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Abstract. Classical palaeoenvironmental reconstruction
models often incorporate biological ideas and commonly as-
sume that the taxa comprising a fossil assemblage exhibit
unimodal response functions of the environmental variable of
interest. In contrast, machine-learning approaches do not rely
upon any biological assumptions but instead need training
with large data sets to extract some understanding of the rela-
tionships between biological assemblages and their environ-
ment. To explore the relative merits of these two approaches,
we have developed a two-layered machine-learning recon-
struction model MEMLM (Multi Ensemble Machine Learn-
ing Model). The first layer applies three different ensem-
ble machine-learning models (random forests, extra random
trees, and LightGBM), trained on the modern taxon assem-
blage and associated environmental data to make reconstruc-
tions based on the three different models, while the sec-
ond layer uses multiple linear regression to integrate these
three reconstructions into a consensus reconstruction. We
considered three versions of the model: (1) a standard ver-
sion of MEMLM, which uses only taxon abundance data;
(2) MEMLMe, which uses only dimensionally reduced as-
semblage information, using a natural language-processing
model (GloVe), to detect associations between taxa across
the training data set; and (3) MEMLMc which incorporates
both raw taxon abundance and dimensionally reduced sum-
mary (GloVe) data. We trained these MEMLM model vari-
ants with three high-quality diatom and pollen training sets
and compared their reconstruction performance with three
weighted-averaging (WA) approaches (WA-Cla for classi-

cal deshrinking, WA-Inv for inverse deshrinking, and WA-
PLS for partial least squares). In general, the MEMLM
approaches, even when trained on only dimensionally re-
duced assemblage data, performed substantially better than
the WA approaches in the larger training sets, as judged by
cross-validatory prediction error. When applied to fossil data,
MEMLM variants sometimes generated qualitatively differ-
ent palaeoenvironmental reconstructions from each other and
from reconstructions based on WA approaches. We applied
a statistical significance test to all the reconstructions. This
successfully identified each incidence for which the recon-
struction is not robust with respect to the model choice. We
found that machine-learning approaches could outperform
classical approaches but could sometimes fail badly in the re-
construction, despite showing high performance under cross-
validation, likely indicating problems when extrapolation oc-
curs. We found that the classical approaches are generally
more robust, although they could also generate reconstruc-
tions which have modest statistical significance and therefore
may be unreliable. Given these conclusions, we consider that
cross-validation is not a sufficient measure of transfer func-
tion performance, and we recommend that the results of sta-
tistical significance tests are provided alongside the down-
core reconstructions based on fossil assemblages.
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1 Introduction

The distribution and abundance of taxa are interrelated with
the environment (Ovaskainen et al., 2017). By considering
environmental variability across space instead of through
time, the palaeoenvironment can be reconstructed by ap-
plying modern taxon–environment relationships to the fossil
record (e.g. Battarbee et al., 2005; Cleator et al., 2020; Turner
et al., 2020).

With the development of palaeoecological research, large
training data sets for environmental reconstruction have been
compiled in recent years (e.g. Harrison, 2019; Bush et al.,
2021). Data assimilation has long been a focus of Earth sci-
ence and ecology, and the integration of larger data sets pro-
vides more comprehensive training information (e.g. Christin
et al., 2019; de la Houssaye et al., 2019; Bush et al., 2021).
For large data sets, machine-learning methods have strong
advantages and may be appropriate to extract the non-linear
relationships between taxon compositional information and
the environment and to integrate a variety of sources of data
(e.g. Helama et al., 2009; Aguirre-Gutierrez et al., 2021; Wei
et al., 2021b).

In recent years, machine learning has been applied to a
wide range of applications in palaeoecology (Hais et al.,
2015; Jordan et al., 2016). Wei et al. (2021b) reconstructed
palaeoclimate using five different machine-learning methods
based on digital leaf physiognomic data and integrated the
predictions by averaging. Hais et al. (2015) predicted the
Pleistocene biota distributions in palaeoclimate using ma-
chine learning. Huang et al. (2020) used one series of palaeo-
climate sequences to predict the climate in another period.
These studies show that machine learning has strong versa-
tility and effectiveness and suggest it could be more widely
applied.

Machine-learning approaches are not based upon any bi-
ological assumptions, which may weaken their performance
relative to the mathematically simpler classical approaches
that do. For instance, weighted-averaging (WA) approaches
are based upon the simple but realistic assumption that taxa
have a unimodal response to the environmental variable of
interest (ter Braak and Barendregt, 1986). The absence of
any such prior understanding is likely to place additional de-
mands on the minimum adequate size of a modern training
set. Moreover, it may weaken the ability of machine learn-
ing to operate under extrapolation, which is critically impor-
tant when applying any reconstruction approach to past taxon
assemblages that lack modern analogues. To address these
questions, we have developed the Multi Ensemble Machine
Learning Model (MEMLM) to apply in a systematic compar-
ison with classical WA reconstruction approaches.

The benefit of machine learning lies in its robust data min-
ing and information extraction capabilities, especially when
applied to large data sets. Data mining involves discover-
ing patterns, trends, and correlations hidden within extensive
data sets. Information extraction, on the other hand, focuses

on extracting insights from unstructured data, typically rely-
ing on natural language processing and encoding techniques
to understand and analyse relationships within unstructured
data. An associated problem is that when a sample size is
limited, machine learning is more likely to learn the noise
component and generate prediction errors due to over-fitting
(Yeom et al., 2018; Syam and Kaul, 2021). This suggests that
an ensemble-learning method, which integrates models with
potentially different biases, may improve the prediction per-
formance (Wei et al., 2021b). Ensemble learning was devel-
oped to address these issues (Zhou, 2012) and is the motiva-
tion for the ensemble-learning approach we present, namely
the Multi Ensemble Machine Learning Model (MEMLM).

We build MEMLM from three different machine-learning
ensemble models of random forests, extra random trees,
and LightGBM. We then combine these three models into
a single-consensus model which we treat as our “best”
machine-learning approach. Classical studies have integrated
different ecological approaches by calculating the mean of
their predictions (Norberg et al., 2019). An arithmetic mean
gives equal weight to each model, even though the mod-
els may have different advantages in different applications
(Schulte and Hinckley, 1985; Zhou, 2012). In MEMLM, we
weight each model according to its predictive power under
cross-validation.

Most classical models give equal weight to different taxa,
which may reduce their prediction potential and smooth the
reconstruction (e.g. Brooks and Birks, 2001; Heiri et al.,
2003; Battarbee et al., 2005; Wei et al., 2021a). In WA-PLS
(weighted-averaging partial least squares), tolerance down-
weighting can be applied to assign weights to each taxon
in reconstructing the environment that depends upon the
breadth of the taxon’s environmental niche (Liu et al., 2020).
Bayesian approaches such as BUMPER (Holden et al., 2017)
are built on classical assumptions and are highly constrained
by taxa with low environmental tolerances, especially when
characterised with high confidence. In machine-learning en-
semble models, each taxon has a different predicted contribu-
tion which is used to weight its contribution to the ensemble.

We developed three versions of MEMLM: the standard
version, which only considers raw taxon abundance data;
MEMLMe, which only uses dimensionally reduced assem-
blage data; and MEMLMc, which uses both. The motiva-
tion for the dimensional reduction is to explore whether
considering known associations between taxa can improve
the palaeoenvironmental reconstructions. For this, we use
the natural language-processing model GloVe (Pennington
et al., 2014), which calculates the relationships between co-
occurring words in the same sentence. GloVe is a form of
dimension reduction which assigns vectors (also called em-
bedding) to each word according to the word connection re-
lationships, so that each sentence can be represented as a
superposition of the word embedded within that sentence.
In taxon assemblages, there are analogous co-occurrence re-
lationships between taxa which we hypothesise convey in-
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formation on their ecological functioning. We therefore use
GloVe to generate embedding vectors by considering the fre-
quency of co-occurring taxon pairs across the training set.
We then concatenate the embedding vectors of each sample
to represent the assemblage.

In summary, there are several aspects to the question
of whether machine-learning algorithms can improve upon
classical reconstruction methods. Our strategy to address
these has three components.

1. There are many ensemble machine-learning algorithms,
and there is no reason to prefer any of these a priori. To
address this, we apply three widely used approaches of
random forests, extra random trees, and LightGBM. We
combine these into a single-consensus reconstruction to
simplify comparisons and provide the “best possible”
reconstruction.

2. Natural language-processing models are a widely used
dimensional reduction approaches in machine learning,
and we apply one such method, GloVe, to supplement
the ensemble machine learning trained on raw count
data. We explore whether this approach can usefully en-
code assemblage information to either (i) improve the
reconstructions based only on raw count data, which is
unlikely, given that dimension reduction does not pro-
vide additional information, but not ruling out the pos-
sibility that data transformation can assist the learning
or (ii) replace the raw count data, increasing numerical
efficiency and potentially providing information on eco-
logical functioning.

3. It is not sufficient that a reconstruction approach per-
forms well on a training set. It must also be statis-
tically robust when applied to independent core data,
which likely lies outside the high-dimensional space of
the training set. We cannot assume that machine learn-
ing and classical approaches perform equally well un-
der extrapolation. Therefore, we do not only apply con-
ventional tests of cross-validated RMSEP, regression
slope, and R2, derived solely from the training set, but
we also consider the statistical significance of core re-
constructions, applying the technique of Telford and
Birks (2011).

2 Materials and methods

We apply MEMLM to high-quality pollen and diatom train-
ing sets to generate downcore reconstructions. We calculate
training set cross-validation metrics, and we quantify the sta-
tistical significance and robustness of the core reconstruc-
tions. We compare these performance metrics with those
of classical WA approaches to evaluate whether, and under
what circumstances, machine-learning approaches might be
able to outperform classical WA-based reconstruction ap-
proaches.

2.1 MEMLM

MEMLM combines a series of modules (Fig. 1). In this
section, we introduce the functions of each module and
the data-processing approach. There are three model vari-
ants (MEMLM, MEMLMe, and MEMLMc), each of which
takes different inputs (Fig. 1), which is the only difference
in their construction. The scientific motivation for the three
variants is to explore (i) whether machine-learning decision
trees can extract all useful information (MEMLM) or, if
not, (ii) whether GloVe can improve this (MEMLMc) and
(iii) whether GloVe alone is sufficient to encode assemblage
data (MEMLMe). Each variant is built using the same three
machine-learning approaches (random forests, extra random
trees, and LightGBM), which are combined into a single-
consensus reconstruction model for each.

2.1.1 First layer

The input data comprise environmental data, together with
either the taxon abundance matrix, the assemblage embed-
ding matrix, or both matrices (see Sect. 2.2.3 for a descrip-
tion of the embedding algorithm).

We apply three ensemble machine-learning models to de-
rive the mapping between taxon composition information
and environmental factors.

1. Random forest (RF) is an ensemble machine-learning
model composed of multiple decision trees. The over-
all model framework is determined based on the predic-
tive power of each decision tree applied to the training
data set under bootstrapping. Individual decision trees
with better predictive performance are allocated higher
weights, and the “forest” integrates the weighted result
from each tree (Liaw and Wiener, 2002).

2. Extra random tree (ERT) is similar to RF, except that it
uses the entire data set rather than a bootstrapped subset
(Geurts et al., 2006).

3. LightGBM is based on the gradient-boosting decision
tree. This also integrates decision trees, but LightGBM
differs by applying “gradient boosting” to add new
trees, building each new model on the residuals of the
previous model to improve the prediction. It has the
ability to merge sparse data sets to increase computa-
tional efficiency (Friedman, 2011; Ke et al., 2017).

2.1.2 Second layer (consensus reconstruction)

It is possible to improve prediction performance by integrat-
ing the prediction of multiple models into a consensus re-
construction (Yeom et al., 2018; Syam and Kaul, 2021). Av-
eraging is widely used to integrate the output prediction of
multiple models. However, the integration weight of each
model is the same under averaging. MEMLM applies mul-
tiple linear regression to allocate an integration weight to
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Figure 1. Multi Ensemble Machine Learning Model (MEMLM) model framework. MEMLM has a modular building block architecture so
that components can be easily changed. Raw num and Col num are the number of rows and columns in the input matrix; dim is the number
of dimensions.

each model rather than attaching each model with the same
weight. The consensus reconstruction is derived as follows.
The three upstream models are applied to reconstruct the
training data set, and we then build a multiple linear regres-
sion model to fit the reconstructed values to the actual value
in the training set. To fit the multiple linear regression model,
we apply internal 5-fold cross-validation for each model sep-
arately and use the predictions from this cross-validation to
fit regression weights. We then treat the consensus model
as a single encapsulated model and perform 5-fold cross-
validation, each time using 80 % of the training set. The
total validation computation therefore comprises five inter-
nal cross-validations and one regression fit. This approach
is designed to avoid the risk of over-fitting, while reducing
the impact of low-performance models on the consensus re-
construction. In an exploratory analysis applied to the NIM-
BIOS data set, building models for each of 18 environment
attributes demonstrated that the multiple linear regression
approach reduced the root mean square error of prediction
(RMSEP) relative to the individual reconstructions by an av-
erage of 8 % (Table A1). A consensus reconstruction based
on the mean of the three ensemble approaches also improved
predictive power but reduced the cross-validated RMSEP er-
rors relative to the individual reconstructions by an average
of 5 %. We note that while the consensus approach reduces
RMSEP typically by 8 %, we show in Sect. 3.1 and Table 1
that such improvements are modest relative to the improve-
ments from the machine learning itself. Weights of the linear
models of MEMLM, MEMLMe, and MEMLMc based on
the three training sets are provided in Table A2.

2.1.3 Embedding

The GloVe algorithm (Pennington et al., 2014) is a very
widely used linguistic dimensional reduction approach. It
uses co-occurrences of words in phrases to characterise nu-
merically their meaning. In formal terms, GloVe is a row–
column bilinear model of the form ri+ck+Ri×Cj , fitted by
weighted least squares to the log-transformed co-occurrence
matrix derived from the primary data. GloVe is thereby very
close to unconstrained ordination models used in ecology,
except perhaps for the transformation to co-occurrences (ter
Braak, 1988; ter Braak and te Beest, 2022). GloVe is trained
on assemblages to map taxa onto vectors in feature space so
that the assemblages can be described as linear combinations
of the features.

It may be helpful to describe the motivation for this partic-
ular row–column model. In GloVe, words are represented as
vectors in a high-dimensional space, where each dimension
captures an aspect of meaning so that in this space the words
that have similar meanings are located near to each other. To
illustrate, in word vector space, we would expect the differ-
ence vectors queen−king and girl−boy to be similar, as
they both reflect only a change in gender, with other dimen-
sions of meaning (species, age, social status, etc.) remaining
constant. Embedding reduces the dimensionality of a vocab-
ulary from tens of thousands of words to hundreds of similar-
meaning dimensions, known as features.

In ecology, co-existence among taxa can reflect the char-
acteristics of the environment (Ovaskainen et al., 2017). We
hypothesise that taxa within an assemblage have relation-
ships that are analogous to words within a phrase so that
in the feature space of ecological “meaning”, the vecto-
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Table 1. Cross-validated root mean square error of prediction (RMSEP), regression slope, and R2 score for the three training sets. All
data are the means of five cross-validation exercises, which are also used to provide uncertainty estimates for RMSEP (error for RMSEP in
parentheses expressed as a percentage of RMSEP). MEMLM uses the abundance matrix. MEMLMe uses the assemblage embedding matrix.
MEMLMc uses the combined abundance and embedding matrices. WA-Cla is weighted averaging with a classical deshrinking regression,
and WA-Inv is weighted averaging with an inverse deshrinking regression (Birks et al., 1990). WA-PLS is the best model (see Sect. 2.2.3).
See Table A4 for other components. Bold highlights the model with the lowest RMSEP or highest R2 score. MAT is for mean annual
temperature. MTCO is for mean temperature of the coldest month.

MEMLM MEMLMe MEMLMc WA-Inv WA-Cla WA-PLS
(best)

RMSEP

SWAP pH 0.290 (3.7 %) 0.331 (3.1 %) 0.296 (2.8 %) 0.308 (1.1 %) 0.317 (1.0 %) 0.308 (1.1 %)
NIMBIOS MAT/ °C 2.254 (1.6 %) 2.221 (1.2 %) 2.094 (1.4 %) 3.176 (0.5 %) 3.587 (0.6 %) 2.923 (0.6 %)
SMPDSv1 MTCO/ °C 2.353 (0.5 %) 2.779 (0.9 %) 2.478 (0.6 %) 5.310 (0.1 %) 6.672 (0.1 %) 4.979 (0.2 %)

Slope

SWAP pH 0.984 1.002 0.999 1.029 0.899 1.030
NIMBIOS MAT/ °C 0.996 0.998 0.999 1.005 0.750 0.996
SMPDSv1 MTCO/ °C 0.997 0.997 0.997 1.000 0.629 0.996

R2 score

SWAP pH 0.858 0.815 0.852 0.840 0.831 0.840
NIMBIOS MAT/ °C 0.856 0.860 0.876 0.714 0.635 0.758
SMPDSv1 MTCO/ °C 0.926 0.897 0.918 0.624 0.407 0.670

rial representation of a taxon describes its ecological func-
tion. We apply GloVe to ecological assemblages. Instead of
analysing co-occurrences of words within phrases, we anal-
yse co-occurrences of taxa within assemblages. The objec-
tive is to extract ecological information by associating taxa
with their ecosystem functioning.

The GloVe algorithm is fully detailed in Pennington et
al. (2014), and here we introduce the underlying philosophy
and illustrate it in the context of ecological functioning. Con-
sider Pij , the conditional probability, that taxon j appears in
the same assemblage as taxon i:

Pij = P (j |i)=Xij/Xi, (1)

where Xij is the number of assemblages which contain both
taxa i and j , and Xi is the number of assemblages contain-
ing taxon i. This probability does not necessarily indicate
the strength of the relationship. Consider, for instance, that
a high value may simply reflect that taxon j is common,
and therefore it provides little information about the envi-
ronment.

To determine associative relationships, GloVe considers
the ratio Pik/Pjk where taxon k is some probe taxon used
to differentiate the ecological functioning of i and j . If taxon
k has a strong association with taxon i but not with taxon j ,
then Pik/Pjk � 1. However, if all three taxa are either com-
monly found together or have no relationship (i.e. low but
random co-occurrence) between each other, then Pik/Pjk ∼

1, indicating that taxon k provides very little information
to help distinguish the ecological functions of i and j . The

value of Pik/Pjk can therefore inform us about the direc-
tion of difference vector i− j . For application to MEMLMc,
the feature matrices are provided together with the raw taxon
count data to provide richer training data for the ensemble-
learning algorithms.

2.2 Assemblage data

For model training purposes, we use two large pollen data
sets, SMPDSv1 (Harrison, 2019) and NIMBIOS (Bush et
al., 2021), and the smaller diatom SWAP data set (Steven-
son et al., 1991). The SMPDSv1 (Harrison, 2019) and SWAP
(Stevenson et al., 1991) data sets record the percentage of
each taxon in each sample, whereas the NIMBIOS data set
uses integer counts. When constructing the co-occurrence
matrix, whether the data are integer counts or percentages,
we sum that data during co-occurrence. To demonstrate the
palaeoenvironment reconstructions of each model, we apply
(i) SWAP to reconstruct lake water pH from diatoms in a
core from the Round Loch of Glenhead (RLGH) (Allott et
al., 1992; Jones et al., 1989), (ii) SMPDSv1 to reconstruct
mean temperature of the coldest month (MTCO) from pollen
in the Villarquemado core (Harrison, 2020; Harrison et al.,
2019), and (iii) NIMBIOS to reconstruct the mean annual
temperature (MAT) from pollen in the Consuelo core (Ur-
rego et al., 2010) and Llaviucu (Steinitz-Kannan et al., 1983;
Colinvaux et al., 1988).
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2.2.1 Training data sets

The SWAP training set (Stevenson et al., 1991) was devel-
oped as part of an international scientific effort directed at
establishing and understanding the impacts of acid rain on
freshwaters. It includes relative abundance data for 277 di-
atom taxa from 167 modern samples with clear identification
criteria standards (Birks et al., 1990). We apply these data to
reconstruct lake water pH.

The NIMBIOS data set (Bush et al., 2021) includes sam-
ples from 636 neotropical locations with various habitat
types. There are 533 pollen types (some taxa can only be
identified to family level) ranging from soil samples to mud–
water interface samples from lakes. We use it to reconstruct
the mean annual temperature (MAT).

The SMPDSv1 data set was developed as an environmen-
tal calibration data set to provide training data for palaeocli-
mate reconstructions (Harrison, 2019). SMPDSv1 contains
the relative abundances of the 247 most important pollen taxa
in 6458 terrestrial samples from Europe, northern Africa, the
Middle East, and Eurasia and is compiled from multiple dif-
ferent published sources. We use it to reconstruct the mean
temperature of the coldest month (MTCO).

2.2.2 Core data sets

We apply the SWAP training set to the RLGH and RLGH3
core data sets. RLGH is a fossil diatom data set from the
Round Loch of Glenhead, Scotland, taken to explore anthro-
pogenic acidification (Allott et al., 1992). The data set in-
cludes the relative abundances of 41 diatom taxa in 20 sam-
ples which span the industrial era. RLGH3 was sampled to
explore natural acidification driven by weathering and soil
development during the Holocene (Jones et al., 1989). This
data set includes abundances for 225 diatom taxa in 101 sam-
ples.

We apply the NIMBIOS training set to the Consuelo and
Llaviucu core data sets. The core from Lake Consuelo, Bo-
livia, is an 8.8 m sediment sequence which records the long-
term evolution of a cloud forest in response to environmental
changes over the last 46 300 years (Urrego et al., 2010). Lake
Llaviucu is a temperature-sensitive lake in the Ecuadorian
Andes (Steinitz-Kannan et al., 1983; Colinvaux et al., 1988).
It lies behind a moraine in the system dated by Clapperton
(1987) within the last glaciation (35 kyr). At nearly 37° S lat-
itude, the lake is perched on the eastern face of the Cordillera
Occidental and has been lifted 2200 m since deglaciation. It
shows the possibility of the significant cooling of the tropi-
cal latitude rainforest near San Juan Bosco (Colinvaux et al.,
1997).

We apply the SMPDSv1 training set to the Villarquemado
core data set (Harrison et al., 2019; Wei et al., 2021a), a
pollen record from the western Mediterranean basin span-
ning the interval from the last part of Marine Isotope Stage
6 (MIS-6) to the late Holocene. The fossil pollen data were

assigned to the subset of pollen taxa recognised in the mod-
ern SMPDSv1 data set. There are 104 taxa represented in the
final taxon list based on the 361 core samples.

2.3 Model parameters, performance, and validation
metrics

2.3.1 Model parameters

We build the GloVe model using the PyTorch deep-learning
frame (Paszke et al., 2019), which provides a set of tools
and interfaces to implement, train, and deploy deep-learning
models. In embedding training, we set the number of epochs
(training loops) to 1000 and the number of embedding di-
mensions to 256. For the first layer, we build an ensemble of
1000 decision trees with parallel computing. MEMLM has
an external interface so that these parameters can be easily
changed for any third-party application.

We originally developed the GloVe analysis using the
pre-packaged software “glove-python” (https://github.com/
maciejkula/glove-python, last access: 17 October 2024) but
subsequently re-wrote the GloVe algorithm from first prin-
ciples. Cross-validation and downcore reconstructions from
the two algorithms were not materially different, and so
the statistical significance testing, which is highly expensive
computationally and requires 1 month of parallel computing,
was not repeated.

2.3.2 The prediction importance indicator for taxon
weighting

The MEMLM models are ensembles based on the results of
multiple decision trees. Each time a decision tree forks, the
algorithm explores different ways to integrate each taxon’s
abundance to increase predictive power. The algorithm works
through an internal cross-validation analysis to determine
whether each predictor reduces the prediction errors in each
decision tree and then summarises the results across all de-
cision trees. The approach ascribes an importance index to
each taxon which is normalised to a total of one across all
taxa and provides a measure of that taxon’s predictive power.
The 10 most important taxa for each of the three machine-
learning models are listed in Table A3. These are used in the
inference of taxon importance for environmental reconstruc-
tion.

2.3.3 Uncertainty quantification

Uncertainty quantification is provided for all machine-
learning reconstructions using IBM’s UQ360 package
(Ghosh et al., 2024). UQ360 utilises meta-models to estimate
the uncertainty bounds of the preserved models, providing
upper and lower limits on prediction errors. Specifically, it
employs additional decision tree models to capture and re-
estimate the prediction errors in the source models.

Clim. Past, 20, 2373–2398, 2024 https://doi.org/10.5194/cp-20-2373-2024
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2.3.4 Cross-validation

The predictive powers of the MEMLM variants are compared
with classical WA models (ter Braak and Barendregt, 1986)
and WA-PLS (ter Braak and Juggins, 1993). We take the RM-
SEP, regression slope, and R2 score as performance evalua-
tion indicators, using the scikit-learn package (Pedregosa et
al., 2011). We use 5-fold cross-validation. We perform each
cross-validation five times with random shuffling, allowing
us to provide mean estimates for all validation metrics along
with their standard deviations, which we provide for RM-
SEP. We note that spatial correlation and pseudo-replication
within a training set can lead to overstated cross-validated
performance statistics. These problems can be minimised by,
for instance, removing sites that are geographically close and
environmentally similar (Liu et al., 2020). However, we in-
clude all training-set sites in cross-validation, noting that our
objective is to compare the relative performances of different
approaches applied to the same training sets.

For the evaluation of the classical models, we use the rioja
package in R (Juggins, 2017) with default settings. As the
WA-PLS performance is sensitive to the number of compo-
nents, we accept a higher PLS component only if it exhibits
a 5 % improvement in RMSEP on the previous component
(Birks, 1998), and we present results for the higher compo-
nent.

2.3.5 Statistical significance of reconstructions

While cross-validation is a useful measure of predictive
power which implicitly guards against over-fitting (Yates
et al., 2023), it is likely to over-estimate predictive power
in practice as fossil assemblages may lie outside the high-
dimensional space of the modern training assemblages, for
instance, by lacking close modern analogues. Telford and
Birks (2011) developed an easily applied method for test-
ing the robustness of a reconstruction of a specific sequence.
The approach is to create an ensemble of transfer functions
using the same biological assemblage as the training set but
with randomised values of the environmental variable and
calculating the proportion of variance in the fossil data ex-
plained by a single reconstruction. If the reconstructed vari-
able is found to explain more of the variance than 95 % of the
random reconstructions, then the reconstruction is deemed to
be statistically significant. We apply this approach with the
palaeoSig package in R (Telford and Trachsel, 2015) to all
core reconstructions as an indicator of their robustness.

2.4 Computing hardware

In this study, the computing CPU is an Intel Core i7-
4710MQ; the model is supported by the scikit-learn pack-
age (Pedregosa et al., 2011), a powerful machine-learning
Python package, which incorporates the most widely used
machine-learning algorithms and related data-processing and
validation functions. MEMLM supports parallel computing;

with more CPU cores, the computing time will decrease sig-
nificantly. The computational time taken for 5-fold cross-
validation of the MEMLMc model is 138 s (SWAP), 406 s
(NIMBIOS), and 2834 s (SMPDsV1).

3 Results

3.1 Cross-validation

Table 1 compares the cross-validated RMSEP for the three
training sets and the six reconstruction approaches (see
Fig. A1 for regression visualisation of predicted values
against observed values). Regression slope and R2 score are
also provided. All validation data are the means of five sep-
arate cross-validation exercises, which are also used to pro-
vide a percentage error estimate for RMSEP (in parenthe-
ses). WA-PLS is found to be the best-performing classical
approach in all three training sets as evaluated by RMSEP,
but in each case it is outperformed by MEMLM, which re-
duces RMSEP by 6 % (SWAP; 167 training samples and 277
taxa), 22 % (NIMBIOS; 636 training samples and 533 taxa),
and 50 % (SMPDSv1; 6548 samples and 257 taxa). The ben-
efits of machine-learning approaches clearly increase with
increasing training set size.

MEMLMe is trained only on the embedded assemblage
data from GloVe. The approach does not work well for the
SWAP training set, but it significantly improves upon WA
approaches when using the larger NIMBIOS and SMPDVs1
training sets, suggesting that when the training set is large
enough, embedding is able to extract most of the predictive
power of the assemblages. However, MEMLMe is consis-
tently the worst-performing MEMLM variant (albeit gener-
ally better than the WA approaches), and so we do not use it
in the reconstructions.

We performed additional cross-validation tests on
MEMLMe to confirm that the embedding approach can
encode useful information, noting that with an embedding
dimension of 256 (comparable to the number of taxa in
the training sets) we are not applying the approach under
significant dimensional reduction. To explore this, we
applied a range of embedding dimensions to the MEMLMe
model of the richest data set, namely the 533 taxon in
the NIMBIOS data set (Fig. A2a). This sensitivity analysis
demonstrates that 30 dimensions are sufficient for MEMLMe
to outperform WA-PLS (RMSEP 2.914 °C) in this training
set. Figure A2b illustrates the learning power of increased
training, with RMSEP increasing by around 0.4 °C as the
number of training epochs is reduced from the 1000 we used
to 40.

MEMLMc uses both the taxon abundance and the em-
bedding matrices. These additional data do not significantly
affect the predictive performance relative to MEMLM un-
der cross-validation, suggesting that conventional ensemble
machine-learning approaches are sufficient to encode ade-
quately the assemblage information in training sets compris-
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ing a few hundred taxa. However, we retain this model for
downcore reconstructions to explore whether the addition of
embedding information can affect reconstructions in a way
that is not captured by RMSEP.

3.2 Environmental reconstructions and comparisons

For each core, we compare the reconstructions from the
models with lowest RMSEP, namely the MEMLM and
MEMLMc machine-learning approaches and the best clas-
sical approach (Sect. 2.3.3), which is WA-PLS, when using
one component for SWAP, and WA-PLS, when using two
components for NIMBIOS and SMPDSv1. In the Appendix,
Figs. A3 to A7 illustrate scatterplot matrices of all six recon-
struction approaches, and Figs. A8 to A12 compare recon-
structions for all six models through time. In each reconstruc-
tion, we additionally provide the statistical significance test
results (Telford and Birks, 2011). A reconstruction is consid-
ered significant when that reconstruction explains more of
the variance than 95 % of 1000 randomised reconstructions,
based on the same training assemblage but with randomised
environmental values.

3.2.1 pH reconstructions from RLGH using the SWAP
training set

MEMLM and WA-PLS1 show similar trends of acidifica-
tion, with pH declining from around 5.2 at about 1870 to
around 4.8 at about 1980 (see Fig. 2). MEMLMc shows a
similar trend but with reduced acidification relative to the
other approaches. All three reconstructions are statistically
significant, and with high explained variance, though WA-
PLS1 explains more variance (58 %) than MEMLM (46 %)
or MEMLMc (52 %.). The variance explained by the first
principal component of the fossil core assemblages is 62 %,
indicating that the reconstructed pH explains most of the
dominant part of the variance in the fossil diatom assem-
blages.

3.2.2 pH reconstruction from RLGH3 using the SWAP
training set

All three methods provide reconstructions that show simi-
lar trends of lake water pH, with gradual acidification in the
early record from around 5.6 to 5.2 pH, attributed to the de-
velopment of organic soils (Jones et al., 1989) and then a
rapid post-industrial acidification from around 5.2. to 4.8 pH.
The three reconstructions also exhibit similar variability, pre-
viously attributed to loss of tree cover and peat erosion (Jones
et al., 1989), further suggesting reconstruction robustness.
Moreover, all three reconstructions are statistically signifi-
cant, explaining between 23 % and 27 % of the core variance,
which compares to the 32 % variance explained by the first
principal component of the fossil assemblages (Fig. 3).

3.2.3 MAT reconstruction from Consuelo using the
NIMBIOS training set

All three methods display similar trends, most notably re-
constructing about a 4 °C warming from the Last Glacial
Maximum at 21 ka to the start of the Holocene at 11 ka. The
MEMLM approaches are more variable in general, although
variability is largely synchronous between the three recon-
struction approaches and may be associated with Dansgaard–
Oeschger (D/O) events (Bond et al., 1993; Blunier and
Brook, 2001). At 8 ka, WA-PLS2 displays a 10 °C cooling
excursion which is not apparent in the MEMLM reconstruc-
tions. Although a cooling event at 8.2 ka is well known,
the cooling reconstructed by WA-PLS2 seems excessive. All
three methods are statistically significant and explain the core
assemblage variance of between 27 % and 29 %, compared to
32 % explained by the first principal component (Fig. 4).

3.2.4 MAT reconstruction from Llaviucu using the
NIMBIOS training set

All three methods display similar overall trends with mid-
Holocene warming, but each displays different centennial
variability, which for the MEMLMc reconstruction is clearly
unrealistic for the Holocene, with temperature excursions as
large as 8 °C. Neither of the MEMLM approaches is statisti-
cally significant at the 95 % confidence level, so neither can
be accepted as robust. The WA-PLS2 reconstruction is statis-
tically significant, although it only explains 13 % of the core
assemblage variance compared to the 28 % explained by the
first principal component of the core data (Fig. 5).

3.2.5 MTCO reconstruction from Villarquemado using
the SMPDSv1 training set

All three approaches generate noisy reconstructions with
high variability that is incoherent. It is difficult to discern any
meaningful trends. None of the reconstructions, including
WA-PLS2, is statistically significant. The low (17 %) vari-
ance associated with the first principal component suggests
that the fossil assemblages are responding to multiple en-
vironmental factors with responses that are too complex to
be captured by a single explanatory environmental variable
(Fig. 6).

4 Discussion and conclusions

We have developed three variants of a multi-model ensem-
ble machine-learning algorithm, MEMLM. These each train
three separate ensemble machine-learning algorithms (ran-
dom forests, extremely random trees, and LightGBM) and
combine them into a consensus reconstruction using multi-
ple regression. The three approaches only differ in their input
data. The simpler MEMLM takes only taxon abundance data.
MEMLMe, built only upon the GloVe embedding matrix,
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Figure 2. (a) pH reconstruction for the RLGH core. (b, c, d) Statistical significance testing of MEMLM, MEMLMc, and WA-PLS1 recon-
structions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (Sect. 2.3.3). These compare with cross-validated RMSEP
errors of 0.292 (MEMLM), 0.294 (MEMLMc), and 0.308 (WA-PLS1) for the pH units.

Figure 3. (a) pH reconstruction for the RLGH3 core. (b, c, d) Statistical significance testing of MEMLM, MEMLMc, and WA-PLS1
reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (Sect. 2.3.3). These compare with cross-validated
RMSEP errors of 0.292 (MEMLM), 0.294 (MEMLMc), and 0.308 (WA-PLS1) for the pH units.

does not perform as well as MEMLM. However, MEMLMe
was found to be a useful reconstruction model, at least when
applied to the larger NIMBIOS and SMPDSv1 training sets,
and the embedding usefully summarises taxon assemblages
with fewer than 50 dimensions. Our motivation for retaining
256 embedding dimensions in MEMLMe is that the focus
of GloVe is on extracting semantic meaning. In linguistics,
typically 200 dimensions of meaning are needed to encode
fully a language. While we have shown that far fewer di-

mensions are sufficient to build a good reconstruction model,
demonstrating the explanatory power of the most important
embedding dimensions, there are progressive improvements
in performance as dimensional size increases (Fig. A2). This
demonstrates that less important dimensions can provide use-
ful explanatory information and potentially additional under-
standing and interpretability.

The additional complexity of MEMLMc, which uses both
taxon count and embedding, did not significantly affect the
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Figure 4. (a) MAT reconstruction for the Consuelo core. (b, c, d) Statistical significance testing of MEMLM, MEMLMc, and WA-PLS2
reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (Sect. 2.3.3). These compare with cross-validated
RMSEP errors of 2.254 (MEMLM), 2.094 (MEMLMc), and 4.979 (WA-PLS2) °C.

Figure 5. (a) MAT reconstruction for the Llaviucu core. (b, c, d) Statistical significance testing of MEMLM, MEMLMc, and WA-PLS2
reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (Sect. 2.3.3). These compare with cross-validated
RMSEP errors of 2.254 (MEMLM), 2.094 (MEMLMc), and 4.979 (WA-PLS2) °C.

predictive performance relative to MEMLM under cross-
validation, suggesting that conventional ensemble machine-
learning approaches are sufficient to encode adequately eco-
logical information in the relatively small data sets used in
these palaeoclimate reconstructions. We note that the real
power of embedding (dimension reduction) approaches is
likely to be in their applications to much larger data sets

when ecological relationships between 10 000 s of taxa and
their environment are being considered.

We have focussed only on a comparison with weighted-
averaging approaches, which are the most widely used re-
construction technique and simple to apply, well understood,
and straightforward to interpret. The MEMLM approaches
are found to perform better than classical weighted-averaging
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Figure 6. (a) MTCO reconstruction for the Villarquemado core. (b, c, d) Statistical significance testing of MEMLM, MEMLMc, and
WA-PLS2 reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (Sect. 2.3.3). These compare with cross-
validated RMSEP errors of 2.353 (MEMLM), 2.434 (MEMLMc), and 2.923 (WA-PLS2) °C.

approaches under cross-validation. In the case of the smallest
SWAP data set, the advantages are modest, but in the largest
SMPDSv1 data set, RMSEP errors are reduced by a factor
of 2 relative to the best-performing classical WA approach.
These improvements in performance clearly validate the po-
tential benefits of strong data-mining abilities of machine
learning, suggesting these techniques have the potential to
improve upon classical reconstruction approaches.

When applied to core reconstructions, MEMLM ap-
proaches generate considerably more variability than the
WA-PLS reconstructions. While some elements of this ad-
ditional variability might be realistic, especially considering
that WA-PLS approaches are known to bias reconstructions
towards the centre of their training data (Liu et al., 2020), the
variability is not always coherent between different recon-
struction approaches, and the magnitude of MEMLM vari-
ability is in some cases implausibly high, for example, by
suggesting Holocene variability of up to 8 °C in the Ecuado-
rian Llaviucu core.

We performed significance testing on all core reconstruc-
tions and found that 5 of the 15 reconstructions are not sta-
tistically significant and therefore are not considered robust.
Both MEMLM and MEMLMc approaches fail on the Llav-
iucu core, confirming our suspicion that the unrealistic vari-
ability is an artefact. All three approaches fail the statistical
robustness test at Villarquemado, which is sensitive to mul-
tiple environmental factors and has responses which appear
too complex to be captured by a single explanatory variable.

The shapes of the histograms of the proportion of vari-
ance explained in the RLGH and RLGH3 pH reconstruc-
tions based on diatom data and randomised modern SWAP
training pH values in the significance testing are very differ-
ent for WA-PLS1 and for MEMLM and MEMLMc (Figs. 2,
3). Such differences contrast with the more consistent his-
togram shape for the significance test results for the other
sequences where the reconstructions are based on pollen
data (Figs. 4–6). Machine-learning approaches generally fail
badly when trained with randomised environmental data, as
the histograms are left-skewed and explain little downcore
variance (Figs. 2–6). In contrast, the WA-PLS1 pH recon-
structions (Figs. 2, 3) based on diatom data explain a sub-
stantial amount of the downcore variance – even when the
modern pH data are randomised (Figs. 2, 3). This may re-
sult from the short and dominant environmental gradient in
the SWAP diatom–pH training data and the high inherent
correlation and dominance of a relatively few abundant taxa
within the modern and fossil diatom data. The pollen training
data, however, used for the MAT or MTCO reconstructions
of the other sequences (Figs. 4–6) are large (638 and 6458
samples) and hence cover longer and more complex environ-
mental gradients than the pH training data (167 samples). It
is also likely that the pollen data, both modern and fossil, are
influenced by multiple environmental factors and not only
MAT or MTCO.

In summary, while MEMLM can generate useful recon-
structions, it should always be used in conjunction with sta-
tistical significance testing to confirm that the reconstruc-
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tions are robust and potentially realistic and reliable. The ad-
ditional complexities of incorporating embedding informa-
tion in MEMLMc does not reduce RMSEP or spurious vari-
ability and neither does it improve statistical significance.
However, MEMLMe demonstrates that embedding is use-
ful, as it can summarise ecological assemblages using sig-
nificantly fewer dimensions. Its benefits may be clearer in
applications with much larger data sets and in applications
beyond palaeoenvironmental reconstructions. The poor per-
formance of MEMLM in some reconstructions may be due
to extrapolation due to no-analogue fossil assemblages. All
models are applied under the same extrapolation. The WA-
PLS2 reconstructions exhibit higher statistical significance
than MEMLM, although WA-PLS2 also fails to generate ro-
bust reconstructions at Villarquemado. We infer that the use
of simpler WA models, which include a major biological as-
sumption (unimodal environmental response) can be more
powerful than the use of brute-force learning, despite reduc-
tions in RMSEP. We reiterate our recommendation that all
reconstructions using any approach should be accompanied
with statistical significance testing. Seemingly useful mod-
els may fail when applied under extrapolation or when the
assemblage variance is only weakly dependent on the recon-
structed environmental variable.
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Appendix A

Figure A1. Scatterplots of observed values against predicted values in three training sets. MEMLM uses the abundance matrix. MEMLMe
uses the assemblage embedding matrix. MEMLMc uses the abundance and the assemblage embedding matrices. A component number of
WA-PLS was selected for each training set as the lowest component that showed a 5 % improvement over the previous component (Table A4).
WA-Cla is weighted averaging with a classical deshrinking regression, and WA-Inv is weighted averaging with an inverse deshrinking
regression (Birks et al., 1990). The number of WA-PLS components is selected based on the method described in Sect. 2.3.3 (see Table S3
for the full results).
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Figure A2. MEMLMe prediction performance under different GloVe hyperparameter settings. (a) Fixed epoch= 1000 (set embedding
dimensions from 8 to 256). (b) Fixed embedding dimensions= 256 (set epoch from 40 to 1000). The model is developed from the NIMBIOS
set and trained on mean annual temperature (MAT).
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Figure A3. Inter-regression of pH reconstructions for six different models for the Round Loch of Glenhead (RLGH) core.
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Figure A4. Inter-regression of pH reconstructions for six different models for the Round Loch of Glenhead 3 (RLGH3) core.
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Figure A5. Inter-regression of mean annual temperature (MAT) reconstructions for six different models for the Consuelo core.
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Figure A6. Inter-regression of mean annual temperature (MAT) reconstructions for six different models for the Llaviucu core.
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Figure A7. Inter-regression of mean annual temperature (MAT) reconstructions for six different models for the Villarquemado core.
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Figure A8. pH reconstructions based on six models for the Round Loch of Glenhead (RLGH) core.

Figure A9. pH reconstruction based on six models for the Round Loch of Glenhead 3 (RLGH3) core.

Figure A10. Mean annual temperature (MAT) reconstruction based on six models for the Consuelo core.
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Figure A11. Mean annual temperature (MAT) reconstruction based on six models for the Llaviucu core.

Figure A12. Mean temperature of the coldest month (MTCO) based on six models for the Villarquemado core.
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Table A1. Root mean square error of prediction (RMSEP) and R2 values (based on cross-validation) of the 18 environment elements
prediction of MEMLMc in the NIMBIOS data set. Mean is average of the prediction of the three downstream models. RF presents the
random forest values; ERT presents the extra random tree results. Bold highlights the model with the best prediction performance.

Elements RF ERT LightGBM MEMLMc Mean

RMSEP Precipitation of the warmest quarter 138.17 131.513 133.124 125.531 129.042
Isothermality 3.065 2.793 3.09 2.778 2.838

Annual precipitation 483.099 442.623 479.217 430.291 445.813
Mean temperature, coldest quarter 23.162 21.228 23.061 21.023 21.387

Maximum temperature, warmest month 25.104 22.343 24.01 21.181 22.421
Minimum temperature, coldest month 26.66 24.15 26.226 23.734 24.369

Mean temperature, warmest quarter 22.898 21.435 22.655 20.727 21.316
Precipitation of the coldest quarter 157.458 135.741 151.69 129.674 139.075

Precipitation of the driest month 28.907 25.898 27.892 23.898 25.723
Temperature seasonality 227.1 203.536 221.23 203.281 207.248

Precipitation of the wettest month 64.759 60.669 64.387 58.822 60.572
Temperature annual range 22.179 20.917 22.101 20.524 20.83

Mean temperature, wettest quarter 18.312 16.515 18.722 16.094 16.865
Precipitation of the wettest quarter 171.418 161.823 173.802 157.769 162.204

Precipitation seasonality 11.581 10.858 11.506 10.635 10.852
Mean diurnal temperature range 13.139 11.684 12.968 11.258 11.855
Mean temperature, driest quarter 23.754 22.225 23.556 21.989 22.198
Precipitation of the driest quarter 96.455 85.831 92.351 79.657 85.539

R2 score Precipitation of the warmest quarter 0.656 0.688 0.68 0.716 0.7
Isothermality 0.862 0.886 0.86 0.887 0.882

Annual precipitation 0.81 0.841 0.813 0.85 0.838
Mean temperature, coldest quarter 0.862 0.884 0.863 0.886 0.882

Maximum temperature, warmest month 0.771 0.819 0.79 0.837 0.817
Minimum temperature, coldest month 0.887 0.907 0.89 0.91 0.905

Mean temperature, warmest quarter 0.85 0.868 0.853 0.877 0.87
Precipitation of the coldest quarter 0.845 0.885 0.856 0.895 0.879

Precipitation of the driest month 0.821 0.857 0.834 0.878 0.859
Temperature seasonality 0.835 0.868 0.844 0.868 0.863

Precipitation of the wettest month 0.752 0.782 0.755 0.795 0.783
Temperature annual range 0.848 0.865 0.85 0.87 0.866

Mean temperature, wettest quarter 0.822 0.855 0.814 0.862 0.849
Precipitation of the wettest quarter 0.761 0.787 0.755 0.798 0.786

Precipitation seasonality 0.773 0.8 0.776 0.809 0.801
Mean diurnal temperature range 0.803 0.845 0.809 0.856 0.84
Mean temperature, driest quarter 0.87 0.887 0.873 0.889 0.887
Precipitation of the driest quarter 0.806 0.846 0.822 0.868 0.847

Table A2. Weights of the linear models in MEMLM, MEMLMe, and MEMLMc for the three training sets.

MEMLM MEMLMe MEMLMc

Weights RF ERT LightGBM RF ERT LightGBM RF ERT LightGBM

SWAP −0.238 1.118 0.220 −0.597 1.001 0.619 −0.953 1.062 0.901
NIMBIOS −0.263 0.934 0.393 −0.793 1.474 0.409 −0.713 1.263 0.533
SMPDSv1 −0.106 0.721 0.431 −0.705 1.180 0.560 −0.340 0.598 0.773

RF – random forest; ERT – extra random tree; LightGBM – a gradient-boosting decision tree.
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Table A3. The weights of the 10 most important taxa for the environmental reconstructions in the SWAP, NIMBIOS, and SMPDSv1 training
sets sorted by the random forest results. Diatom taxon codes follow Stevenson et al. (1991).

Taxon RF ERT LightGBM

SWAP EU047A 0.505 0.139 0.033
AC013A 0.072 0.182 0.028
EU048A 0.061 0.064 0.02
TA003A 0.048 0.043 0.017
PE002A 0.031 0.013 0.027
CM048A 0.023 0.006 0.029
BR001A 0.022 0.012 0.032
TA004A 0.018 0.02 0.017
NA140A 0.012 0.007 0.01
CM017A 0.011 0.01 0.019

NIMBIOS Alnus 0.263 0.096 0.045
Poaceae 0.146 0.161 0.124
Plantago 0.118 0.039 0.006
Moraceae Urticales 0.105 0.02 0.068
Bursera 0.049 0.016 0.008
Myrtaceae 0.024 0.007 0.016
Ericaceae 0.022 0.042 0.021
Hedyosmum 0.015 0.03 0.035
Asteraceae 0.013 0.083 0.056
Cyperaceae 0.013 0.02 0.068

SMPDSv1 Picea 0.339 0.038 0.029
Fagus 0.169 0.016 0.012
Betula chamaebetula 0.103 0.22 0.008
Betula 0.042 0.077 0.041
Alnus alnobetula 0.039 0.017 0.007
Larix 0.03 0.03 0.009
Quercus deciduous 0.028 0.017 0.03
Olea 0.027 0.072 0.013
Oxyria rumex 0.017 0.009 0.019
Poaceae 0.014 0.0144 0.028

RF – random forest; ERT – extra random tree; LightGBM – a gradient-boosting decision
tree.

Table A4. RMSEP (based on cross-validation) of the first five components (Comp) in the weighted-averaging partial least squares (WA-
PLS) of the three training sets. Bold highlights the best component, noting that we accept a higher PLS component only if it exhibits a 5 %
improvement on the previous component (Birks, 1998).

Data set Feature WA-PLS

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5

SWAP pH 0.308 0.299 0.313 0.327 0.349
NIMBIOS MAT 5.310 4.979 4.862 4.840 4.863
SMPDSv1 MTCO 3.207 2.923 3.022 3.192 3.365

Code availability. All codes are available in GitHub. WA and
WA-PLS use the rioja package (https://github.com/nsj3/rioja, Jug-
gins, 2017). Telford and Birks (2011) statistical significance
uses randomTF in the palaeoSig package (https://github.com/
richardjtelford/palaeoSig, Telford and Trachsel, 2015). MEMLM is
available at https://doi.org/10.5281/zenodo.13138593 (Sun, 2024).

Data availability. All data sets can be found in the cited data sets
and articles in the references, except the RLGH3 and Llaviucu core
data. The latter were made available to us by Mark Bush.
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