

Supplement of

Precise dating of deglacial Laptev Sea sediments via $^{14}\rm C$ and authigenic $^{10}\rm Be/^9\rm Be$ – assessing local $^{14}\rm C$ reservoir ages

Arnaud Nicolas et al.

Correspondence to: Arnaud Nicolas (arnaud.nicolas@awi.de) and Florian Adolphi (florian.adolphi@awi.de)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement of

Precise dating of deglacial Laptev Sea sediments via ¹⁴C and authigenic ¹⁰Be/⁹Be – assessing local ¹⁴C reservoir ages

Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, Florian Adolphi

1. Comparison of age-depth models for core PS2458-4

Table S1. Radiocarbon and modelled ages from foraminifera and bivalve samples from core PS2458-4

Depth	Depth ¹⁴ C ±		$(\Delta R = 345 \pm 60^{14} C \text{ years BP})$		$(\Delta R = -110 \pm 28$ ¹⁴ C years BP)		Modelled	Sample	Species	
(cm)	Age (¹⁴ C years)	(years)	Modelled Age (mean) (cal BP)	Modelled Age (cal BP, 2 0)	Modelled Age (mean) (cal BP)	Modelled Age (cal BP, 2σ)	Age (difference) (cal BP)	type		
667	12600	110	13745	14089 - 13360	14452	14870 - 14009	707	mb, mbf	Thyasira sp., Yoldiella sp.	
578	12270	65	13198	13428 - 12982	13687	13931 - 13470	489	mb	Thyasira sp., Yoldiella sp.	
530	11560	100	12551	12815 - 12244	12980	13199 - 12748	429	mb	Thyasira sp., Yoldiella sp.	
491*	10968	159	11753	12220 - 11280	12371	12692 - 12026	618	mbf	L. lobatula, C. neoteretis	
467	10600	75	11291	11630 - 11005	11973	12279 - 11683	682	mb	Thyasira sp., Yoldiella sp.	
399	10090	65	10551	10811 - 10276	11185	11397 - 10991	634	mb	Thyasira sp., Yoldiella sp.	
369	10020	70	10357	10606 - 10135	10966	11187 - 10746	609	mb	Thyasira sp., Yoldiella sp.	
331.5*	9596	122	9860	10183 - 9527	10456	10757 - 10172	596	mbf	I. helenae, I. norcrossi, C. neoteretis	
291.5*	9089	224	9305	9711 - 8917	9890	10230 - 9529	585	mbf	C. neoteretis	
252	8830	55	8880	9129 - 8615	9432	9594 - 9258	552	mb	Thyasira sp., Yoldiella sp.	
241.5*	8762	141	8762	9058 - 8448	9310	9527 - 9044	548	mbf	I. helenae, I. norcrossi, C. neoteretis	
141.5*	6447	158	6334	6696 - 5969	6838	7177 - 6489	504	mbf	C. neoteretis	
121.5*	6029	134	5985	6297 - 5638	6463	6790 - 6143	478	mbf	C. neoteretis	
0.5*	0		0					mbf	C. lobatulus	

Modelled ages were calculated using OxCal4.4 (Ramsey, 2009) with corresponding ΔR values. Marine ¹⁴C dates were calibrated with the Marine20 curve (Heaton et al., 2020). The depth values with asterisks represent the new benthic foraminifera samples measured for ¹⁴C dates. The depth values without asterisks show the ¹⁴C dates published from (Spielhagen et al., 2005). Libby half-life (5568 years) was used to calculate ¹⁴C age of foraminifera samples. The modelled age (difference) is calculated by subtracting the modelled age (mean) with ΔR = -110 ± 28 ¹⁴C years BP from the modelled age (mean) with ΔR = 345 ± 60 ¹⁴C years BP. Sample type: mb= mixed bivalves, mbf= mixed benthic foraminifera.

2. Concentrations of ⁹Be, ¹⁰Be and ¹⁰Be/⁹Be atomic ratios from core PS2458-4

Depth	Sample Mass	9Be- Carrier	Authigenic ⁹ Be	sigma	Be ¹⁰ /Be ⁹	sigma	Authigenic ¹⁰ Be	sigma	Authigenic ¹⁰ Be/ ⁹ Be	sigma
(cm)	(g)	(µg)	(at/g)	(%)	(at/at)	(%)	(at/g)	(%)	(at/at)	(%)
			[x10 ¹⁶]		[x10 ⁻¹²]		[x10 ⁸]		[x10 ⁻⁸]	
30	1.00	505	1.10	5.0	2.84	2.0	1.95	2.0	1.77	5.4
70	1.01	504	1.06	5.0	2.63	1.9	1.76	1.9	1.67	5.3
190	1.00	206	2.07	5.5	9.81	2.1	2.06	2.1	0.99	5.9
198	1.00	504	1.14	5.0	1.66	2.4	1.13	2.4	1.00	5.5
200	1.00	204	1.42	5.0	7.19	2.0	1.50	2.0	1.06	5.4
210	1.00	504	1.12	5.0	1.73	1.9	1.17	1.9	1.04	5.4
220	1.00	205	1.34	5.0	6.27	2.0	1.32	2.0	0.99	5.4
230	1.00	208	1.87	5.0	8.30	2.1	1.77	2.1	0.94	5.4
240	1.00	304	1.23	5.0	3.98	2.1	1.24	2.1	1.01	5.4
250	1.00	306	1.43	5.2	4.31	2.0	1.36	2.0	0.95	5.6
260	1.00	306	1.19	7.6	4.10	2.0	1.28	2.0	1.08	7.9
260	1.00	505	0.98	6.0	1.50	2.1	1.02	2.1	1.04	6.3
270	1.00	307	1.26	6.6	3.98	2.0	1.25	2.0	0.99	6.9
280	1.00	306	1.30	5.0	3.85	2.0	1.23	2.0	0.95	5.4
287	1.00	306	1.32	5.0	4.11	2.0	1.27	2.0	0.96	5.4
290	1.00	307	1.41	5.0	4.16	2.0	1.30	2.0	0.93	5.4
300	1.00	505	1.00	5.0	1.36	2.1	0.91	2.1	0.91	5.4
310	1.00	503	1.06	5.0	1.39	1.9	0.93	1.9	0.88	5.4
320	1.00	309	1.19	5.0	3.28	2.2	1.01	2.2	0.85	5.5
320	1.01	500	1.07	5.0	1.42	1.9	0.95	1.9	0.88	5.4
330	1.00	304	1.26	7.0	3.59	2.0	1.10	2.0	0.87	7.3
340	1.00	304	1.38	5.0	3.75	2.1	1.14	2.1	0.83	5.4
350	1.00	304	1.40	5.0	3.60	2.0	1.10	2.0	0.78	5.4
360	1.00	307	1.37	5.0	3.30	2.1	1.01	2.1	0.74	5.4
360	1.00	506	1.02	5.4	1.14	2.0	0.79	2.0	0.78	5.8
370	1.00	302	1.30	5.0	3.23	2.1	0.99	2.1	0.76	5.4
377	1.01	308	1.39	5.0	3.21	2.0	0.98	2.0	0.71	5.4
380	1.00	309	1.38	5.0	3.35	2.0	1.04	2.0	0.76	5.4
390	1.01	308	1.28	5.0	3.02	2.0	0.92	2.0	0.72	5.4
390	1.01	508	1.15	5.0	1.23	1.9	0.83	1.9	0.73	5.4
400	1.00	316	1.29	5.0	2.91	2.1	0.92	2.1	0.71	5.4
405	1.01	313	1.36	10.8	3.29	2.0	1.02	2.0	0.75	11.0
410	1.01	311	0.91	5.0	2.15	2.0	0.66	2.0	0.73	5.4
420	1.00	504	1.12	5.0	1.21	2.0	0.85	2.0	0.76	5.4
430	1.00	509	1.16	5.0	1.24	1.9	0.85	1.9	0.73	5.4
440	1.01	507	1.18	5.0	1.22	2.0	0.82	2.0	0.70	5.4
447	1.01	504	0.98	5.8	1.09	2.0	0.75	2.0	0.76	6.1
450	1.00	507	1.13	5.0	1.10	2.2	0.80	2.2	0.71	5.5
460	1.01	506	1.19	5.0	1.19	2.0	0.80	2.0	0.67	5.4

Table S2. Mass of ⁹Be-carrier and concentrations of ⁹Be, ¹⁰Be and ¹⁰Be/⁹Be from core PS2458-4

468	1.01	506	1.41	5.0	1.32	2.0	0.89	2.0	0.63	5.4
487	1.00	508	1.09	5.0	1.08	2.0	0.74	2.0	0.68	5.4
500	1.01	505	1.34	5.0	1.35	2.0	0.91	2.0	0.68	5.4
514	1.00	505	1.12	5.0	1.18	2.0	0.80	2.0	0.72	5.4
514	1.00	505	1.20	5.0	1.25	2.0	0.84	2.0	0.70	5.4
520	1.01	506	1.56	5.0	1.53	2.0	1.03	2.0	0.66	5.4
533	1.00	505	1.17	5.3	1.19	1.9	0.79	1.9	0.67	5.6
550	1.01	506	1.63	5.0	1.57	2.0	1.05	2.0	0.65	5.4
560	1.01	505	1.32	5.0	1.45	2.0	0.97	2.0	0.74	5.4
580	1.01	506	1.50	5.0	1.44	2.0	0.97	2.0	0.64	5.4
600	1.01	505	1.45	5.0	1.33	1.9	0.89	1.9	0.61	5.4
620	1.01	506	1.45	5.0	1.33	2.0	0.89	2.0	0.61	5.4
630	1.00	505	1.24	5.0	1.19	1.9	0.81	1.9	0.65	5.4
640	1.00	506	1.42	5.0	1.24	2.0	0.84	2.0	0.59	5.4
660	1.01	506	1.44	5.0	1.28	2.0	0.86	2.0	0.60	5.4
670	1.01	505	1.54	5.0	1.24	2.0	0.83	2.0	0.54	5.4
680	1.01	505	1.55	5.0	1.29	2.0	0.86	2.0	0.55	5.4
700	1.00	504	1.49	5.0	1.18	2.0	0.80	2.0	0.53	5.4
790	1.00	505	1.15	5.0	1.00	2.0	0.67	2.0	0.59	5.4

3. Replicate samples of ¹⁰Be/⁹Be ratios

Table S3. Coefficient of variation values of the r	eplicate samples of ¹⁰ Be/ ⁹ Be ratios
--	--

Depth (cm)	Authigenic ¹⁰ Be/ ⁹ Be (at/at) [x10 ⁻⁸]	sigma [%]	Authigenic ¹⁰ Be/ ⁹ Be Coefficient of Variation [%]
260	1.08	7.87	7 11
260	1.04	6.34	/.11
320	0.85	5.46	2.45
320	0.88	5.35	2.45
360	0.74	5.43	2 72
360	0.78	5.75	5.72
390	0.72	5.39	0.02
390	0.73	5.36	0.98
514	0.72	5.37	F 20
514	0.70	5.40	5.39

4. Updated age-depth model for core PS2458-4

Figure S1. Age-depth model for core PS2458-4 using ΔR value of 345 \pm 60 ^{14}C years BP

5. Plot of foraminifera ages with Marine20 and Intcal20

Figure S2. Foraminifera ages plotted with Marine 20 (Heaton et al., 2020) and Intcal20 (Reimer et al., 2020).

6. Marine20 MRA + Δ R vs. Inferred MRA from foraminifera and bivalves samples

Figure S3. Non-polar global-average MRA corresponding to Marine20 (Heaton et al., 2020) with an added ΔR value of 345 ¹⁴C years (blue) and the inferred MRA calculated by subtracting the atmospheric ¹⁴C age (derived from Intcal20) from the ¹⁴C age of foraminifera.

7. Modelled ice core ¹⁰Be time series with a tau value of 200 years

Figure S4. Ice core ¹⁰Be record with tau= 200 years (black) with PS2458-4 ¹⁰Be/⁹Be and PS2458-4 ¹⁰Be/⁹Be smoothed data (red) plotted based on logarithmic (upper), power (middle) and LOESS (lower) detrending techniques.

References:

- Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 - The Marine Radiocarbon Age Calibration Curve (0-55,000 cal BP), Radiocarbon, 62, https://doi.org/10.1017/RDC.2020.68, 2020.
- Ramsey, C. B.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, https://doi.org/10.1017/s0033822200033865, 2009.
- Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP), Radiocarbon, 62, https://doi.org/10.1017/RDC.2020.41, 2020.
- Spielhagen, R. F., Erlenkeuser, H., and Siegert, C.: History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation, Glob Planet Change, 48, 187–207, https://doi.org/10.1016/j.gloplacha.2004.12.013, 2005.