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Abstract. The surge residual is the non-tidal component of
coastal sea level. It responds to the atmospheric circulation,
including the direct effect of atmospheric pressure on the
sea surface. Tide gauges have been used to measure the sea
level in coastal cities for centuries, with many records dat-
ing back to the 19th century or even earlier to times when
direct pressure observations were scarce. Therefore, these
old tide gauge records may be used as indirect observa-
tions of sub-seasonal atmospheric variability that are com-
plementary to other sensors such as barometers. To inves-
tigate this claim, the present work relies on the tide gauge
record of Brest, western France, and on the members of
NOAA’s 20th Century Reanalysis (20CRv3), which only as-
similates surface pressure observations and uses a numerical
weather prediction model. Using simple statistical relation-
ships between surge residuals and local atmospheric pres-
sure, we show that the tide gauge record can help to reveal
part of the 19th century atmospheric variability that was un-
caught by the pressure-observations-based reanalysis, advo-
cating for the use of early tide gauge records to study past
storms. In particular, weighting the 80 reanalysis members
based on tide gauge observations indicates that a large num-
ber of members seem unlikely, which induces corrections of
several tens of hectopascals in the Bay of Biscay. Compar-
isons with independent pressure observations shed light on
the strengths and limitations of the methodology, particularly
for the case of wind-driven surge residuals. This calls for the
future use of a mixed methodology between data-driven tools
and physics-based modeling. Our methodology could be ap-

plied to use other types of independent observations (not just
tide gauges) as a means of weighting reanalysis ensemble
members.

1 Introduction

Understanding the atmospheric system requires an under-
standing of all scales of variation from daily to centennial.
This cannot be done unless long observation records allow
the disentanglement of these scales. The 20th Century Re-
analysis Project, hereafter “20CR” (Compo et al., 2011),
which is now in its third version, hereafter “20CRv3” (Slivin-
ski et al., 2019), is the only atmospheric reanalysis that runs
through the 19th century. It relies on the International Surface
Pressure Databank (Compo et al., 2019), the largest histori-
cal global collection of surface pressure observations, and the
NCEP Global Forecast System (GFS) coupled atmosphere–
land model.

Because it is the longest atmospheric reanalysis available,
20CR is used to study possible long-term trends in atmo-
spheric dynamics (Rodrigues et al., 2018) or for extreme
events (Alvarez-Castro et al., 2018). However, although the
20th century part of 20CR has been compared with other re-
analyses (Wohland et al., 2019) and observations (Krueger
et al., 2013), comparisons with independent observations in
the 19th century (Brönnimann et al., 2011) are scarce. The
present work is an effort to compare this reanalysis with tide
gauge observations. More generally, to the best of our knowl-
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edge, this paper is the first attempt to use old tide gauges as
indirect observations of the atmosphere. However, the oppo-
site direction has been taken by Tadesse and Wahl (2021),
who extended storm surge reconstructions into the past using
different atmospheric reanalysis products in order to estimate
past unobserved extreme storm surges.

Tide gauges are used primarily to measure the tide, which
is the largest contributor to sea level variations in many
coastal cities. The astronomical tide is the result of gravita-
tional attraction of the Sun and Moon on the ocean combined
with Earth’s rotation. It results in the periodic rise and fall
of the water level (Melchior, 1983) and has been predicted
through harmonic decomposition for centuries. Other phys-
ical phenomena impact the water level: a low atmospheric
pressure results in a high sea level, a well-known approx-
imation of which is the “inverse barometer effect” (Roden
and Rossby, 1999; Woodworth et al., 2019), and wind stress
transport towards (away from) the coast leads to increased
(decreased) sea level. These conditions are usually associated
with storms, which is why the associated sea level variations
are called storm surges. For instance, in Brest (France), the
amplitude of tidal variations is close to 4 m, and storm surges
can amount to as much as 1.5 m.

Tide gauges are numerous, forming a dense global net-
work in recent years and a sparser one over the past few
centuries. As an example and from the GESLA-3 sea level
database (Haigh et al., 2023), 10 coastal tide gauge records
start before 1907 on the eastern coast of North America,
while 20 start before 1900 in Europe. Old tide gauges have
varying observation frequencies, from hourly (Wöppelmann
et al., 2006) to daily averages (Marcos et al., 2021). Although
the sea level measured by tide gauges is only an indirect
tracer of atmospheric pressure variability, the scarcity of di-
rect sea level pressure measurements motivates the use of
tide gauges to study past atmospheric fluctuations. Indeed,
even when pressure measurements exist, they are often not
yet digitized and even less available in global repositories
(Brönnimann et al., 2019).

It is possible to link sea level variations with atmospheric
phenomena using physical laws and models (Lazure and Du-
mas, 2008) or using statistical tools (Quintana et al., 2021;
Pineau-Guillou et al., 2023; Harter et al., 2024). This work
adopts the second approach, but the underlying physical phe-
nomena will often be used to motivate and interpret the sta-
tistical models. Local linear regression (LLR) will be used
to relate the surge residual (see definition in Gregory et al.,
2019) to local mean sea level pressure. Hidden Markov mod-
els (HMMs) will allow us to perform time smoothing of
probabilities given to members of 20CRv3, taking advantage
of the time continuity of each member. The use of a hidden
Markov model to smooth the weighting of individual mem-
bers of a reanalysis based on independent observations (here,
tide gauge observations) was not reported elsewhere in the
scientific literature. This general methodology could be used

for other problems in order to assess and/or enhance avail-
able reanalysis products.

Note that a recent study by Hawkins et al. (2023) used
tide gauge records to check the ability of the 20CR reanaly-
sis to correctly model storms, in particular with the addition
of recently digitized pressure observations. The study used
a physics-based coastal model to estimate the storm surges
associated with each member of the reanalysis compared to
real observations. One conclusion of the study is that the
crude spatiotemporal resolution of the reanalysis is respon-
sible for a systematic underestimation of the observed storm
surges when using a direct physical coastal model forced by
20CR members. This justifies the use of statistical methods to
quantify uncertainties in the relationship between reanalyzed
pressures and real observed sea levels. The present study is
thus a first step towards using statistical models to assess re-
analysis from tide gauge data.

The data and preprocessing are detailed in Sect. 2. Sec-
tion 3 outlines the local linear regression and hidden Markov
model used in this study. Section 4 shows the global conse-
quences of applying our methodology, while Sect. 5 focuses
on four specific events and compares with independent pres-
sure observations. Conclusions on the proposed methodol-
ogy and experiments are drawn in Sect. 6, along with poten-
tial applications of this work.

2 Data

2.1 The 20th Century Reanalysis version 3 (20CRv3)

The 20th Century Reanalysis Project (Compo et al., 2011)
aims at producing a global atmospheric reanalysis ending
in 2015 and extending back to the 19th century. The present
paper uses the latest version, 20CRv3 (Slivinski et al., 2019),
which extends up to 1806. It is an atmospheric reanalysis
with 80 members, using an ensemble Kalman filter data as-
similation scheme (Evensen, 2003). It has a temporal reso-
lution of 3 h and uses a spectral triangular model in space
with truncation of T254 (approximately 75 km at the Equa-
tor). There are 64 vertical levels up to 0.3 mb. It assimi-
lates surface pressure observations from ships and fixed sta-
tions and analyzes cyclone-related IBTrACs data. These sur-
face pressure observations are taken from the International
Surface Pressure Databank (ISPD), which was created for
the 20CR project but also exists as an independent product
(Compo et al., 2019). In 20CR, the sea surface temperature
and sea ice cover are prescribed as boundary conditions. Sea
surface temperature and sea ice cover both benefit from satel-
lite observations from 1981 to 2015 (the end of the reanaly-
sis), allowing more precise boundary conditions.

The surface pressure observation density is consider-
ably lower in the 19th century than in the late 20th cen-
tury. An online platform (https://psl.noaa.gov/data/20CRv3_
ISPD_obscounts_bymonth, last access: July 2024) allows us
to consult the monthly observation count per 2°× 2° box.
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Figure 1. Number of surface pressure observations from the International Surface Pressure Databank (ISPD) assimilated in the 20th century
Reanalysis version 3 (20CRv3). (a, b) Monthly count over a 2°× 2° box centered on Brest for the years 1870 (a) and 2000 (b). (c, d) The
yearly average of daily number of observation in 1870 (c) and 2000 (d).

Figure 1 shows yearly averages of the number of surface
pressure observations per day, comparing the years 1870
and 2000. The maximum value was set to 24 observations
per day, although in 2000 this value is mostly exceeded.
In 1870, approximately half of Europe’s land surface has no
observations at all, and fewer than 10 points have more than
10 observations per day. Observations coming from ships al-
low us to raise the number of observations to approximately
one per day in densely trafficked areas. Conversely, in 2000
virtually all of western Europe’s land area has more than
24 observations per day. Taking a spatial average over the
whole map from Fig. 1 gives approximately 1 observation
every 3 d in 1870 versus 44 observations per day in 2000.
The number of available observations is also highly variable
through time, especially in the 19th century. For instance, in
the 2°× 2° box centered on 49° latitude, −5° longitude, the
number of monthly observations in 1870 ranges from 2 (Jan-
uary 1870) to 85 (May 1870), while in 2000 it ranges from
2152 (June 2000) to 3242 (May 2000).

2.2 Preprocessing of mean sea level pressure

In this work, we only use the mean sea level pressure (MSLP)
variable from 20CRv3. We perform two different preprocess-
ing steps on this variable.

The first preprocessing step is used for the statistical rela-
tionship between the local pressure and the surge residual.
As the latter is driven in part by a physical phenomenon
called the inverse barometer effect, which will be intro-
duced in the next section, we consider the difference between
the MSLP interpolated at the city of Brest (48.3829° N,
4.49504° W) and the MSLP averaged over all members of
20CRv3 and over the North Atlantic Ocean (using the re-
analysis’ land mask and averaging from 0 to 69° N and from
98° W to 12° E), in a similar fashion to Ponte (1994). This
spatially averaged pressure is denoted as MSLP

ocean
(t) and

depends only on time. Note that there is a small variability in
ocean-averaged pressure between 20CRv3 members in the
19th century. However, we have checked that this variabil-
ity is 1 order of magnitude smaller than the inter-member
variability of MSLP at the city of Brest, which justifies our
approximation of using simply the member average of the
ocean-averaged pressure as a reference.
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A second preprocessing step of MSLP is used to compute
the probability of transition from one member of the reanaly-
sis to another in the hidden Markov model (HMM) presented
in Sect. 3.2. For this purpose, we consider seasonal anoma-
lies of MSLP with respect to a climatology computed from
the period 1847–1890 because the HMM is run only for those
years. The reference MSLP climatology for calendar day d
and hour h is given by the average over days between d−30
and d+30, hours between h−3 and h+3, and all years 1847–
1890. This reference MSLP is denoted as MSLP

clim
and de-

pends on latitude and longitude.

2.3 Tide gauge of Brest (France)

In this study, the tide gauge of Brest is used as indirect tracer
of atmospheric circulation through surge residuals. The Brest
sea level record is taken from the GESLA-3 database starting
in 1846 with hourly sampling. Apart from a few large gaps,
the record is mostly continuous during periods 1847–1945
and 1953–present. This combination of historical and mod-
ern records is at the foundation of the methodology explored
in the next section.

2.4 Preprocessing of sea level

As mentioned earlier, the part of the sea level that responds
to atmospheric processes is the surge residual (see definition
in Gregory et al., 2019). To access the surge residual, one
has to remove the tidal part of the signal. Following this, as
we are interested in sub-seasonal variations, we also remove
the yearly variations in the mean sea level (at interannual and
decadal scales), such as sea level rise (Cazenave and Llovel,
2010). In this work, we also use moving averages and differ-
ences in the surge residual. All of these steps are exemplified
in Fig. 2.

We first compute the tidal constituents of the raw sea level
(blue curve, Fig. 2a) using U-Tide (Codiga, 2011), which
performs harmonic (Fourier) decomposition with prescribed
frequencies corresponding to planetary movements. The tidal
constituents are computed over two different periods: 1847–
1890 and 1981–2015. Removing the tidal part of the sig-
nal gives the surge residual (dashed orange line in Fig. 2a),
which has a temporal average value of ∼ 4 m for the Brest
tide gauge.

Following this, we remove the yearly median value of the
sea level ( dashed orange line in Fig. 2b). We choose to re-
move the median and not the mean because the mean can in
principle be influenced by the number and magnitude of ex-
tremes in a given year, which can be linked to the number
and magnitude of storms passing in a given year. This sec-
ond step allows us to access the zero-median surge residual
which is denoted as h(t) in the following equation:

h(t)=H (t)−TideH (t)−median[H (t ′), t ′ ∈ year(t)], (1)

where H (t) denotes the raw sea level, TideH (t) is the tidal
part of the signal computed from H , and year(t) is the year
in which time t is found.

Note from Fig. 2b that the surge residual fluctuates at an
hourly scale, part of which is due to oscillations that are not
due to variations in atmospheric pressure. For instance, these
oscillations can be due to tide–surge interactions (Horsburgh
and Wilson, 2007) or measurement errors in the 19th cen-
tury leading to phase shifts. Such 12 h oscillations can dom-
inate the surge residual signal in Brest, where the tidal am-
plitude is large (see, for instance, 29 and 30 January 2014,
Fig. 2). Furthermore, tide–surge interactions lead to stronger
surge residuals at low tide and weaker surge residuals at high
tide (Horsburgh and Wilson, 2007). As these phenomena are
not linked to atmospheric processes, we chose to filter them
out with a simple 12 h average (solid green curve in Fig. 2).
Given the spatial resolution of 20CRv3, smaller-scale events
are likely to not be represented in the MSLP fields used in
this study. In the following, we denote the 12 h average of
the zero-median surge residual as h

12 h
(t), which is calcu-

lated using the following equation:

h
12 h

(t)=
1

12

t ′=+6∑
t ′=−6

h(t + t ′). (2)

Finally, note that if atmospheric pressure variations are faster
than the typical time of adjustment of sea level, one ex-
pects deviations from the inverse barometer approximation
(Bertin, 2016). Therefore, fast time variations in the surge
residual are also expected, statistically speaking, to be asso-
ciated with deviations from the inverse barometer approxi-
mation. To allow the model described in Sect. 3.1 to capture
this effect, we compute the difference between the surge at
time t and at time t − 12 h, choosing the 12 h interval again
to filter out oscillations at a period close to 12 h. Furthermore,
since the reanalysis is run at 3 h resolution, we perform a 3 h
moving average of the surge residual before computing the
difference. This difference is denoted 1h

3 h
(t) and defined

by the following equation:

1h
3 h

(t) :=
1
3

t ′=+1∑
t ′=−2

[h(t + t ′)−h(t − 12+ t ′)]. (3)

2.5 Independent historical pressure observations

In Sect. 5, we use pressure observations for the city of Brest
and compare them with 20CRv3 and our estimate of pressure
based on tide gauge observations and our statistical model
(local linear regression, LLR). We downloaded these ob-
servations from a repository (https://github.com/ed-hawkins/
weather-rescue-data/tree/main, last access: July 2024) gath-
ering historical pressure observations. These pressure obser-
vations come from the EMULATE project (Ansell et al.,
2006) for 1860–1880 and from Météo France archives for
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Figure 2. An example output of the different stages of preprocessing of the sea level signal used in this work. (a) Sea level before (solid blue
line) and after (dashed orange line) removing the tidal part of the signal. (b) Zero-median surge residual h(t) (1 h sampling, dashed orange
curve), centered 12 h average h1 h(t) (solid green curve), and the 12 h difference between 3 h averages of the surge residual 1h3 h(t) (dotted
gray curve).

1858–1860 and from 1880 on. The EMULATE dataset has a
daily sampling, while the Météo France archive dataset has a
daily to thrice-daily sampling. These observations were not
included in 20CRv3, and we did not use them to tune our
model, they thus provide an independent validation dataset.

We have found a shift in average pressure between the
EMULATE and Météo France datasets. To overcome this is-
sue, and since we are only interested in sub-seasonal atmo-
spheric variability, we added a constant value of ∼ 0.22 hPa

for the period 1860–1880 (EMULATE dataset) to each value
of the independent pressure observation datasets so that the
average pressure is equal between the independent observed
pressure and the 20CRv3 mean pressure linearly interpolated
at the city of Brest. We did the same operation for the pe-
riod covered by the Météo France dataset that we are using
(1855–1859 and 1881–1894), adding a value of ∼ 7.18 hPa.

https://doi.org/10.5194/cp-20-2267-2024 Clim. Past, 20, 2267–2286, 2024
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3 Statistical methods

3.1 Local linear regression (LLR) between surge
residuals and mean sea level pressure

To estimate the statistical relationship between surge resid-
uals in Brest and 20CRv3 mean sea level pressure, we use
the period 1981–2015, during which satellite data are used
in 20CRv3 to constrain sea surface temperature and sea ice
cover, and the large number of pressure observations gives
us high confidence in the 20CRv3 fields of mean sea level
pressure (MSLP).

The filtered surge residuals described in Sect. 2.4 respond
to sub-seasonal variations in atmospheric pressure. First, the
sea level is sensitive to pressure variations. An approximation
called the “inverse barometer effect” (Roden and Rossby,
1999) states that an increase (decrease) of 1 hPa in pres-
sure at the mean sea level leads to a decrease (increase) in
sea level of approximately 1 cm. This approximation is valid
only for slow variations in atmospheric pressure compared
to the typical time of dynamic adjustment of the sea level
(Bertin, 2016).

Moreover, the piling up of water due to wind blowing per-
pendicular to the coast is responsible for positive (negative)
surge residuals when the wind stress transport is directed
towards (away from) the coast. This effect depends nonlin-
early on the wind amplitude and direction (Bryant and Ak-
bar, 2016; Pineau-Guillou et al., 2018). Statistical anticor-
relation observed in most regions between wind-driven and
pressure-driven sea level fluctuations causes regressions of
surge residual versus atmospheric pressure to deviate from
the inverse barometer approximation (Ponte, 1994).

Since wind is not included in our model, the relationship
between the filtered surge residuals and the atmospheric pres-
sures from 20CRv3 should not be deterministic. It is also
likely that typical wind conditions depend on the amplitude
of the MSLP anomaly, meaning that the average value of
MSLP anomaly for a given value of surge residual in Brest
may be a nonlinear function. As shown by Hawkins et al.
(2023), using a physical coastal model forced by the values
of pressure (and wind) from the 20CR can lead to biases in
the estimation of associated surges due to the resolution of
the reanalysis. A statistical model can thus be used as a tool
to correct such biases and represent uncertainties. In our case,
since we want to estimate pressure based on the surge residu-
als only, the effect of unknown wind or other processes must
also be taken into account through uncertainty quantification.

Since our predictor variable is the sea level measured
by the tide gauge, we will use two proxies to estimate
the conditional probability distribution of pressure: h

12 h
(t)

and 1h
3 h

(t). We expect that corresponding atmospheric
pressure variations should be slow and moderate for low ab-
solute values of these two predictors and that winds should be
of low intensity, meaning that the inverse barometer approx-

imation should hold. For larger absolute values of 1h
3 h

(t),
indicating rapidly changing surge residuals and thus likely
also rapidly changing atmospheric conditions, we expect de-
viations from the inverse barometer due to the dynamical ad-
justment of the sea level. Similarly, the largest absolute val-
ues of h

12 h
(t) are likely to be caused by the added contribu-

tion of wind to the effect of pressure, meaning that deviations
from the inverse barometer are expected as well.

To model all of these effects, we use a local linear
regression (LLR in the following; see, e.g., Fan, 1993;
Hansen, 2022), also called kernel regression (Takeda et al.,
2007). More precisely, we borrow our LLR from Lguen-
sat et al. (2017). In such a model, we will search for simi-
lar values (neighbors) of the two predictor variables h

12 h
(t)

and 1h
3 h

(t) in the whole dataset and compute a linear re-
gression on this subset of the dataset. The predicted variable
is MSLP(t)−MSLP

ocean
(t), where MSLP(t) is the value of

the MSLP linearly interpolated at the city of Brest from the
reanalysis.

We will assume that, conditionally to the values of h
12 h

(t)
and1h

3 h
(t), the predicted variable MSLP(t)−MSLP

ocean
(t)

follows a Gaussian distribution:

MSLP(t)−MSLP
ocean

(t)∼N (m(t),var(t)). (4)

We then assume, following Lguensat et al. (2017), that the
average m(t) and variance var(t) of this distribution can be
estimated at each time step based on a local linear regres-
sion. To perform this local regression, we search for the k-
nearest neighbors of [h

12 h
(t), 1h

3 h
(t)] in the satellite era

(1981–2015), where k is an integer set to 200 (other values
have been tested and did not yield improvement on the re-
sults). The nearest-neighbor criterion is the Euclidean dis-
tance in the two-dimensional space of values of [h

12 h
(t),

1h
3 h

(t)]. For each time t at which we want to estimate
MSLP(t)−MSLP

ocean
(t), we thus find the set of times {ti, i ∈

I (t)} where I (t) is an ensemble of size K , for which the fol-
lowing distance is minimal:

dist (t, ti)=
[(
h

12 h
(t)−h

12 h
(ti)
)
+

(
1h

3 h
(t)−1h

3 h
(ti)
)2
]1/2

.

We attach a weight ωi(t) to each index i ∈ I (t) according to
the following formula:

ωi(t)=
exp

(
−dist(t, ti)2/λ(t)2)∑

j∈I (t)
exp

(
−dist

(
t, tj

)2
/λ(t)2

) , (5)

where λ(t) :=median{dist(t, ti), i ∈ I (t)} is defined as the
median of the local values of the distances to the nearest
neighbors (Lguensat et al., 2017).

Using this subset of the whole dataset, we compute
a weighted linear regression between the subset of re-
gressors h

12 h
(ti), 1h

3 h
(ti) and of the predicted variable
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MSLP(ti)−MSLP
ocean

(ti) using the weights ωi(t). This re-
gression has two linear coefficients denoted as α(t) and β(t)
and one intercept (constant value) denoted as γ (t). Follow-
ing this, the average is given by applying the local weighted
linear model to the actual value of the predictors:

m(t)= α(t)h
12 h

(t)+β(t)1h
3 h

(t)+ γ (t), (6)

while the variance is given by the weighted variance of the
prediction error from the weighted linear model over the set
of nearest neighbors:

var(t)=
1

1−
∑
i∈I (t)

ωi(t)2

∑
i∈I (t)

ωi(t)

(
MSLP(ti)−MSLP

ocean
(ti)−α(t)h

12 h
(ti)

−β(t)1h
3 h

(ti)− γ (t)
)2
. (7)

To test the accuracy of this model on the 1980–2015 pe-
riod, we apply it for all times t ∈ [1980–2015], searching for
neighboring times ti in the same period but with the condi-
tion that there is a minimum of 2 weeks between t and ti
(i.e., excluding the interval [t−14 d, t+14 d]). This is called
the leave-one-out procedure, ensuring that the data that are
used to fit the model do not include the true values. Follow-
ing this, we compare the average m(t) with the true value
MSLP(t)−MSLP

ocean
(t) in a scatterplot (Fig. 3a). This fig-

ure shows that the LLR is able to predict good average val-
uesm(t) for moderate absolute values of pressure difference,
although it consistently underestimates the most extreme val-
ues: this behavior is expected as the method is limited by the
observations it has seen previously. However, as will be seen
in Sect. 5, this simple model is still able to capture storms.
Following this, we test the adequacy of our variability esti-
mate with the parameter var(t) by checking that the follow-
ing shifted and rescaled variable follows a standard Gaussian
distribution with an average of 0 and variance of 1:

MSLP(t)−MSLP
ocean

(t)−m(t)
√

var(t)
. (8)

To do so, we compare the empirical histogram of this variable
with the probability density function of a standard Gaussian
distribution, as shown in Fig. 3b. Although the shape of the
histogram slightly differs from a Gaussian probability den-
sity function (it is more peaked and has heavier tails), the
agreement is satisfying enough for the purpose of this arti-
cle. This shows that the estimate of variance through var(t) is
consistent with the real variability of the estimation process,
which is the reason why we advocate for using a statistical
method in the first place.

3.2 Hidden Markov model (HMM)

In the 19th century, the spread between 20CRv3 members is
much larger than in the period 1981–2015. One of the aims

of this work is to estimate conditional probabilities of each
member of the reanalysis based on surge residuals in Brest.
Note that in the reanalysis the members are assumed to have
uniform probabilities, i.e., a probability of 1/80, as we have
80 members.

One can estimate conditional probabilities of each member
at time t based on the values of [h

12 h
(t), 1h

3 h
(t)]. To do

that, we use the satellite-era-derived local linear regression
expressed in Sect. 3.1. The average m(t) and variance var(t)
are estimated based on the procedure described in Sect. 3.1
and using the dataset from the period 1981–2015 to search
for neighbors of [h

12 h
(t), 1h

3 h
(t)] and compute the LLR.

To differentiate these member probabilities from the ones
we will derive later on using a hidden Markov model, we use
the notation p���HMM(i, t) for the probability of member i at
time t .
p���HMM(i, t)∝ exp

{
−

(
MSLP(i,t)−MSLP

ocean
(t)−m(t)

)2

2var(t)

}
,

80∑
i=1
p���HMM(i, t)= 1

(9)

We also use the convention that, in the absence of surge
residuals observations, all members are given equal proba-
bilities p���HMM(i, t)= 1/80. Although these probabilities al-
ready bear significant information, they have the undesir-
able property of being time-discontinuous. This is not co-
herent with the fact that the members of 20CRv3 are time-
continuous: they are propagated in time using a Numeri-
cal Weather Prediction (NWP) model. To remedy this is-
sue, we compute smoothed (or reanalyzed) probabilities us-
ing a hidden Markov model (HMM) detailed below, which
we write as pHMM(i, t):

pHMM(i, t) := P

member(t)= i|

H (t = 1)
...

H (t = T )


 , (10)

where one uses an observational record of surge residuals
from time index 1 to T , and we use the simple notation
H (t) := [h

12 h
(t),1h

3 h
(t)] for the vector of surge residual

average and difference. Here, pHMM(i, t) is a time-smoothed
version of p���HMM(i, t) that takes into account past and future
values of the surge residual. For this purpose, a simple hid-
den Markov model (HMM) is used. The first ingredient of
the HMM is the transition matrix Tij (t) from member i at
time t − 1 to member j at time t .

Tij (t) := P (member(t)= j |member(t − 1)= i) (11)

To estimate the transition matrix, a strong hypothesis is
made:

Tij (t)∝Kθ
(
MSLPmap,j (t),MSLPmap,i(t)

)
, (12)

where MSLPmap,i(t) is the ith member’s map of mean
sea level pressure in a squared box (28° N≤ lat≤ 64° N,
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Figure 3. Evaluation of the local linear regression (LLR) on the period 1981–2015 using a leave-one-out procedure. (a) Histogram scatterplot
of the average estimate from the LLR versus the true value of the MSLP difference with the reference ocean-averaged MSLP. (b) Density
histogram of normalized average error of the LLR estimate (black line) compared to theoretical probability density function of the standard
Gaussian random variable (dashed orange line).

18° W≤ long≤ 18° E) at time t and Kθ (·, ·) is a positive
real-valued function that measures the similarity between
MSLPmap,i(t) and MSLPmap,j (t) and depends on the param-
eter θ .

Equation (12) states that transitions from one member to
another are more likely if the associated MSLP maps at time t
are similar. This prevents abrupt transitions to dissimilar at-
mospheric states. The size and location of the map was cho-
sen to cover an area inside which storms and anticyclones
that affect the surge residuals in Brest would lie. Ideally,
Kθ (·, ·) should be symmetric and semi-definite. Here, a sim-
ple Gaussian kernel of Euclidean distances is used, with nor-
malization factor θ > 0, meaning that for two fieldsX and Y :

Kθ (X,Y )= exp

{
−

∑
n∈lons

∑
l∈lats

(Xnl −Ynl)2

θ2

}
, (13)

where the sum over n and l represents a sum over longitudes
and latitudes. We then define 2 through the following equa-
tion:

θ

2
=

(
1

80

80∑
i=1

1
T

T∑
t=0

MSLPmap,i(t)2

)1/2

, (14)

where the overbar denotes spatial average. This normaliza-
tion will allow us to optimize θ through a grid search of 2
for a maximum likelihood of the surge residual observations.

One can compute Tij (t) by setting a value of θ and us-
ing the hypothesis of Eq. (12), along with the fact that for
all i and t we have

∑
j

Tij (t)= 1. This then allows us to esti-

mate pHMM(i, t) with the forward–backward algorithm (Ra-
biner, 1989).

ai(t) := P


H (1)

...

H (t)

 ,member(t)= i

 , (15)

bi(t) := P


H (t + 1)

...

H (T )

 |member(t)= i

 . (16)

These two quantities can be computed recursively, following
the forward procedure:

ai(1)= p���HMM(i,1), (17)

ai(t + 1)= p���HMM(i, t + 1)
80∑
j=1

aj (t)Tji(t), (18)

and the backward procedure:

bi(T )= 1, (19)

bi(t)=
80∑
j=1

bj (t + 1)Tij (t)p���HMM(j, t + 1). (20)

Finally, this allows us to estimate pHMM(i, t) by noting that

pHMM(i, t)=

P

member(t)= i,

H1
...

HT




P


H1
...

HT




, (21)

which gives, in terms of ai(t) and bi(t):

pHMM(i, t)=
ai(t)bi(t)

80∑
j=1

aj (t)bj (t)
, (22)
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Figure 4. Log likelihood of Brest surge residuals (dotted blue line)
as a function of parameter 2 defined in Eq. (14). For comparison,
the log likelihood of the simple model without the hidden Markov
model (2→+∞) is also shown (dashed gray line). The log like-
lihood was estimated using data from year 1885 for a first esti-
mation of optimal parameter 2. Values of 2 used for estimation
are 0.02, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.13, 0.15, 0.2,
1, and 10, with 0.07 giving the largest log likelihood.

while keeping in mind that Eq. (22) implicitly relies on hy-
pothesis (Eq. 12) and a fixed form of Kθ .

Comparing pHMM(i, t) with the uniform distribution
p(i, t)= 1

80 allows us to see if the surge residual observa-
tions are coherent with the MSLP fields of 20CRv3 (Sect. 4)
and to select the most relevant members given surge residual
data (Sect. 5).

To choose the parameter θ , we performed a grid search of
its normalized form 2 and computed the log likelihood of
the surge residual observations as an output of the algorithm.
Indeed, the log likelihood lθ (0 . . . T ) is expressed as follows:

lθ (0 . . . T )= log

(
80∑
i=1

ai(T )

)
. (23)

Figure 4 shows variations in this quantity with 2 for 1
year (1885) of surge residual observations in Brest (i.e., t = 0
is 1 January 1885, while T is 1 January 1886). The curve
shows a distinct maximum around2≈ 0.09 and plateaus for
higher values. According to Fig. 4, the difference in log like-
lihood between the model without HMM (θ =+∞) and with
HMM is close to 1000. The introduction of one extra param-
eter in the filtering model compared to the static one is thus
clearly justified if the two models are compared using stan-
dard criteria such as the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), or likelihood ratio
tests (Zucchini et al., 2017).

Note that in the limit 2=+∞, we have a constant
transition probability Tij (t)= 1

80 , and pHMM(i, t) reduces
to p���HMM(i, t). Figure 4 thus supports the use of the HMM
to estimate probabilities of the MSLP map conditioned by
surge residual observations.

The choice of restricting the estimation of log likelihood to
one arbitrary year (1885) is supported by the fact that estima-
tion of Tij (t) is computationally expansive. We assume that

the optimal value of θ generalizes well to other years. A bet-
ter optimization of θ would necessitate further work that is
out of the scope of this study. Setting 2= 0.09 will already
enable us to find interesting features of pHMM(i, t).

4 Modification of 20CRv3 ensemble when
accounting for surge residuals

This section is devoted to the study of δµHMM(t), the differ-
ence between weighted and unweighted ensemble average,
defined by

δµHMM(t) :=
80∑
i=1

(
pHMM(i, t)−

1
80

)
MSLPmap,i(t), (24)

where MSLPmap,i(t) is a short notation for the sea level
pressure field of 20CRv3’s ith member. Here, δµ���HMM(t) is
defined equivalently using p���HMM(i, t). This quantity shows
how strong the average deviation is when taking into account
surge residual observations. It will also sometimes be nor-
malized by σ20CR(t), the estimated standard deviation of the
unweighted ensemble:

σ20CR(t) := 1
79

80∑
i=1

(
MSLPmap,i(t)−

1
80

80∑
i=1

MSLPmap,i(t)

)2
1/2

. (25)

Note that in this definition σ20CR(t) depends on time, latitude,
and longitude. Therefore, at each grid point and for each time
step the quantity δµHMM(t) will be normalized by a differ-
ent value, indicating the strength of the reanalysis ensemble
spread at this location in time and space.

To further interpret the result of our HMM algorithm, we
introduce the filtered effective ensemble size νHMM(t) (Liu,
1996):

νHMM(t) :=
1

80∑
i=1
pHMM(i, t)2

, (26)

and we equivalently define ν���HMM(t). These quantities are
estimates of the number of ensemble members that can be
retained according to surge residual observations, assuming
one discards very unlikely members.

In Fig. 5, the variables δµHMM, δµHMM/σ20CR, and
νHMM are shown as a function of time for the period 1846–
1890. All these quantities show a strong seasonality. This
is due to a much stronger MSLP variability in winter and a
corresponding stronger response of the surge residuals. The
figure shows that the amount of correction δµHMM and the
decrease in ensemble size νHMM are much stronger using
smoothed probabilities with HMM rather than probabilities
without HMM. Showing the deviation δµHMM in the Bay
of Biscay, where the standard deviation of δµHMM/σHMM is
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Figure 5. (a) Average MSLP deviation δµHMM in pascals in the center of the Bay of Biscay. Panel (b) is the same as panel (a) but
normalized by reanalysis ensemble standard deviation δµHMM/σ20CR. (c) Effective ensemble size νHMM. Orange is used for data using
smoothed probabilities with HMM pHMM(i, t). Blue is used for data using probabilities without HMM p���HMM(i, t). Bold lines indicate
yearly average. Thin lines indicate the 3-month average. All plots make simultaneous use of data from the Brest tide gauge.

strongest (see Fig. 6), substantial absolute values of∼ 600 Pa
are obtained in early 1850s winters, even after averaging
over 3 months. These large deviations correspond to more
than 1 standard deviations of the ensemble size. Using prob-
abilities without HMM, deviations are weaker but still non-
negligible (∼ 500 Pa, ∼ 0.7σ ). The slow decrease in δµHMM
with time is coherent with slowly increasing observations
used in 20CRv3, albeit with substantial decadal variations.
However, δµ���HMM/σHMM and δµHMM/σHMM do not show a
clear trend, indicating a persisting gain in information from
surge residual observations throughout the 19th century.

In terms of effective size, Fig. 5 shows that the smoothing
HMM algorithm imposes a strong member selection, with
mostly only one member retained at each time step in win-
ter and before 1880. Probabilities without HMM mostly re-
tain more than half of the members, although peak low val-
ues of ν���HMM(t) show that even without the HMM some-
times more than half of the ensemble members are highly
unlikely. Filtered effective ensemble size reaches very low
yearly and seasonal average values, indicating that many
20CR members are highly unlikely with respect to surge
residual estimates from tide gauge observations. A strong in-
crease in νHMM(t) is witnessed around year 1880. This can
be explained by the availability of a large number of weather

station data in eastern Europe and Russia from 1880 on and
by an intensification of maritime traffic around 1880.

The spatial structure of δµ is examined in Fig. 6. The anal-
ysis of time standard deviation of δµ���HMM and δµHMM/σ20CR
shows that the area of greatest influence of the corrections
from surge residual smoothing from Brest tide gauge is in
the Bay of Biscay. This can be explained by the passage of
strong storms in the Bay of Biscay, which can cause high
surge residuals in Brest, and by the sparsity of direct pres-
sure measurements (ship logs) in this area in the 19th cen-
tury. The standard deviation of δµHMM shows the largest
values to the northwest of the map, which is where strong
storms travel. Indeed, the variability of MSLP shows a great
northwest gradient, as can be seen from maps of time stan-
dard deviation of 20CRv3 mean MSLP (not shown). Notice-
ably, the size of the area of influence of δµHMM is smaller in
1880–1890, which can be explained by a greater condition-
ing of 20CRv3 members by observations both offshore and
inland. In cases of very sparse observations used in 20CRv3,
the area of influence of these corrections widens due to con-
tinuity of MSLP fields. Note also that the area of influence
is greater for δµHMM then for δµ���HMM because of the time
propagation of corrections thanks to the smoothing HMM al-
gorithm. Finally, Fig. 6 confirms the large difference in am-
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Figure 6. Time standard deviation of δµ���HMM (a, d), δµHMM (b, e), and δµHMM/σ20CR (c, f) computed from October to March for the
years 1848–1880 (a–c) and 1880–1890 (d–f). Probabilities p���HMM and pHMM make use of data from the Brest tide gauge.

Figure 7. The bold orange line shows the yearly average of δµHMM at 47.83° latitude and −7.57° longitude in the Bay of Biscay using data
from the Brest tide gauge. The thin black line shows the zero-median Brest surge residual (inverted sign).

plitude of deviations between pre-1880 and post-1880 cor-
rections already witnessed in Fig. 5. Similar spatial foot-
prints can be witnessed from maps of high and low quan-
tiles of δµ but with different values (not shown). Similarly,
computing the time standard deviations as in Fig. 6 but re-
stricting the times used for computation to April–September
rather than October–March shows the same spatial pattern
but with much lower values (not shown).

These corrections also have a strong decadal variation,
with non-trivial yearly averages persisting for several years,
as shown in Fig. 7. The same behavior can be witnessed for
the surge residual, which is strongly anti-correlated to these
deviations (Fig. 7). This can be explained by the fact that
20CRv3 smooths MSLP values in areas of sparse measure-
ments and that surge residual filtering corrections allow us to
retrieve more realistic intense values (either positive or neg-
ative). This interannual variability is related to the variability
in storminess (Bärring and Fortuniak, 2009).

5 Focus on four 19th-century events

One of the aim of this study is to show that old tide gauge
data can be used to better understand past severe storms. In
this section, two storms and one mild situation are studied
for illustrative purposes.

To better understand the more general context of the three
events studied in this section, we first look at longer time pe-
riods (100 d) surrounding the events and compare the results
of the simple LLR based on surge residuals with 20CRv3 and
independent observations (when available). These are plotted
in Fig. 8. One can thus see that the uncertainties associated
with the surge-residual-based LLR do not vary from year to
year, while those of 20CRv3 decrease. More precisely, the
ratio of the standard deviation of the LLR divided by that
of 20CRv3 has an average value of 1.22 in 1847, 1.54 in
1865, 1.95 in 1876, and 2.45 in 1888. That same ratio has
a minimum value of 0.47 both in 1847 and in 1865, while
its minimum value is of 0.69 in 1876 and 0.94 in 1888. This
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Figure 8. Comparison of MSLP estimation in Brest from 20CRv3 (blue), LLR based on surge residuals (orange), and independent observa-
tions (black dots) that were not used to build the orange and blue curves for three periods surrounding the events studied in this section. Full
lines correspond to average values, while shaded areas correspond to ±1 SD (1 standard deviation) around the average.

shows that on average the reanalysis has lower uncertainty
than the surge-residual-based pressure estimate (albeit with
fluctuations), and in 1888 the uncertainty of the reanalysis is
always smaller. Comparison with observations also confirms
the better precision of the reanalysis.

In 1865 (Fig. 8b), although the surge-residual-based re-
construction is sometimes more consistent with observations
than the reanalysis, there are as many occasions where it is
the reanalysis that is more consistent with the independent
observations. In 1876 (Fig. 8c), biases of ∼ 5 hPa between
the LLR and 20CRv3 are found most of the time. For all four
periods shown, the reanalysis and the LLR pressure estimates
show consistent variations in time, albeit with persistent bi-
ases (either positive or negative) that last from a few days
to ∼ 15 d. We attribute these biases to different atmospheric
conditions that cannot be estimated from the surge residuals
with our simple LLR model, in particular wind directions and
intensity. These examples show that the results of our algo-
rithm must be interpreted with care and that a more in-depth
analysis is needed to understand the specifics of an individual
event.

Our claim that the wind variations are responsible for the
persistent biases between the LLR pressure estimation and
the reanalysis is supported by Fig. 12f, where we also show
the direction and amplitude of the 10 m wind intensity as
given by the average over all reanalysis members and inter-
polated at the city of Brest. In March 1876, two low-pressure
systems passed to the north of Brest’s tide gauge, the first
around 10 March and second around 12 March, as indicated
by the reanalysis members and the independent pressure ob-
servations (Fig. 12e). However, the first low-pressure system
did not induce a surge residual as strong as the second one.
One key difference between the two events is the wind am-
plitude, which reached 15 m s−1 during the first event and
then decreased to 5–10 m s−1 during the second event, with
almost steady wind direction. Although wind intensity and
direction estimated from the reanalysis must be taken with
care, the value of 15 m s−1 is rarely exceeded (only 7 in
1000 times in the period 1981–2015, not shown), indicating
exceptional wind intensity during the event and justifying the
inaccuracy of the LLR, which is based on already observed
events and therefore biased towards typical wind conditions.
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Figure 9. Number of pressure observations per month divided by 30 (or 31) to give an average number of observations per day for the
months of November 1847, November 1865, March 1876, and July 1888.

Our interpretation relies on the fact that the effect of wind
on extreme surge residuals acts at small timescales (daily or
sub-daily), which is backed by recent work (Pineau-Guillou
et al., 2023).

To aid the interpretation of Figs. 10–13, in Fig. 9 we also
show the number of observations assimilated in 20CRv3 in
the months of the studied events. In November 1847, ob-
servations mostly come from ground stations, indicated by
green–blue squares (more than 1 observation per day). In
November 1865, some more stations are available, and at
this point the observation density from maritime traffic also
grows. In March 1876 and August 1888, the number of ob-
servations surrounding Brest increases with respect to 1865
mostly due to an intensification of maritime traffic, although
some new stations also constrain the reanalysis, but these are
not in the direct vicinity of Brest.

One common feature of Fig. 10–12 is that the HMM al-
gorithm tends to be very selective compared to the weighing
without HMM. This is the consequence of our optimization
of the parameter θ with the objective of maximizing the like-
lihood of the surge residual observations on the 20CRv3 en-
semble. Having a low theta value allows us to give a high
weight to the ensemble member that has the highest probabil-
ity according to the surge-residual-based LLR model. How-
ever, as is obvious from comparing Fig. 10a with b, Fig. 11a
with b, and Fig. 12a with b, this does not always have a
strong influence on the average MSLP field. In the case of
Fig. 13, the variability between members of the reanalysis
is smaller, and therefore the selection of ensemble members
is less acute, with more reasonable effective ensemble sizes.
However, these figures again show that small effective en-
semble sizes should not be interpreted as a justification for
discarding members with low probability according to the
HMM algorithm but rather as a means to quantify the rela-
tive agreement of individual members with the surge residual
observations according to the LLR statistical relationship.

The fact that one member is often much more coherent
with the series of surge residuals is the result of (1) the
high variability of the ensemble and the LLR pressure es-

timation, (2) the high dimensionality (or complexity) of the
problem, (3) the low size of the ensemble (80 members), and
finally (4) the systematic biases between 20CRv3 and the
LLR caused by unmodeled atmospheric conditions (winds).
Indeed, in the case of data scarcity, the variability of the re-
analysis is large (point 1), and a fixed-size ensemble (point 2)
may struggle to correctly span the whole space of possible
atmospheric circulations (point 3), meaning that a few mem-
bers are actually much closer to the true atmospheric circu-
lation than all other members. Such a problem is called filter
degeneracy (Snyder et al., 2008) and is a common issue in
ensemble-based data assimilation schemes. Secondly, since
our LLR estimation of pressure experiences time-correlated
biases with respect to the 20CRv3 because of unmodeled
other variables (winds), this causes the HMM to select the
one member that is closest to the biased pressure estimate
from the LLR applied to the surge residual signal. All these
issues may remain for other climate science applications if
one uses a similar approach of merging independent observa-
tions with a HMM algorithm to weight ensemble members.

6 Conclusion and perspectives

This study is a proof of concept for the use of century-old
tide gauge data as a means of understanding past atmospheric
subseasonal variability. Surge residuals of Brest allow us to
assess part of the atmospheric variability that was uncaught
in global 20CR reanalyses based on pressure observations.
Weighing 20CR members according to surge residual ob-
servations reduces the effective ensemble size and implies
significant deviations in member-averaged sea level pres-
sure in the Bay of Biscay. Through the second half of the
19th century these deviations diminish and the effective en-
semble size rises; however, they remain non-negligible. In-
dependent pressure observations in the city of Brest are co-
herent with pressure estimations from the reanalysis and the
surge-residual-based local linear relationship. Such compar-
isons also show that the reconstruction of pressure based on
surge residuals is ambiguous due to the influence of winds,
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Figure 10. Mean result of the HMM algorithm in November 1847. (a) Average according to surge residual observations and HMM smoothing
algorithm (probabilities pHMM(i, t)). (b) Average using constant uniform weights on 20CRv3 members. (c) Difference between HMM and
uniform results. (d) Surge residual observations and effective ensemble sizes. (e) MSLP in Brest from ensemble members (blue lines) and
local linear regression from surge residuals as an average±1 SD (standard deviation). The dates of the left-hand plots are indicated with dots
in (d) and (e).
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Figure 11. The same as Fig. 10 but for another storm. In this figure independent pressure observations in Brest are also available and shown
as black dots in (e).
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Figure 12. The same as Fig. 11 but for another storm. In (f) we also show the amplitude and direction of daily 10 m winds from the 20CRv3
member mean linearly interpolated at the city of Brest.

meaning that biases between the surge-residual-based and
reanalysis-based pressure estimates can last for several days.

This work has several potential applications. First, repli-
cating this work with other tide gauges could help us to
validate reanalyses like 20CRv3 against independent data
and to potentially identify anomalous trends or incorrect es-
timations of specific events. Combining our statistical ap-
proach with the physics-based approach of Hawkins et al.
(2023) could allow us to have both a precise estimate from a
high-fidelity coastal model and a good quantification of un-
certainties. Second, tide gauges could be used to constrain
regional-scale atmospheric simulations in order to better es-

timate the magnitude and spatial extent of known past severe
storms. Third, tide gauge records could be combined with
direct observations of atmospheric pressure to give statisti-
cal estimates of atmospheric fluctuations in the 19th century
without the use of an NWP model, such as the optimal in-
terpolation of Ansell et al. (2006) based on direct pressure
observations only or the analogue upscaling of Yiou et al.
(2014) for the short period 1781–1785 of dense observations
in western Europe. Finally, this work could be replicated in
a more general context using other types of variables and
observations, learning the relationship between observations
and large-scale features using recent observations and pre-
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Figure 13. The same as Fig. 11 but for another event.

cise reanalyses, and applying these statistical relationship in
the past to uncover past large-scale events. In particular, the
hidden Markov model algorithm outlined here could be repli-
cated to weigh ensemble members according to independent
observations.

Code availability. The codes used to produce the figures in this
article are available upon request from the authors.
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Data availability. Data from the third version of the
20th Century Reanalysis are freely available at https:
//psl.noaa.gov/data/20thC_Rean/ (NOAA-CIRES-DOE, 2024).
Monthly 2°×2° observation counts from version 4.7 of the Interna-
tional Surface Pressure Databank (https://doi.org/10.5065/9EYR-
TY90, UCO/CIRES|DOC/NOAA/OAR/ESRL/PSL, 2024a) can be
accessed via https://web.archive.org/web/20230527064622/https:
//psl.noaa.gov/data/20CRv3_ISPD_obscounts_bymonth/,
(UCO/CIRES|DOC/NOAA/OAR/ESRL/PSL, 2024b). The
GESLA-3 database is freely available at https://gesla787883612.
wordpress.com/downloads/ (Haigh and Marcos, 2024). Data from
the EMULATE project can be accessed via https://crudata.uea.ac.
uk/projects/emulate/LANDSTATION_MSLP/ (Jones et al., 2024).
Météo France archive climate data are available at https://www.data.
gouv.fr/fr/datasets/donnees-climatologiques-de-base-horaires/
(Météo France, 2024). The EMULATE and Météo
France data used in this work were accessed through
https://github.com/ed-hawkins/weather-rescue-data/tree/main/
(Hawkins, 2024).
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locking pre-1850 instrumental meteorological records: A global
inventory, B. Am. Meteorol. Soc., 100, ES389–ES413, 2019.

Bryant, K. M. and Akbar, M.: An exploration of wind stress calcu-
lation techniques in hurricane storm surge modeling, J. Mar. Sci.
Eng., 4, 58, https://doi.org/10.3390/jmse4030058, 2016.

Cazenave, A. and Llovel, W.: Contemporary sea level rise, Annu.
Rev. Mar. Sci., 2, 145–173, 2010.

Codiga, D. L.: Unified tidal analysis and prediction using the
UTide Matlab functions, GSO Tech. Rep., Graduate School of
Oceanography, Univ. of Rhode Island Narragansett, RI, 59 pp.,
2011.

Compo, G. P., Slivinski, L. C., Whitaker, J. S., Sardeshmukh, P. D.,
McColl, C., Brohan, P., Allan, R., Yin, X., Vose, R., Spencer,
L. J., Ashcroft, L., Bronnimann, S.,Brunet, M., Camuffo, D.,
Cornes, R., Cra, T. A., Crouthamel, R., Dominguez-Castro, F.,
Freeman, J. E., Gergis, J., Giese, B. S., Hawkins, E., Jones, P.
D., Jourdain, S., Kaplan, A., Kennedy, J., Kubota, H., Blancq,

Clim. Past, 20, 2267–2286, 2024 https://doi.org/10.5194/cp-20-2267-2024

https://psl.noaa.gov/data/20thC_Rean/
https://psl.noaa.gov/data/20thC_Rean/
https://doi.org/10.5065/9EYR-TY90
https://doi.org/10.5065/9EYR-TY90
https://web.archive.org/web/20230527064622/https://psl.noaa.gov/data/20CRv3_ISPD_obscounts_bymonth/
https://web.archive.org/web/20230527064622/https://psl.noaa.gov/data/20CRv3_ISPD_obscounts_bymonth/
https://gesla787883612.wordpress.com/downloads/
https://gesla787883612.wordpress.com/downloads/
https://crudata.uea.ac.uk/projects/emulate/LANDSTATION_MSLP/
https://crudata.uea.ac.uk/projects/emulate/LANDSTATION_MSLP/
https://www.data.gouv.fr/fr/datasets/donnees-climatologiques-de-base-horaires/
https://www.data.gouv.fr/fr/datasets/donnees-climatologiques-de-base-horaires/
https://github.com/ed-hawkins/weather-rescue-data/tree/main/
https://doi.org/10.5194/cp-7-265-2011
https://doi.org/10.3390/jmse4030058


P. Platzer et al.: Can old tide gauges estimate past atmospheric variability? 2285

F. L., Lee, T., Lorrey, A., Luterbacher, J., Maugeri, M., Mock,
C. J., Moore, K., Przybylak, R., Pudmenzky, C., Reason, C.,
Slonosky, V. C., Tinz, B., Titchner, H., Trewin, B., Valente, M.
A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszynski, P.:
The international surface pressure databank version 4, Research
Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory, Boulder,
CO, https://doi.org/10.5065/9EYR-TY90, 2019.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Al-
lan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G.,
Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I.,
Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger,
A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S.
J.: The twentieth century reanalysis project, Q. J. Roy. Meteorol.
Soc., 137, 1–28, 2011.

Evensen, G.: The ensemble Kalman filter: Theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343–367,
2003.

Fan, J.: Local linear regression smoothers and their minimax effi-
ciencies, Ann. Stat., 21, 196–216, 1993.

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A.,
Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer,
F., Le Cozannet, G., Ponte, R. M., Stammer, D., Tamisiea, M.
E., and van de Wal, R. S. W.: Concepts and terminology for sea
level: Mean, variability and change, both local and global, Surv.
Geophys., 40, 1251–1289, 2019.

Haigh, I. and Marcos, M.: GESLA (Global Extreme Sea Level
Analysis), https://gesla787883612.wordpress.com/downloads/
(last access: 7 October 2024), 2024.

Haigh, I. D., Marcos, M., Talke, S. A., Woodworth, P. L., Hunter,
J. R., Hague, B. S., Arns, A., Bradshaw, E., and Thompson, P.:
GESLA version 3: A major update to the global higher-frequency
sea-level dataset, Geosci. Data J., 10, 293–314, 2023.

Hansen, B.: Econometrics, Princeton University Press,
ISBN 9780691235899, 2022.

Harter, L., Pineau-Guillou, L., and Chapron, B.: Underestimation of
extremes in sea level surge reconstruction, Sci. Rep., 14, 14875,
https://doi.org/10.1038/s41598-024-65718-6, 2024.

Hawkins, E.: Weather Rescue Data, GitHub [data set], https://
github.com/ed-hawkins/weather-rescue-data/tree/main/ (last ac-
cess: 7 October 2024).

Hawkins, E., Brohan, P., Burgess, S. N., Burt, S., Compo, G. P.,
Gray, S. L., Haigh, I. D., Hersbach, H., Kuijjer, K., Martínez-
Alvarado, O., McColl, C., Schurer, A. P., Slivinski, L., and
Williams, J.: Rescuing historical weather observations im-
proves quantification of severe windstorm risks, Nat. Hazards
Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-
23-1465-2023, 2023.

Horsburgh, K. and Wilson, C.: Tide-surge interaction and
its role in the distribution of surge residuals in the
North Sea, J. Geophys. Res.-Oceans, 112, C08003,
https://doi.org/10.1029/2006JC004033, 2007.

Jones, P. D., Folland, C. K., Jacobeit, J., Yiou, P., Brunet M., Luter-
bacher, J., Moberg, A., Chen, D., and Casale, R.: EMULATE
(European and North Atlantic daily to MULtidecadal climATE
variability), UEA [data set], https://crudata.uea.ac.uk/projects/
emulate/LANDSTATION_MSLP/ (last access: 7 October 2024),
2024.

Krueger, O., Schenk, F., Feser, F., and Weisse, R.: Inconsistencies
between long-term trends in storminess derived from the 20CR
reanalysis and observations, J. Climate, 26, 868–874, 2013.

Lazure, P. and Dumas, F.: An external–internal mode coupling
for a 3D hydrodynamical model for applications at regional
scale (MARS), Adv. Water Resour., 31, 233–250, 2008.

Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., and Fablet, R.: The
analog data assimilation, Mon. Weather Rev., 145, 4093–4107,
2017.

Liu, J. S.: Nonparametric hierarchical Bayes via sequential imputa-
tions, Ann. Stat., 24, 911–930, 1996.

Marcos, M., Puyol, B., Amores, A., Pérez Gómez, B., Fraile, M. Á.,
and Talke, S. A.: Historical tide gauge sea-level observations in
Alicante and Santander (Spain) since the 19th century, Geosci.
Data J., 8, 144–153, 2021.

Melchior, P.: The tides of the planet Earth, Oxford, https://ui.
adsabs.harvard.edu/abs/1983opp..book.....M (last access: 2 Oc-
tober 2024), 1983.

Météo France: Données climatologiques de base
– horaires, https://www.data.gouv.fr/fr/datasets/
donnees-climatologiques-de-base-horaires/ (last access:
7 October 2024), 2024.

NOAA-CIRES-DOE: 20th Century Reanalysis, https://psl.noaa.
gov/data/20thC_Rean/ (last access: 7 October 2024), 2024.

Pineau-Guillou, L., Ardhuin, F., Bouin, M.-N., Redelsperger, J.-L.,
Chapron, B., Bidlot, J.-R., and Quilfen, Y.: Strong winds in a
coupled wave–atmosphere model during a North Atlantic storm
event: Evaluation against observations, Q. J. Roy. Meteorol. Soc.,
144, 317–332, 2018.

Pineau-Guillou, L., Delouis, J.-M., and Chapron, B.: Charac-
teristics of Storm Surge Events Along the North-East At-
lantic Coasts, J. Geophys. Res.-Oceans, 128, e2022JC019493,
https://doi.org/10.1029/2022JC019493, 2023.

Ponte, R. M.: Understanding the relation between wind-and
pressure-driven sea level variability, J. Geophys. Res.-Oceans,
99, 8033–8039, 1994.

Quintana, G. I., Tandeo, P., Drumetz, L., Leballeur, L., and Pavec,
M.: Statistical forecast of the marine surge, Nat. Hazards, 108,
2905–2917, 2021.

Rabiner, L.: A tutorial on hidden Markov models and selected
applications in speech recognition, Proc. IEEE, 77, 257–286,
https://doi.org/10.1109/5.18626, 1989.

Roden, G. I. and Rossby, H. T.: Early Swedish contribution to
oceanography: Nils Gissler (1715–71) and the inverted barom-
eter effect, B. Am. Meteorol. Soc., 80, 675–682, 1999.

Rodrigues, D., Alvarez-Castro, M. C., Messori, G., Yiou, P., Robin,
Y., and Faranda, D.: Dynamical properties of the North Atlantic
atmospheric circulation in the past 150 years in CMIP5 models
and the 20CRv2c reanalysis, J. Climate, 31, 6097–6111, 2018.

Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D.,
Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner,
H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S.,
Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel,
R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins,
E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq,
F., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri, M., Mock,
C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason,
C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente,
M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński,
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