxes and is therefore related
to the salt-advection feedback used in other simple models
and in comprehensive models used to assess bistability of
the AMOC (Dijkstra, 2007).

2.3.4 The role of the α parameter

To alter the periodicity of oscillations within the simple
model and to capture other physical time-dependent pro-

cesses associated with buoyancy fluxes in the SO, we intro-
duce an additional term, αB/τ , to Eq. (2), as discussed at
the end of Sect. 2.2. This modification leads to our updated
version of the slow-timescale equation:

Ḃ =
1
τ

(1b+αB − γ )+ σdW, (6)

which, together with Eq. (4), forms our set of model equa-
tions.

Incorporating the new parameter into theB equation trans-
forms the nullcline from a constant to a linear relation (1b =
γ −αB). The nullcline represents areas where the rate of
change in B (Ḃ) switches between positive and negative. Es-
sentially, the vertical distance to the nullcline indicates the
magnitude of this rate of change in B; a smaller distance im-
plies a slower rate of change. By introducing a slope to the
nullcline, this distance – and consequently the rate of change
in B – becomes variable rather than fixed. This adjustment
allows more control of the dynamics throughout interstadial
and stadial periods, making the model’s simulation of these
periods more adaptable to varying climatic conditions. Sec-
ondly, the non-zero slope of the B nullcline leads to the for-
mation and elimination of intersections with the slow mani-
fold within very small changes in α and γ compared to the
case with the horizontal nullcline. For example, for appro-
priate values of the slope, it becomes possible for the model
to go from having a single stable fixed point on the upper
part of the slow manifold to a single stable fixed point on
the lower part of the slow manifold with small changes in α
and γ . Lastly, the new B nullcline allows the system to have
two stable fixed points simultaneously, one in the upper part
and one in the lower part of the slow manifold, transforming
the system to a purely noise-driven bistable system, creating
non-periodic oscillations.

The α parameter plays a crucial role in representing a key
influence on the buoyancy of the SO. An increase in α af-
fects the buoyancy flux (or AABW), dampening buoyancy
changes during interstadials and amplifying them during sta-
dials. This results in prolonged interstadials and shortened
stadials, indicating that SO warming or an additional buoy-
ancy flux associated with sea-ice formation could play a sig-
nificant role, should similar mechanisms operate in the real
world. An increase in α could be indicative of increased melt-
water flow from melting Antarctic sea ice, pointing to a sig-
nificant accumulation of either freshwater or heat. This con-
dition is further demonstrated when there is an intersection
of the B nullcline with the upper part of the slow manifold.
In such instances, the robustness of the increased meltwater
flow is sufficient to prevent a collapse of the AMOC, possibly
by hindering sea-ice formation or through other mechanisms.
In such scenarios, the AMOC remains in a slightly reduced
mode compared to the onset of a DO event, maintaining a
quasi-interglacial or “modern” state.
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2.3.5 Stability analysis

The governing Eqs. (4) and (6) of our model represent a
slow–fast system where the analysis can be split into fast
changes in 1b, analogous to the stadial–interstadial transi-
tions, and slow changes along the stable parts of a slow man-
ifold, which dictate the behaviour of the system on longer
timescales. To constrain the domain of relevant values of the
control parameters, we analyse the stability of the dynamical
system. This is done by finding the eigenvalues λ1,2 of the
Jacobian, J , for the model including the slope term given by

J ≡
(
∂1̇b
∂1b

∂1̇b
∂B

∂Ḃ
∂1b

∂Ḃ
∂B

)
=

(
x 1/τ
−1 α/τ

)
, (7)

where

x =−|q0+ q1(1b− b0)| − q13(1b)(1b− b0), (8)

with

3(1b)=

{
0 if 1b = −q0

q1
+ b0

sign (q0+ q1(1b− b0)) otherwise
.

The panels in the right part of Fig. 5 show the eigenval-
ues of J as 1b changes. In all panels, the real parts of λ1,2
are different for low 1b values, become identical for values
of 1b close to 1, and then differ again for large 1b values.
When the two are not identical, |Re(λ1)| diverges with larger
|1b| values, while |Re(λ2)| remains small. The imaginary
parts of the eigenvalues (purple lines) are zero for most val-
ues of 1b, but when the real parts coalesce around 1b = 1,
and at the point of non-differentiability, the imaginary parts
are also non-zero (purple points).

To determine the stability of the state, we look at three
cases: if Re(λ)< 0 the system is stable, and for Re(λ)> 0
the state is unstable. Lastly, if λ is purely imaginary, then the
system is undergoing a bifurcation. Firstly, we analyse the
situation with α = 0, Fig. 5c and d, to compare it with the
literature (Mitsui and Crucifix, 2017; Vettoretti et al., 2022).
For1b < 1, the system is in a stable state (blue region). This
corresponds to the lower part of the slow manifold. Then,
when 1b = 1, λ1,2 becomes purely imaginary and the sys-
tem undergoes a bifurcation (green horizontal line). Increas-
ing 1b, the system becomes unstable (purple region). Here,
the system will always converge to the limit cycle and exhibit
oscillatory DO-like behaviour. At1b = −q0

q1
+b0 = 1.38, the

manifold is non-differentiable; therefore ∂1̇b
∂1b

is undefined.
Kowalczyk and Glendinning (2011) show that a non-smooth
bifurcation occurs and that the derivative, ∂1̇b

∂1b
, should be de-

fined to 0. After the bifurcation, we again have a stable sys-
tem (yellow region), now in the interstadial state.

When α 6= 0, the stability changes, as shown in Fig. 5b
and f. The eigenvalues as a function of 1b have the same
shape as for α = 0 but shift with the size of α. The com-
bined movements of the real and imaginary parts result in a

drastic change in the stability of the manifold. For α =−0.6,
Fig. 5e and f, the lower part of the manifold becomes stable
for a larger interval of 1b values. In the same way, the lower
bifurcation happens at this higher value for 1b. The bifur-
cation at the non-differentiability (1b = 1.38) disappears as
α changes the real part of the eigenvalues for the Jacobian
(Kowalczyk and Glendinning, 2011) to be non-zero.

For α = 0.6, Fig. 5a and b, the stability of the whole man-
ifold changes. The entire manifold becomes unstable (purple
shading), and the system diverges instead of converging to a
fixed point or the limit cycle. A very small part of the lower
manifold is still stable when the real part of λ2 (dark red) is
negative. This allows a half-stable limit cycle, where, if the
system is inside the limit cycle, it converges out to the limit
cycle, but if it is outside, it diverges. This condition results in
a highly unstable system, as the noise-driven variability can
quickly push the system outside of the limit cycle. Relating
this scenario to the physical explanation of α, the α param-
eter leads to a feedback mechanism that not only maintains
but actively accelerates the AMOC. Such continuous acceler-
ation is considered unphysical, as it implies an unsustainable
increase in the system’s intensity.

From these observations, we derive the region where the
behaviour of the system will exhibit cyclic behaviour and re-
spond to changes in the control parameters. From the pre-
vious analysis, α is constrained to [−1,0]. We argue in
Sect. 3.1 that the upper bound is a good choice. To keep
the nullcline inside the relevant area of the system, γ is con-
strained to [0.6,3].

The noise in the system comes from a Wiener process, dW .
At each time step it adds a random number drawn from a unit
Gaussian that is scaled with a parameter, σ . To ensure that
our model exhibits behaviour that is governed by its deter-
ministic structure rather than by random fluctuations, we set
a limit on the parameter σ , which controls the intensity of the
noise in the model. If σ is too high, the model behaves like a
random walk, leading to abrupt and unrealistic transitions in
the system. Through a search of the domain of the summary
statistics presented in Sect. 3.1, we selected a value for σ that
best replicates the behaviour observed in the ice-core record.

3 Results

In this section, we present the findings of our simulations and
analyses aimed at exploring the behaviour of the AMOC in
response to varying control parameters. We begin by detail-
ing the results of our simulation studies in Sect. 3.1, where
we examine the effects of introducing the slope parameter α
into our model and its implications on the summary statis-
tics. This section also discusses the structural changes in the
achievable results from varying parameters and how we use
this analysis to set a fixed noise level. Following this, in
Sect. 3.2, we explore how an idealised forcing can produce
results resembling the dynamics of the last glacial period.
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3.1 Output space

To see the effect of introducing the α parameter, we run
simulations across the extensive parameter space delineated
by the stability analysis. Each simulation generates a non-
dimensional AMOC time series. Each run is initiated such
that it ends at 11 703 b2k, at the beginning of the Holocene
(Rasmussen et al., 2014). The model runs with a constant
time step of 20 years, which comes from a balance be-
tween run time and the stiffness of the system. Therefore
we start the simulation at 119 123 b2k, with initial condi-
tions (1b,B)= (1,0). This is the closest to the transition out
of the Eemian that a whole number of 20-year steps from
11 703 b2k can come. The simulations are therefore run for
5371 steps. The simulations were carried out using a stochas-
tic Runge–Kutta method without adaptive stepping to mit-
igate the stiffness of the system (Ansel et al., 2024; Kidger
et al., 2021; Li et al., 2020). As we initialise in GS-26, the ini-
tial conditions are chosen to be in a stadial state. Using two
threshold values for the stadial and interstadial states, as out-
lined in Mitsui and Crucifix (2017), we automatically clas-
sify when the AMOC time series is in stadial and interstadial
periods, respectively. From this classification, we calculate
the E′(t) and P ′(t) series for each run. For the remainder of
this paper, primed values will denote E and P values for the
modelled time series.

The modelled temporal averages µ′E and µ′P for each set
of control parameters are shown in Fig. 6, with the left col-
umn coloured by the γ value and the right coloured by the
σ value of the simulation. Each µ′E and µ′P value pair is an
ensemble average of 100 individual runs for a specific set of
parameters. The model is run for 104 different sets of γ , α,
and σ in the domain found in Sect. 2.3.5.

The simulations are unstable for α = 0 and γ > 1.85 and
have been omitted. We also show the temporal evolution of
(P (t),E(t)) values calculated from the ice-core record as de-
scribed in Lohmann and Ditlevsen (2018) and as also shown
in Fig. 1. For α = 0 (Fig. 6a and b), the model’s outcomes
appear to arch around the values derived from the ice-core
record. For some periods, e.g. around 81 ka b2k, the model
can capture the (P (t),E(t)) pair found in the ice-core record.
However, for most time periods, this is not possible. Clear
arches for each noise level are seen in the right panel, while
almost vertical bands of similar µ′P corresponding to each γ
value are seen in the left panel. This is a clear consequence
of the model properties. γ controls the magnitude of the gra-
dient along the slow manifold, and, if γ is near the upper bi-
furcation point in the unstable region, the system will have a
small gradient along the upper part of the manifold but a large
gradient along the lower part. This in turn leads to longer in-
terstadials and shorter stadials. With larger σ , the system be-
comes more volatile, and it will jump from the stable parts of
the manifold more readily, leading to more events in a given
time interval. Interpolating and extrapolating to uncharted
parts of the parameter domain is fairly straightforward: with

decreasing γ , µ′P moves to higher values, and increasing the
σ will increase µ′E . Either way, it would not be possible with
α = 0 to reach most of the observed (P (t),E(t)) values.

Including the slope parameter allows the model to bet-
ter capture the observed behaviour and thereby match the
(P (t),E(t)) values. Decreasing the α parameter extends the
arches downward, so each line of constant γ now reaches
lower values of µ′E . In the middle and lower panels, the ob-
served values are now more fully represented by the possi-
ble values found in the model. The correlations observed be-
tween µ′P and γ and between µ′E and σ are still maintained.
As α decreases, γ has to increase to keep the B nullcline in
the relevant region of the phase space where DO events oc-
cur, as γ controls the intercept of the B nullcline with the
1b axis of the phase space. This is also illustrated in the left
column of Fig. 5, where the overall γ values increase with
decreasing α value. In the right column, we can see that in-
creasing α moves the entire arch downwards and replaces
the upper parts of the arch with higher noise levels. Thus for
α <−1 it would require an even higher value of σ for enough
events to happen to capture the period around 101 ka b2k.
This higher value will make the system even more noise-
driven. From the superimposed (P (t),E(t)) time series in
Fig. 6, it is apparent that there is no single panel which en-
compasses the entirety of the observed dynamics in a single
colour, representing a fixed set of control parameters.

The results shown in Fig. 6 and discussed above come
from stationary models, where the given set of parameters
{σ,γ,α} is constant over the entire simulation. This allowed
us to analyse the behaviour of the new model with non-zero α
compared to the old one without the sloping nullcline. How-
ever, due to the variable nature of the glacial climate, there
is no reason to believe that the parameters are stationary, and
it is thus less relevant to try to fit the stationary model to the
observed P ((t),E(t)) values. What we conclude from this
analysis is that a dynamically forced model with the addition
of the α parameter should be able to simulate the behaviour
seen in the ice-core record, as the time series of summary
statistics is now within the achievable domain illustrated in
Fig. 6.

When trying to fit an idealised forcing to optimally re-
semble the dynamics of the ice-core record, we experienced
that the α and γ parameters relied so heavily on the noise
level that any optimisation algorithm would choose a random
noise level, optimising only the α and γ parameters, and thus
risk getting stuck in a local minimum. It was not possible to
optimise on the α and γ parameters first and then optimise
on the noise level, as this led to non-optimal solutions. There-
fore, we decided to use the arches from Fig. 6 as an argument
for choosing a constant σ = 0.2 for our further analysis: be-
cause the yellow points in the right panels together span the
entire area, it should be possible with σ = 0.2 to find a pair
of γ and α that can reproduce the dynamics of the ice-core
record at any time. A more accurate picture from the sim-
ple model could be achieved if we had a better estimate of
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Figure 6. Achievable µ′
P

and µ′
E

pairs. A scatter plot of µ′
P

and µ′
E

, with the (P (t),E(t)) time series from Fig. 1 superimposed. The
numbers mark the ages at 10 kyr spacing. Each pair is coloured by the value of γ (left column) or σ (right column) used in the corresponding
model run. The value of α decreases from top (α = 0) to bottom (α =−1).

the appropriate noise levels for stadial and interstadial peri-
ods. Previous studies suggest a higher variability in stadial
states compared to interstadial states (Ditlevsen et al., 2002).
Ideally, this would lead us to allow different noise levels in
each state. Preliminary analysis of the noise level observed in
global climate models or ice-core data presents a more com-
plicated picture. Specifically, the noise in the AMOC does
not necessarily seem to be directly linked to the variability in

the Greenlandic ice-core records. Therefore, due to the lack
of a method to numerically estimate or computationally de-
rive distinct values for each state, we have opted to use a
constant noise level for both states.
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3.2 Fitting the forcing

Many attempts have been made to link the control parameters
of simple models to physical quantities, including e.g. global
ice volume, insolation, and CO2 concentration (Lohmann
and Ditlevsen, 2018; Vettoretti et al., 2022; Mitsui and Cru-
cifix, 2017). Adding to the complexity is the possibility that
a combination of these forcings could be at play simulta-
neously, making the task of testing each one through trial
and error impractical. Therefore, we take another approach
by fitting an idealised time-dependent forcing via α(t) and
γ (t). We choose to describe α and γ with one point ev-
ery ∼ 3.6 kyr and make a cubic spline interpolation between
these points. This allows us to resolve periodic variations in
the forcing with a period on the order of 14 kyr. We have cho-
sen this resolution to allow the forcing to have variations on
orbitally relevant timescales but not on the typical scale of
the DO events.

We use a Bayesian algorithm to determine α(t) and γ (t)
forcing that minimises the root-mean-square error (RMSE)
between the ensemble mean of E′(t) and P ′(t) of the model
simulations and the observed E(t) and P (t). Given that P ′(t)
and P (t) naturally range between 0 and 1, we normaliseE′(t)
andE(t) by dividing each by the maximum observed value of
E(t). This ensures that the two variables contribute equally
to the optimisation process when calculating the root-mean-
square error. The α(t) and γ (t) series contains 30 values that
are constrained by the analysis from Sect. 2.3.5. After the
Bayesian optimisation, a random Gaussian noise perturba-
tion with a standard deviation of 0.075 is added to the first
parameter of γ (t) 15 times, the best of these are found, and
the parameter is updated. This is then done sequentially in
time to all parameters, first for γ (t) and then for α(t), to find
even better optima than those found by the Bayesian opti-
miser. The results of this can be seen Fig. 7. The ensemble
resembles the observations as E(t) consistently falls within
E′(t). There are periods around 91 and 21 ka b2k where the
modelled P ′(t) fails to capture the observations. This is fur-
ther discussed below. The interpolated γ (t) and α(t) can be
found in panel (c) and show that variations with large am-
plitudes and frequencies are required to fit the P (t) and E(t)
of the observations. Panel (d) shows the member of the en-
semble of the simulations with the lowest RMSE between the
simulated and observed E(t) and P (t) values. Two precursor
interstadials can be seen at 107 and 97 ka b2k, with approx-
imate durations of 496 and 817 years followed by 323- and
371-year-long stadials that lead into interstadials with dura-
tions of approximately 7.7 and 5.1 kyr. This demonstrates the
model’s ability to produce a DO event sequence that some-
what resembles short precursor-style events followed by long
interstadials as observed in the ice-core record.

4 Discussion

One of the most profound features of the DO cycles is
their highly non-periodic nature with interstadial durations
and event spacing spanning several orders of magnitude. We
show that, by optimising the forcing and adding a novel pa-
rameter, our conceptual model of the AMOC-driven DO dy-
namics can mimic the ice-core record in terms of its non-
periodicity. The idealised forcing makes the model produce
summary statistics matching those of the observations. We do
not claim that this idealised forcing can be directly linked to
the likely natural forcings that were acting on the climate sys-
tem during the glacial, e.g. ice volume, CO2 concentration,
and insolation. It does, however, show that the model output
can span a realistic range of situations, with a forcing varying
by periods longer than 14 kyr. The glacial climate system was
likely forced by a complex combination of forcing factors
possibly combined in a non-linear and non-stationary way.
In addition, the level of internal variability, which plays a key
role in the model behaviour, may have varied between stadi-
als and interstadials and possibly also on longer time scales.
However, as outlined in Sect. 3.1, here we determine an ide-
alised forcing while keeping the noise parameter σ constant
with a value of 0.2. We suspect that other σ values, or a time-
varying σ (t) combined with different γ (t) and α(t), can pro-
duce summary statistics that match the observed characteris-
tics even better. Also, our fitting method does not take into
account the multi-dimensional first- and second-order corre-
lations between the control parameters that arise from both
the simple geometry of the nullclines and the strong corre-
lations between µ′E and µ′P shown in Sect. 3.1. We there-
fore simply show that it is possible to get a simple model to
fit the behaviour of the ice-core records to a greater extent
than previously shown in the literature. To further improve
the idealised forcing, we suggest starting with a reformula-
tion of the equations to decouple α and γ , maintaining the
nullcline’s proximity to the slow manifold’s critical range as
α varies. This would effectively transform the system so that
the origin would lie in the middle of the manifold close to
the unstable part. As α varies, the B nullcline would there-
fore remain in the relevant region without necessitating large
variations in γ .

Unforced DO events produced by current Earth system
models are highly periodic, and the periodicity of the DO
behaviour in the simple model configuration – and our sug-
gestion of how to break this periodicity in the model – is
therefore also relevant for the question of how more compre-
hensive models can be improved. The Earth system model of
Vettoretti et al. (2022) has been linked to the simple model
used here with α = 0 via its similar phase-space behaviour.
Our analysis shows that, to mimic the non-periodicity of the
ice-core record, the simple model needs α < 0. By looking
for a similar feedback mechanism to the feedback repre-
sented by the α term in the simple model, the comprehensive
models might be able to better replicate the non-periodic dy-
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Figure 7. Optimal time-dependent forcing α(t) and γ (t). The top two panels (a) and (b) show the events E(t) and stadial fraction P (t) found
in data and in an ensemble of simulations, with fixed α(t) and γ (t) but different realisations of the random noise. Highlighted in blue are
the E′(t) and P ′(t) of the realisation with the lowest RMSE compared with the observations. (c) Cubic spline interpolation between the 30
points in each time series for α(t) and γ (t). (d) Time series generated using the forcing in panel (c) giving the best fit of E′(t) and P ′(t) to
the observed values. The model time runs from the beginning to the end of the last glacial.

namics observed in the ice-core record. A first step could be
a thorough study of the parameters influencing the ocean cir-
culation in the southern Atlantic and SO.

A weakness of our optimisation scheme (which is based on
simply minimising the overall RMSE of the summary statis-
tics of the generated time series; see Fig. 7) is that it does
not regard each modelled time series as an actual time series
but as a series of individual data points without any temporal
structure. This approach might result in a low RMSE, sug-
gesting a close fit between the model’s ensemble predictions
and the summary statistics of the observed record. However,
it falls short of accurately recreating the actual observed data
series. The method does not favour high accuracy in a single
time series but a rather low variability across the collective
range of the ensemble; see best-fit lines in Fig. 7a and b. Our
examination of the current literature and theoretical models
has failed to provide a method for determining whether a spe-

cific time series originates from a population of time series.
Therefore, we have opted for the analytical approach used
here.

Previous simple models have not been able to produce
precursor events without large and rapid variations in con-
trol parameters. The α parameter’s effect on the B deriva-
tive and the possibility of having multiple fixed points allow
our model to produce DO events with duration and spacing
similar to those in the observational record, including the
precursor events. These modelled precursor events present
themselves in two different ways, which are described here.
In type I precursor events (seen in Fig. 8), the system goes
around the limit cycle akin to a regular DO event after which
the system’s stability changes and the system transitions into
a stable interstadial state. Type I events will have the same
amplitude as the other DO onsets, with a duration based on
the time it takes to run a full course around the limit cy-
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.

Figure 8. Illustration of type I precursor events. Initially, the system
oscillates around the limit cycle, possibly relatively fast, beginning
under stadial conditions (1). The system jumps to interstadial con-
ditions (1→2) and experiences a full interstadial period before tip-
ping (3→ 4) and reaching stadial conditions again. During the tip-
ping (3→4), the nullcline moves and an upper fixed point emerges,
making the interstadial stable. The system experiences a full stadial
before tipping (5) and transitioning to interstadial conditions for the
second time, where it remains for an extended time (6).

cle. The difference between models with α = 0 and α < 0
is that, for α = 0 and a B-nullcline location close to the up-
per slow manifold, the model can only produce events with
a very long interstadial duration, while a sloping nullcline
close to the point of non-differentiability (marked by situa-
tion (a) in Fig. 8) can produce short interstadials. The type II
events, on the other hand, have even shorter interstadial du-
ration, more similar to the ones seen in the ice-core records,

Figure 9. Illustration of type II precursor events. Initially, the sys-
tem experiences a noise-induced transition from stadial to inter-
stadial conditions (1→2). Subsequently, the system moves to a
stable fixed point (2→3) while the nullcline ascends, resulting in
the disappearance of the lower stable fixed point. Another noise-
induced leap propels the system across the slow manifold (3→4).
This crossing induces a brief period resembling stadial conditions
(4→5). Ultimately, the system moves back to interstadial condi-
tions (5→6) and stabilises in an interstadial state for a prolonged
period (6).

and are purely noise-induced. They come in different vari-
eties: type IIa (seen in Fig. 9) occurs when the system has two
stable fixed points close to the turns in the manifold and the
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system is in a stadial state. Here, a small amount of noise can
induce a DO onset, and, if the system quickly jumps again,
it barely crosses the slow manifold. If a bifurcation makes
the lower stable fixed point vanish during this process (or
turns it into an unstable fixed point), the system will return
to interstadial conditions, having exhibited very short stadial
and interstadial periods. A similar situation (type IIb) can oc-
cur if the system has a single stable fixed point in the upper
part of the manifold. This must be far enough away from
the non-differentiability to prohibit noise-induced horizontal
jumps off the slow manifold but still close enough to the un-
stable part of the manifold to allow vertical noise-induced
transitions. Afterwards, the system will tend toward the sta-
ble interstadial-state fixed point again. These jumps would
tend to have a lower amplitude than the corresponding situ-
ation with two stable fixed points, as smaller jumps can lead
the system to cross the unstable part of the manifold before
tending towards the upper stable fixed point again. Type IIb
is analogous to type IIa but starting in interstadial conditions
(3), as seen in Fig. 9.

When type I precursor events occur, the AABW model
proxy exhibits changes akin to the normal BPS response as
the system evolves around the limit cycle. This is not ob-
served in the Antarctic ice-core record. As the type II precur-
sor events are predominantly noise-induced vertical jumps,
with a small change in the AABW based on the location
of the upper stable fixed point, the only sizeable response is
seen in the AMOC, with little to no response in the AABW.
This appears more like the situation seen in the ice-core
records, but, due to the relatively slow and muted response of
the Antarctic climate to AMOC changes, this could also be a
consequence of the short duration of the precursor events.

Both kinds of type II precursor events can explain the re-
sponse seen in the ice-core record, as both are linked closely
to the transition into highly stable interstadial conditions.
Type IIa can only occur in the specific case of a noise-
induced jump happening while the system has two stable
fixed points but is transitioning to a stable interstadial state.
IIb can only happen while having a single stable fixed point
in the upper manifold that moves further up the manifold, im-
plying the system is moving towards longer interstadial peri-
ods. Conditions producing type IIa and IIb precursor events
require that an upper stable fixed point exists, with a small
vertical distance to the unstable part of the manifold, as they
require the system to cross it. Therefore, the scenarios will
only lead to precursors to long interstadials when the upper
fixed point moves upwards on the slow manifold. On the con-
trary, if the system is already in a long stable interstadial, the
nullcline will be too far from the unstable part of the mani-
fold for this to occur.

Neither type of event adequately reproduces the precursor
patterns observed in the ice-core record. Type I captures the
correct amplitude but fails to replicate both the short inter-
stadial and stadial periods that precede the longer intersta-
dial phase. Type II events, on the other hand, successfully

mimic the brief climatic intervals but do not fully reach the
cold level of stadial conditions reflected in the data. When
considering the type II precursor events, the primary distinc-
tions between ordinary DO events and these precursors lie in
the mechanisms that trigger them. A typical DO event can
occur due to “natural” oscillations (when the moving loca-
tion of the B-nullcline results in an unstable fixed point), or
it can arise from noise-induced transitions. These transitions
occur when there is a stable fixed point near the turns of the
manifold. The noise-induced transitions can be triggered by
fluctuations either in the 1b or in the B direction as long
as these fluctuations lead to crossing the bifurcation thresh-
old. However, from the previous analysis, precursor events
of type II solely result from noise-induced fluctuations in the
1b direction, meaning these are purely triggered by variabil-
ity in the AMOC.

5 Conclusions

Our results demonstrate why modelling the ice-core record
using conventional FitzHugh–Nagumo-style models has
been difficult. There is a strong second-order correlation be-
tween the µ′E and µ′P value pairs that can be produced by
the usual control parameters, γ and σ . The (µ′E,µ

′

P ) set at-
tainable by the simple model does not contain the observed
(E(t),P (t)) pairs, thereby making it impossible to match
the data without allowing unphysically extreme and rapid
changes in the control parameters over decadal to centennial
scales – faster than any known climate driver impacting the
AMOC. The most difficult aspect to represent for these mod-
els is the highly non-periodic nature of the DO events, es-
pecially the precursor events. Adding a slope does not break
the second-order correlation, but it changes the set of pos-
sible (E′(t),P ′(t)) pairs. This allows the model to capture
all observed E(t) and P (t) values. To explore the physical
processes associated with the novel α parameter, our focus
would be on improving the understanding of how variations
in temperature, salinity, and freshwater fluxes in the surface
layer of the Southern Ocean impact the formation of deep
water. Fitting an idealised time-variable forcing with a res-
olution of 3.5 kyr allows the model to almost reproduce the
statistical measures observed in the data. Additionally, it pro-
duces hitherto unmodelled precursor events, an example of
which can be seen in panel (d) of Fig. 7 at 95 ka.

Additionally, our analysis has demonstrated that the α pa-
rameter’s influence on the B derivative is crucial in produc-
ing precursor events that mimic the durations and spacings
observed in the ice-core records. In describing the modelled
precursor events, we differentiate between two types of pre-
cursor events. Type I events exhibit the full amplitude and
duration of typical DO onsets as determined by variations
in the location of the B nullcline and α. Type II precursor
events, on the other hand, are purely noise-induced and re-
veal the sensitivity of the system to stochastic disturbances,
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leading to short interstadial states similar to those recorded
in the ice-core record.

We observe that, unlike the normal DO events, which may
arise from either systemic oscillations or noise-induced shifts
near bifurcation points, the precursor events in our model are
exclusively triggered by noise-induced fluctuations in the1b
direction. This points to the unique role of AMOC variability
as the driving force behind these events.

Appendix A: List of abbreviations and their full
forms.

Abbreviation Full Form
AABW Antarctic Bottom Water
AMOC Atlantic Meridional Overturning Circulation
BPS Bipolar seesaw
CCSM4 Community Climate System Model 4
DO Dansgaard–Oeschger
NGRIP North Greenland Ice Core Project
MIS Marine Isotope Stage
SO Southern Ocean
NA North Atlantic
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https://github.com/JonathanMelcher/2023_paper_Melcher_
Halkjaer (last access: 5 November 2024) also hosted at
https://doi.org/10.5281/zenodo.12720710 (Melcher and
Halkjær, 2024a). Data to generate the figures are hosted
at https://sid.erda.dk/cgi-sid/ls.py?share_id=E1YJOoNQGY
(Melcher and Halkjær, 2024b).

Author contributions. SH and JOM contributed equally to this
work, which grew out of a thesis project conceived with GV, SOR,
and PD. SH and JOM produced the code necessary for the simu-
lations, conducted the simulations, created all visualisations for the
study, and took the lead in writing the article. PLL, PD, SOR, and
GV reviewed and edited the article. SOR supervised the project and
provided guidance on the writing process.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors would like to thank
Thea Quistgaard, Jacob Osman, and Johann Severin for giv-
ing ideas on more efficient programming implementations and

sparing on statistical methods and data visualisation. Furthermore,
we would like to thank Troels Petersen and Jason Koskinen for
their inputs on statistics.

AI use: For programming, GitHub Copilot was used extensively,
especially for plotting. ChatGPT-4/3.5 was used for understanding
error messages and giving ideas for debugging, and it was used for
proofreading and language improvements in early versions of the
text. The final text was thoroughly reviewed and edited by the au-
thors. Grammarly was used to help fix spelling mistakes and gram-
mar in an earlier version the article.

The implementation, modelling, data handling, and plotting were
made with libraries by Ansel et al. (2024), Kidger et al. (2021),
and Li et al. (2020) together with Harris et al. (2020), Hoyer and
Hamman (2017), and Hunter (2007).

Financial support. Sune Olander Rasmussen and Guido Vet-
toretti gratefully acknowledge support via the ChronoClimate
project, funded by the Carlsberg Foundation (grant no. CF17-0289).
Peter L. Langen gratefully acknowledges the financial contribu-
tions of the Aarhus University Interdisciplinary Centre for Climate
Change (iClimate).

Review statement. This paper was edited by Qiong Zhang and
reviewed by two anonymous referees.

References

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesen-
sky, M., Bao, B., Bell, P., Berard, D., Burovski, E., Chauhan,
G., Chourdia, A., Constable, W., Desmaison, A., DeVito, Z.,
Ellison, E., Feng, W., Gong, J., Gschwind, M., Hirsh, B.,
Huang, S., Kalambarkar, K., Kirsch, L., Lazos, M., Lezcano,
M., Liang, Y., Liang, J., Lu, Y., Luk, C. K., Maher, B., Pan,
Y., Puhrsch, C., Reso, M., Saroufim, M., Siraichi, M. Y., Suk,
H., Zhang, S., Suo, M., Tillet, P., Zhao, X., Wang, E., Zhou,
K., Zou, R., Wang, X., Mathews, A., Wen, W., Chanan, G.,
Wu, P., and Chintala, S.: PyTorch 2: Faster Machine Learn-
ing Through Dynamic Python Bytecode Transformation and
Graph Compilation, in: Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, ACM
[code], La Jolla CA USA, 929–947, ISBN 9798400703850,
https://doi.org/10.1145/3620665.3640366, 2024.

Bellomo, K., Meccia, V. L., D’Agostino, R., Fabiano, F., Larson,
S. M., von Hardenberg, J., and Corti, S.: Impacts of a weak-
ened AMOC on precipitation over the Euro-Atlantic region in
the EC-Earth3 climate model, Clim. Dynam., 61, 3397–3416,
https://doi.org/10.1007/s00382-023-06754-2, 2023.

Berglund, N. and Gentz, B.: Noise-Induced Phenomena in Slow-
Fast Dynamical Systems: A Sample-Paths Approach, Probability
and its Applications, Springer Science+Business Media, LLC,
London, ISBN 978-1-84996-547-7, 2010.

Broecker, W. S.: Paleocean circulation during the Last Deglacia-
tion: A bipolar seesaw?, Paleoceanography, 13, 119–121,
https://doi.org/10.1029/97PA03707, 1998.

Clim. Past, 21, 115–132, 2025 https://doi.org/10.5194/cp-21-115-2025

https://github.com/JonathanMelcher/2023_paper_Melcher_Halkjaer
https://github.com/JonathanMelcher/2023_paper_Melcher_Halkjaer
https://doi.org/10.5281/zenodo.12720710
https://sid.erda.dk/cgi-sid/ls.py?share_id=E1YJOoNQGY
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1007/s00382-023-06754-2
https://doi.org/10.1029/97PA03707


J. O. Melcher et al.: A novel conceptual model for Dansgaard–Oeschger event dynamics 131

Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D.,
Dahl-Jensen, D., Johnsen, S. J., Jouzel, J., Lemieux-Dudon, B.,
Loulergue, L., Leuenberger, M., Masson-Delmotte, V., Meyer,
H., Oerter, H., and Stenni, B.: Millennial and sub-millennial scale
climatic variations recorded in polar ice cores over the last glacial
period, Clim. Past, 6, 345–365, https://doi.org/10.5194/cp-6-
345-2010, 2010.

Cessi, P.: A Simple Box Model of Stochastically
Forced Thermohaline Flow, J. Phys. Oceanogr.,
24, 1911–1920, https://doi.org/10.1175/1520-
0485(1994)024<1911:ASBMOS>2.0.CO;2, 1994.

Cimatoribus, A. A., Drijfhout, S. S., and Dijkstra, H. A.:
Meridional overturning circulation: stability and ocean
feedbacks in a box model, Clim. Dynam., 42, 311–328,
https://doi.org/10.1007/s00382-012-1576-9, 2014.

Dijkstra, H. A.: Characterization of the multiple equilibria
regime in a global ocean model, Tellus A, 59, 695–705,
https://doi.org/10.1111/j.1600-0870.2007.00267.x, 2007.

Ditlevsen, P. D.: Observation of α-stable noise induced millennial
climate changes from an ice-core record, Geophys. Res. Lett.,
26, 1441–1444, https://doi.org/10.1029/1999GL900252, 1999.

Ditlevsen, P. D., Ditlevsen, S., and Andersen, K.: The
fast climate fluctuations during the stadial and in-
terstadial climate states, Ann. Glaciol., 35, 457–462,
https://doi.org/10.3189/172756402781816870, 2002.

Frankignoul, C., Gastineau, G., and Kwon, Y.-O.: The Influ-
ence of the AMOC Variability on the Atmosphere in CCSM3,
J. Climate, 26, 9774–9790, https://doi.org/10.1175/JCLI-D-12-
00862.1, 2013.

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke,
E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J.,
Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The
Community Climate System Model Version 4, J. Climate, 24,
4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Pi-
otrowski, A. M., and Keigwin, L. D.: North Atlantic ocean cir-
culation and abrupt climate change during the last glaciation,
Science, 353, 470–474, https://doi.org/10.1126/science.aaf5529,
2016.

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and
Datasets in Python, Journal of Open Research Software, 5, 10,
https://doi.org/10.5334/jors.148, 2017.

Hunter, J. D.: Matplotlib: A 2D Graphics Environ-
ment, Computing in Science & Engineering, 9, 90–95,
https://doi.org/10.1109/MCSE.2007.55, 2007.

Kidger, P., Foster, J., Li, X., and Lyons, T. J.: Neural SDEs as
Infinite-Dimensional GANs, in: Proceedings of the 38th Inter-
national Conference on Machine Learning, PMLR, 5453–5463,
https://doi.org/10.48550/arXiv.2102.03657, 2021.

Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais,
A., and Leuenberger, M.: Temperature reconstruction from 10 to

120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887–902,
https://doi.org/10.5194/cp-10-887-2014, 2014.

Klockmann, M., Mikolajewicz, U., and Marotzke, J.: Two AMOC
States in Response to Decreasing Greenhouse Gas Concentra-
tions in the Coupled Climate Model MPI-ESM, J. Climate, 31,
7969–7984, https://doi.org/10.1175/JCLI-D-17-0859.1, 2018.

Kowalczyk, P. and Glendinning, P.: Boundary-equilibrium bifurca-
tions in piecewise-smooth slow-fast systems, Chaos, 21, 023126,
https://doi.org/10.1063/1.3596708, 2011.

Kwasniok, F.: Analysis and modelling of glacial climate transi-
tions using simple dynamical systems, Philos. T. R. Soc. A, 371,
20110472, https://doi.org/10.1098/rsta.2011.0472, 2013.

Li, C. and Born, A.: Coupled atmosphere-ice-ocean dynamics in
Dansgaard-Oeschger events, Quaternary Sci. Rev., 203, 1–20,
https://doi.org/10.1016/j.quascirev.2018.10.031, 2019.

Li, X., Wong, T.-K. L., Chen, R. T. Q., and Duvenaud, D.: Scalable
Gradients for Stochastic Differential Equations, arXiv [preprint],
https://doi.org/10.48550/arXiv.2001.01328, 2020.

Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled
occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–
617, https://doi.org/10.5194/cp-14-609-2018, 2018.

Malmierca-Vallet, I., Sime, L. C., and the D–O community mem-
bers: Dansgaard–Oeschger events in climate models: review and
baseline Marine Isotope Stage 3 (MIS3) protocol, Clim. Past, 19,
915–942, https://doi.org/10.5194/cp-19-915-2023, 2023.

Melcher, J. and Halkjær, S.: Jonathan-
Melcher/2023_paper_Melcher_Halkjaer: Up-
dates pre submission (v1.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.12720710, 2024a.

Melcher, J. and Halkjær, S.: Simulated values for making figures,
sid data host [data set], https://sid.erda.dk/cgi-sid/ls.py?share_
id=E1YJOoNQGY (last access: 5 November 2024), 2024b.

Mitsui, T. and Crucifix, M.: A statistical modelling study of the
abrupt millennial-scale climate changes focusing on the in-
fluence of external forcings, Clim. Dynam., 48, 2729–2749,
https://doi.org/10.1007/s00382-016-3235-z, 2017.

Nadeau, L.-P. and Jansen, M. F.: Overturning Circulation Pathways
in a Two-Basin Ocean Model, J. Phys. Oceanogr., 50, 2105–
2122, https://doi.org/10.1175/JPO-D-20-0034.1, 2020.

Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S., and Ras-
mussen, S. O.: Beyond the bipolar seesaw: Toward a process un-
derstanding of interhemispheric coupling, Quaternary Sci. Rev.,
192, 27–46, https://doi.org/10.1016/j.quascirev.2018.05.005,
2018.

Pedro, J. B., Andersson, C., Vettoretti, G., Voelker, A. H. L.,
Waelbroeck, C., Dokken, T. M., Jensen, M. F., Rasmussen,
S. O., Sessford, E. G., Jochum, M., and Nisancioglu, K. H.:
Dansgaard-Oeschger and Heinrich event temperature anoma-
lies in the North Atlantic set by sea ice, frontal position
and thermocline structure, Quaternary Sci. Rev., 289, 107599,
https://doi.org/10.1016/j.quascirev.2022.107599, 2022.

Pratap, S., Markonis, Y., and R. Blöcher, J.: Understanding At-
lantic Meridional Overturning Circulation and linked variations
in precipitation and temperature distribution during the warmer
climate, EGU General Assembly 2023, Vienna, Austria, 24–
28 Apr 2023, EGU23-129, https://doi.org/10.5194/egusphere-
egu23-129, 2023.

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T.,
Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen,

https://doi.org/10.5194/cp-21-115-2025 Clim. Past, 21, 115–132, 2025

https://doi.org/10.5194/cp-6-345-2010
https://doi.org/10.5194/cp-6-345-2010
https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2
https://doi.org/10.1007/s00382-012-1576-9
https://doi.org/10.1111/j.1600-0870.2007.00267.x
https://doi.org/10.1029/1999GL900252
https://doi.org/10.3189/172756402781816870
https://doi.org/10.1175/JCLI-D-12-00862.1
https://doi.org/10.1175/JCLI-D-12-00862.1
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1126/science.aaf5529
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.48550/arXiv.2102.03657
https://doi.org/10.5194/cp-10-887-2014
https://doi.org/10.1175/JCLI-D-17-0859.1
https://doi.org/10.1063/1.3596708
https://doi.org/10.1098/rsta.2011.0472
https://doi.org/10.1016/j.quascirev.2018.10.031
https://doi.org/10.48550/arXiv.2001.01328
https://doi.org/10.5194/cp-14-609-2018
https://doi.org/10.5194/cp-19-915-2023
https://doi.org/10.5281/zenodo.12720710
https://sid.erda.dk/cgi-sid/ls.py?share_id=E1YJOoNQGY
https://sid.erda.dk/cgi-sid/ls.py?share_id=E1YJOoNQGY
https://doi.org/10.1007/s00382-016-3235-z
https://doi.org/10.1175/JPO-D-20-0034.1
https://doi.org/10.1016/j.quascirev.2018.05.005
https://doi.org/10.1016/j.quascirev.2022.107599
https://doi.org/10.5194/egusphere-egu23-129
https://doi.org/10.5194/egusphere-egu23-129


132 J. O. Melcher et al.: A novel conceptual model for Dansgaard–Oeschger event dynamics

D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M.,
Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seier-
stad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Win-
strup, M.: A stratigraphic framework for abrupt climatic changes
during the Last Glacial period based on three synchronized
Greenland ice-core records: refining and extending the INTI-
MATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.

Roberts, A. and Saha, R.: Relaxation oscillations in an ideal-
ized ocean circulation model, Clim. Dynam., 48, 2123–2134,
https://doi.org/10.1007/s00382-016-3195-3, 2017.

Schulz, M.: On the 1470-year pacing of Dansgaard-
Oeschger warm events, Paleoceanography, 17, 4-1–4-9,
https://doi.org/10.1029/2000PA000571, 2002.

Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic
model for the bipolar seesaw, Paleoceanography, 18, 1087,
https://doi.org/10.1029/2003PA000920, 2003.

Stommel, H.: Thermohaline Convection with Two Stable Regimes
of Flow, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-
3490.1961.tb00079.x, 1961.

Vettoretti, G. and Peltier: Thermohaline instability and the forma-
tion of glacial North Atlantic super polynyas at the onset of
Dansgaard-Oeschger warming events, Geophys. Res. Lett., 43,
5336–5344, https://doi.org/10.1002/2016GL068891, 2016.

Vettoretti, G. and Peltier: Fast Physics and Slow Physics in
the Nonlinear Dansgaard-Oeschger Relaxation Oscillation, J.
Climate, 31, 3423–3449, https://doi.org/10.1175/JCLI-D-17-
0559.1, 2018.

Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen,
S. O.: Atmospheric CO2 control of spontaneous millennial-
scale ice age climate oscillations, Nat. Geosci., 15, 300–306,
https://doi.org/10.1038/s41561-022-00920-7, 2022.

Clim. Past, 21, 115–132, 2025 https://doi.org/10.5194/cp-21-115-2025

https://doi.org/10.1016/j.quascirev.2014.09.007
https://doi.org/10.1007/s00382-016-3195-3
https://doi.org/10.1029/2000PA000571
https://doi.org/10.1029/2003PA000920
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1002/2016GL068891
https://doi.org/10.1175/JCLI-D-17-0559.1
https://doi.org/10.1175/JCLI-D-17-0559.1
https://doi.org/10.1038/s41561-022-00920-7

	Abstract
	Introduction
	Methods
	The statistical framework
	The physical conceptual model
	Detailed model description and stability analysis
	The buoyancy framework
	Model formalism
	Coupling of flow with AMOC strength and redimensionalisation
	The role of the  parameter
	Stability analysis


	Results
	Output space
	Fitting the forcing

	Discussion
	Conclusions
	Appendix A: List of abbreviations and their full forms.
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

