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Abstract. Based on a multi-dating and multi-proxy
approach, we reconstruct Late Holocene environmental
changes derived from sediments of Schweriner See, a
large lowland lake in NE Germany, covering the past
3070+170/−210 years cal BP. We infer variations in large-
scale atmospheric circulation systems by combining in-
lake productivity indicators obtained from traditional and
high-resolution techniques (e.g. LOI550, TOC, inc / coh), di-
atom assemblages, and compound-specific hydrogen iso-
topes (δ2HC25 ). Before 105+95/−75 cal BP (∼ 1850 CE),
changes in productivity and the occurrence or disappear-
ance of the diatom species Stephanocostis chantaicus re-
flect winter temperature variability, while variations in the
compound-specific hydrogen isotopes suggest changes in the
moisture source region. We observe distinct variations be-
tween (i) milder winter temperatures with a moisture source
region in the southern–central North Atlantic and (ii) colder
winter temperatures with a moisture source in the northern
North Atlantic and/or Arctic regions. Such distinct varia-
tions in winter temperature and moisture source region are
mainly modulated by the North Atlantic Oscillation (NAO).
This affects, among others, westerly wind strength and path-
ways and, thereby, winter temperature and moisture source
region for northern central Europe. Besides these long-

term shifts in atmospheric conditions, short-term variations
in titanium can be linked to lake-level variability, most
likely influenced by changes in precipitation and/or evapo-
ration, and after the 12th century to anthropogenic impacts.
Since 105+95/−75 cal BP (∼ 1850 CE), productivity has been
driven predominantly by nutrient availability related to an-
thropogenic activities masking the hydroclimatic signal.

1 Introduction

In recent decades, hydroclimatic conditions in western and
central Europe have been characterized by drought events,
which have been increasing in frequency and severity
(Spinoni et al., 2018) and resulted in severe socio-economic
and ecological consequences. Similarly, future climate sce-
narios for western and central Europe predict increasing
temperatures; more frequent, longer, and/or more intense
heat waves as well as warm spells; and an increase in dry-
ness with short-term droughts (IPCC, 2021). Such changes
will affect the hydrological cycle and, therefore, all aquatic
(eco)systems. Some areas in western and central Europe,
e.g. NE Germany, have already been affected by lowering
lake and groundwater levels (Germer et al., 2010). However,
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to understand the drivers, magnitude, and direction of cli-
matic and environmental changes and to assess future devel-
opments, longer time series than those provided by monitor-
ing efforts are needed (IPCC, 2021).

Late Holocene hydroclimatic variability in western and
central Europe has been related to changes in ocean circu-
lation (e.g. Trouet et al., 2012; Bond et al., 2001), solar cy-
cles (e.g. Martin-Puertas et al., 2012; Mellström et al., 2015),
and atmospheric circulation systems such as the North At-
lantic Oscillation (NAO) (e.g. Faust et al., 2016; Baker et al.,
2015). The NAO is one of the leading atmospheric circula-
tion systems influencing weather and climate conditions in
the Northern Hemisphere, i.e. surface air temperature, pre-
cipitation, wind, and storminess, including westerly wind
strength, direction, and storm tracks (Bliedtner et al., 2023;
Hurrell and Deser, 2009; Hu et al., 2022). It is more ac-
tive in the cold season (October–April), with larger ampli-
tudes and a strong influence on winter temperature and pre-
cipitation (Hurrell et al., 2003). The NAO refers to changes
in the atmospheric mass balance, namely, the air pressure
difference between the subpolar low-pressure (Iceland) and
subtropical high-pressure (Azores) systems. The NAO in-
dex is defined as two modes which depend on the baro-
metric difference between the pressure systems. A positive
NAO (NAO+) is associated with a stronger gradient between
the pressure systems causing zonal circulation and increased
intensity of cyclones as well as stronger westerlies (Hurrell
and Deser, 2009). This results in generally milder winter tem-
peratures and moist (maritime) winter conditions with iso-
topically enriched precipitation from a moisture source re-
gion in the southern–central North Atlantic (e.g. Breitenbach
et al., 2019; Hurrell, 1995; McDermott et al., 2011; Baldini et
al., 2008; Comas-Bru et al., 2016; Fig. 1a). In contrast, a neg-
ative NAO (NAO−) has a weaker pressure gradient causing a
more meridional circulation with weaker westerlies (Fig. 1a).
This causes a more frequent atmospheric blocking and con-
sequently colder, drier air masses from the northern North
Atlantic and/or Arctic regions with isotopically depleted pre-
cipitation flows towards central Europe (e.g. Breitenbach et
al., 2019; Hurrell, 1995; McDermott et al., 2011; Baldini et
al., 2008; Comas-Bru et al., 2016). Recently, it has been sug-
gested that winter conditions in the North Atlantic region can
be linked to the combined effects of the NAO and the east-
ern Atlantic (EA) pattern (e.g. Comas-Bru and McDermott,
2014; Mellado-Cano et al., 2019). The EA pattern is defined
as a sea level pressure monopole between Iceland and Ireland
(e.g. Comas-Bru and McDermott, 2014; Moore et al., 2013)
modulating the location and intensities of the Icelandic Low
and Azores High (e.g. Moore et al., 2011) and, consequently,
the position of the North Atlantic storm tracks and jet stream
(Woollings et al., 2010; Seierstad et al., 2007; Moore and
Renfrew, 2012).

Existing paleoenvironmental studies from northern Ger-
many point to considerable environmental variability dur-
ing the Holocene (e.g. Dietze et al., 2016; Theuerkauf et

al., 2022; Kaiser et al., 2012) but have rarely been linked
to NAO variability (e.g. Zahrer et al., 2013) even though
coastal areas surrounding the Baltic Sea were identified as
ideal for collecting proxy information on large-scale North
Atlantic atmospheric patterns (e.g. NAO) (Comas-Bru et al.,
2016). Currently, an in-depth understanding of the Holocene
hydroclimatic variability of northern Germany is still lim-
ited because northern Germany has a spatial climatic gra-
dient with an eastward increasing continentality (decrease
in temperature and precipitation) and the majority of stud-
ies have been carried out in areas affected by a more conti-
nental climate (e.g. Dietze et al., 2016; Lampe et al., 2009;
Lorenz, 2007; Theuerkauf et al., 2022). Studies from the
transition zone between more maritime and more continen-
tal climate conditions are rare (e.g. Lorenz, 2007). More-
over, many studies have been carried out on small lacustrine
systems (e.g. Dreßler et al., 2011), in which anthropogenic
impacts may overprint natural climate variations (Haberzettl
et al., 2019). These biases culminate in sometimes contra-
dicting results, e.g. in reconstructed lake-level curves, which
have been used as key tools for hydroclimatic reconstructions
so far (Kaiser et al., 2012). Apart from that, some studies
from that area stress that not all observed lake-level varia-
tions are induced by climatic variations but rather by (anthro-
pogenic) land cover changes influencing evapotranspiration
and, consequently, groundwater recharge (e.g. Theuerkauf et
al., 2022; Dietze et al., 2016).

In this study, we hypothesize that Schweriner See, a large
hard-water lake located approximately 20 km south of the
Baltic Sea and close to the boundary between a more mar-
itime to more continental climate, is a suitable archive to re-
construct impacts of large-scale atmospheric circulation sys-
tems on the northern German lowlands. As Schweriner See
is a large lake with a relatively small catchment compared
to its size (Wöbbecke et al., 2003), we hypothesize that the
lake is less susceptible to anthropogenic biases that may be
experienced when investigating small lacustrine systems and
that sediments from Schweriner See reflect (supra)regional
hydroclimatic variations.

2 Study area

Schweriner See (53°43.256′ N, 11°27.544′ E; 37.8 m a.s.l.)
is located in the northern German lowlands in the western-
most part of the Mecklenburg Lake District (Fig. 1). The
lake has a surface area of 61.54 km2, extends over 24.8 km
in the N–S direction, and is up to 6 km wide in the E–W
direction. The overall catchment area is 414 km2, but the
northern basin, the so-called Schweriner Außensee (SAS),
comprises only 85 km2. The catchment is mainly com-
posed of farmland (47.5 %), water surfaces (20.9 %), forests
(12.8 %), populated areas (10.9 %), grassland (7.6 %), and
others (0.3 %) (Wöbbecke et al., 2003). The lake is mainly
fed by groundwater (∼ 70 %; Michael Lückstädt, Staatliches
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Figure 1. (a) Conceptual overview of the North Atlantic Oscillation (NAO) illustrating the sea level surface pressure during positive (NAO+,
left panel) and negative (NAO−, right panel) phases and how these changes affect westerlies and predominant winds at the study site of
Schweriner See (orange star). (b) Digital elevation model of the area surrounding Schweriner See including bathymetry and Weichselian
moraines (W1F and W2) surrounding Schweriner See in the north and south. The outlets Wallensteingraben and Stör are indicated in the
north and south. The semi-artificial Paulsdamm separates Schweriner See into two basins similar in size, Schweriner Außensee (north) and
Schweriner Innensee (south). Although separated, water exchange is still possible (Wöbbecke et al., 2003). Also indicated is the Baltic Sea (B)
and North Sea (N) watershed along the eastern and northern shoreline. (c) Detailed bathymetric map of Schweriner Außensee including the
coring position (orange star). (d) Generalized classification of Schweriner Außensee based on previous investigations of surface sediment
samples by Adolph et al. (2023). The eastern shallow-water area is characterized by wave- and wind-induced dynamics (beige). The southern
and northern parts are dominated by carbonate precipitation due to increased carbonate-rich groundwater inflow (blue) and productivity
(green).
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Amt für Landwirtschaft und Umwelt Westmecklenburg, per-
sonal communication, 2023) and precipitation but has only
few small inflowing streams (Fig. 1c). Schweriner See is sit-
uated between ice-marginal positions (IMPs) of the Weich-
selian glaciation at the southern and northern end (Krienke
and Obst, 2011). At the southern end, the river Stör nat-
urally drains Schweriner See through a valley formed by
glacial meltwaters that broke through the southern IMP to-
wards the North Sea. In the 16th century, the artificial Wal-
lenstein trench as another outflow was built at the northern
end to connect Schwerin with the Baltic Sea (Fig. 1). The
lake water has a residence time of 11 years (Nixdorf et al.,
2004).

The climate at Schweriner See, as shown by data from
the closest weather station in Schwerin for the period 1991–
2020, is warm–temperate with a mean annual temperature of
9.5 °C, the coldest and warmest month being January (1.6 °C)
and July (18.1 °C). Mean annual precipitation is 631 mm
(DWD Climate Data Center, 2022b, c) and mean annual
water balance is around 60 mm (1971–2000, DWD Climate
Data Center, 2020).

Schweriner Außensee is characterized by a large shallow-
water area (< 5 m water depth) at the eastern littoral area,
which is susceptible to wave- and wind-induced dynamics
caused by the main wind direction from W–SSW (1967–
2022, DWD Climate Data Center, 2022a) resulting in a fetch
of 6–8 km (Fig. 1d; Adolph et al., 2023). Additionally, this
widespread shallow-water area divides Schweriner Außensee
into two subbasins in the north and south. Depositional pro-
cesses of both subbasins are mainly influenced by produc-
tivity in the northern part and carbonate precipitation in the
southern part (Fig. 1d; Adolph et al., 2023). In particular, the
area in the south, close to the so-called Ramper Moor, is char-
acterized by strong carbonate-rich groundwater inflow re-
sulting in increased carbonate precipitation (Fig. 1d; Adolph
et al., 2023; Umweltministerium Mecklenburg-Vorpommern,
2003).

3 Material and methods

3.1 Coring and composite profile

Two parallel sediment cores, SAS21-11 (13.56 m length)
and SAS21-12 (15.51 m length), were obtained in Septem-
ber 2021 from the deepest part of Schweriner See (52 m wa-
ter depth; Fig. 1c) using a 90 mm inner diameter UWITEC
piston corer. Additionally, a short sediment surface core
(SAS22-2, 77.5 cm length) was retrieved in July 2022 using
a 60 mm inner diameter UWITEC gravity corer to guaran-
tee an intact surface. All sediment cores were transported
to the Physical Geography Laboratory of the University of
Greifswald and stored under dark and cool (∼ 4 °C) con-
ditions before further processing. Sediment cores were split
and photographed, and sedimentological properties were de-
scribed according to standard protocols of the Physical Ge-

ography Laboratory of the University of Greifswald. SAS22-
2, SAS21-11, and SAS21-12 were spliced together using
lithological marker layers, resulting in composite sequence
SAS21 of 17.76 m length.

3.2 Chronology

The chronology is based on 13 radiocarbon ages (Poznań
Radiocarbon Laboratory) from terrestrial plant macrofossils
and 18 210Pb/137Cs ages in the uppermost part of the com-
posite profile. 210Pb/137Cs dating was carried out at the En-
vironmental Radioactivity Research Centre of the University
of Liverpool. Freeze-dried sediment samples from sediment
core SAS22-2 were analysed for 210Pb, 226Ra, and 137Cs by
direct gamma assay in the Liverpool University Environmen-
tal Radioactivity Laboratory using Ortec HPGe GWL series
well-type coaxial low-background intrinsic germanium de-
tectors (Appleby et al., 1986). 210Pb was determined via its
gamma emissions at 46.5 keV and 226Ra by the 295 keV and
352 keV γ rays emitted by its decay product 214Pb follow-
ing 3 weeks in storage in sealed containers to allow radioac-
tive equilibration. 137Cs was measured by its emissions at
662 keV. The absolute efficiencies of the detectors were de-
termined using calibrated sources and sediment samples of
known activity. Corrections were made for the effect of self-
absorption of low-energy γ rays within the sample (Appleby
et al., 1992). Unsupported (fallout) 210Pb was calculated by
subtracting 226Ra concentrations from the total 210Pb activi-
ties (Tables S1–S3 in the Supplement). The age–depth model
does not include the lowermost 210Pb/137Cs age, as only the
upper 61 cm of sediment core SAS22-2 is part of the com-
posite profile.

Except for this one age, all ages were used for age–depth
modelling using the R package “rbacon” (v2.5.8, Blaauw and
Christen, 2011) with the IntCal20 calibration dataset (Reimer
et al., 2020) for calibration of radiocarbon data (Tables S3
and S4). In the following, ages are reported as rbacon-derived
mean ages and the uncertainty is based on the upper and
lower limits of the 95 % confidence interval (Fig. 2). The
sedimentation rate was calculated based on this age–depth
model. For this study, only the upper 897.5 cm was investi-
gated in detail as this depth marks the lowermost 14C age and
we refrained from extrapolating the age–depth model.

3.3 Scanning techniques

Visible reflectance spectroscopy (VIS-RS) was carried out
directly on the cling-wrap-covered freshly opened sediment
core surface using a Konica Minolta CM-2600d spectropho-
tometer (8 mm spot, D65 at 10 nm steps from 360–740 nm
wavelength) in a 5 mm resolution (equivalent to a 0.5–3-
year temporal resolution). RGB sediment colour was cal-
culated from L∗a∗b∗ values provided by the SpectraM-
agic NX software (Konica Minolta) using the R package
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Figure 2. Lithology and sediment colour of the composite record SAS21 (left). A higher organic content causes a darker colour, while
a lighter colour is caused by increased carbonate precipitation. The sediment composition is shown as organic matter (LOI550; green),
carbonates (determined by the Scheibler method; blue), and remains (yellow). The age–depth model is based on 14C (probability density
function of the 2σ distribution, blue) and 210Pb/137Cs ages (teal). The mean age and the 95 % confidence interval are shown (centre).
210Pb/137Cs results show a distinct peak for the Chernobyl accident of 1986 (right).

“farver” (v2.1.1.9, Pedersen et al., 2022) and displayed on
an age scale using Grapher (v20, Golden Software).

Hyperspectral imaging was carried out at the Université
Rouen Normandie on U-channels previously extracted from
the sediment cores in Greifswald. We used a VNIR-PDF hy-
perspectral camera (SPECIM). Data were processed as de-
scribed by Jacq et al. (2021) and van Exem et al. (2022). Im-
ages have a spatial resolution between 46×46 and×84 µm2.
Normalization was carried out using the ENVI/IDL 5.5/8.2
software. Following van Exem et al. (2022), the spectral in-
dex Area600–760 was normalized with the Rmean to account
for changes in average reflectance induced by changes in car-
bonate content.

XRF scanning was carried out at GEOPOLAR (Geomor-
phology and Polar Research) at the University of Bremen
with an XRF core scanner (ITRAX, Cox Analytics) at 2 mm
step size (equivalent to a 0.2–1.2-year temporal resolution)
with a Mo tube (30 kV, 50 mA, 5 s exposure time). Scan-
ning XRF-derived elemental variations might be influenced

by sample geometry, physical properties (e.g. water content,
surface roughness, grain size variations), or scanner settings
(Croudace and Rothwell, 2010; Weltje and Tjallingii, 2008).
To reduce such effects, only elements with less than 5 % zero
values (Si, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr) were centre-log-
ratio-transformed (clr) (Aitchison, 1982) using the PAST 4
software (Hammer, 2022).

3.4 Sedimentological and geochemical analyses

Discrete samples were taken at a 1 cm resolution (equiva-
lent to a 1–6-year temporal resolution) using LL channels
(Nakagawa, 2014). Loss on ignition (LOI) was determined
on freeze-dried samples by heating the sediment to 550 °C
for 3 h in a muffle furnace. Residues were used for grain
size analysis. For grain size analysis, carbonates were re-
moved with 5 mL HCl (10 %) and samples were dispersed
overnight in an overhead shaker with 5 mL sodium pyrophos-
phate. Measurements were carried out using a laser particle
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sizer (Fritsch ANALYSETTE 22 MicroTec plus). The first
reproducible run of nine subsequent runs was used for in-
terpretation. Grain size statistics were calculated using the
GRADISTAT 9.1 software (Blott and Pye, 2001).

Carbonate content was determined on ground and homog-
enized samples by the Scheibler method on 0.17 to 0.55 g of
sample material. Subtracting carbonate content and LOI550
from the total sample weight, the percentage of siliciclastics,
which includes a share of silicious algae as revealed by qual-
itative microscopic analyses on the LOI ash residues, was
calculated.

Dried and homogenized sediment samples of 1.8 to
11.3 mg were used to analyse total carbon (TC) and total
nitrogen (TN). Concentrations were obtained using a Euro
EA CNS analyser. TIC was determined with the IC Kit of the
same device and total organic carbon (TOC) was calculated
as TOC=TC−TIC. Measurements were calibrated against
certified reference materials. Error estimates are based on
triple measurements of 18 samples. The precision is 0.77 %–
5.25 % for TN, 0.24 %–0.89 % for TC, and 0.68 %–19.19 %
for TIC. The molar TOC/TN ratio was calculated based on
molecular weights.

3.5 Leaf wax analyses

Leaf wax analyses were carried out at the Physical Geog-
raphy Department of the Friedrich Schiller University Jena.
For this, 1 cm thick samples were taken and pooled with
0.5 cm of sediment above and below the sampling depth.
Sample depths were based on significant changes observed
in the XRF scanning results. This resulted in a sampling dis-
tance of 6 to 63.5 cm (equivalent to a 29–195-year temporal
sampling resolution, with samples covering 5–10 years). To-
tal lipids of the sediment samples (2.5 to 9.1 g of dry sed-
iment) were extracted with 40 mL dichloromethane (DCM)
and methanol (MeOH) (9/1, v/v) using an ultrasonic bath
over three 15 min cycles. The total lipid extract was sepa-
rated by solid-phase extraction using aminopropyl silica gel
(Supelco, 45 µm) as the stationary phase. The n-alkanes were
eluted with 4 mL hexane and further purified using silver ni-
trate (AgNO3−; Supelco, 60–200 mesh). An Agilent 7890
gas chromatograph equipped with an Agilent HP5MS col-
umn (30 m, 320 µm, 0.25 µm film thickness) and a flame ion-
ization detector (GC-FID) was used for identification and
quantification of the n-alkanes relative to external n-alkane
standards (n-alkane mix n-C21–n-C40; Supelco).

Compound-specific stable hydrogen isotope analyses were
carried out for the n-alkanes C23 to C31 using an Iso-
Prime vision IRMS coupled to an Agilent 7890A GC via
a GC5 interface operating in pyrolysis mode with a Max-
Chrome and silver-wool-packed reactor at 1050 °C. The
GC was equipped with a 30 m fused silica column (HP5-MS,
0.32 mm, 0.25 µm). Samples were injected splitless with a
split–splitless injector and each sample was analysed in trip-
licate. δ2Hn-alkane was measured against calibrated H2 ref-

erence gas and all values are reported in per mille against
VSMOW. The precision was checked by co-analysing a stan-
dard alkane mixture (n-C27, n-C29, n-C33) with known iso-
tope composition (Arndt Schimmelmann, Indiana Univer-
sity), injected in duplicate every nine runs. All measurements
were corrected for drift relative to the standard values in
each sequence. n-C23 to n-C31 were abundant in sufficient
amounts for compound-specific hydrogen analyses, but we
will focus on δ2HC25 in the following. Triplicates for the
δ2HC25 had a standard deviation of < 3.3 ‰, and the analyt-
ical error for the standard duplicates was < 1.1 ‰ (n= 9).
The H+3 factor was checked every 2 d and stayed stable at
3.59± 0.08 (n= 3) during the measurements.

3.6 Pollen analyses

Altogether, 89 samples (1 cm thickness, 1–2 cm3) were taken
in a 4 to 16 cm sampling distance (equivalent to an 11–80-
year temporal sampling resolution between samples, with
1 cm thick samples covering 1–6 years). Samples were
treated with 10 % hydrochloric acid (HCl) to dissolve car-
bonates, heated in 10 % potassium hydroxide (KOH) to re-
move humic compounds, and finally soaked in 40 % hy-
drofluoric acid (HF) for at least 24 h to remove the mineral
fraction. Preparation was followed by acetolysis (Berglund
and Ralska-Jasiewiczowa, 1986). Sample slides were anal-
ysed using an ECLIPSE 50i upright microscope and counted
to at least 500 AP (arboreal pollen) grains. Pollen taxa were
identified using atlases (Beug, 2004; Moore et al., 1991)
and the reference grains owned by the Institute of Geoe-
cology and Geoinformation, Adam Mickiewicz University,
Poznań. Pollen percentages were calculated according to
the following formula: taxon percentage= (number of taxon
grains / TPS)× 100 %, where TPS indicates the total pollen
sum including the AP and non-arboreal pollen (NAP) taxa
and excluding the local and spore-producing plants.

3.7 Diatom analyses

For diatom analysis, 91 samples (1 cm thickness, 1–2 cm3)
were taken at the same sampling resolution as the pollen
analyses (4 to 16 cm sampling distance, equivalent to an 11–
80-year temporal sampling resolution between samples, with
1 cm samples covering 1–6 years). Approximately 1 g of sed-
iment was treated with HCl, H2O2, H2SO4, and KMnO4
as described by Kalbe and Werner (1974). Residues were
mounted on slides with Naphrax® to study them with a
light microscope (Zeiss Axio Scope, oil-immersion plan-
apochromatic objective, magnification 1000×, numerical
aperture 1.4). At least 450 diatom valves were counted for
each sample. Diatom species identification and classifica-
tion as eutraphentic diatoms followed Krammer and Lange-
Bertalot (1986, 1988, 1991a, b), Krammer (1997a, b, 2000,
2002, 2003), Lange-Bertalot (2001), and Lange-Bertalot et
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al. (2011, 2017). The abundance of eutraphentic diatoms was
calculated as proposed by Adolph et al. (2023).

3.8 Statistics

Similar sedimentological and geochemical composition in-
tervals were established using a stratigraphically constrained
cluster analysis on clr-transformed XRF data and sedimen-
tological parameters. XRF data were scaled to a 1 cm res-
olution by calculating the mean for each centimetre to ac-
count for differences in resolution and noise between XRF
scans and sedimentological data. Calculations were carried
out using the R package “rioja” (v. 1.0.5) (Juggins, 2022).
As the cluster analysis did not cover some changes or would
have resulted in too many clusters, we included additional
unit boundaries based on visual inspection (units C1 to C2 as
well as D1, D2, and D3). Pearson’s r values were calculated
with the R package “Hmisc” (v. 5.0-1; Harrell, 2023) (Fig. S1
in the Supplement). Values with p < 0.001 were considered
significant and are mentioned in the text.

4 Results

4.1 Lithology, chronology, and sedimentation rate

Based on the hierarchical constrained cluster analysis, the
897.5 cm long sediment sequence was divided into six ma-
jor lithological units (A–F; Fig. 2). Unit C was subdivided
into C1 and C2 based on changes in Ticlr (Fig. 3) and
D into three subunits (D1–D3) based on variations in the or-
ganic matter content (Fig. 2). Generally, boundaries between
units are mainly characterized by colour changes (Fig. 2),
with lighter colours representing an increased carbonate con-
tent and darker colours an increased organic matter content
(Fig. 2). Organic-rich sediment occurs from 878.5–844.5 cm
sediment depth (30 %–65.5 % organic matter, unit B) and is
similar in unit D2 (20.3 %–38.8 % organic matter; Fig. 2).
In contrast, carbonate content is highest in unit C (69.8 %).
Otherwise, the sediment is composed of siliciclastic material,
which includes a share of diatoms and other silicious algae
and is somewhat increased above 752.5 cm sediment depth
marking the boundary between unit C1 and C2 (Fig. 2).

Bayesian age–depth modelling gave a basal mean age of
3070+170/−210 cal BP for the bottommost sample considered
for interpretation in this contribution (897.5 cm). All ages are
in stratigraphic order and overlap with the 95 % confidence
interval of the age–depth model (Fig. 2). The topmost age is
determined by the recovery of the short sediment surface core
taken in July 2022. Total 210Pb activity reached values close
to equilibrium at 65 cm sediment depth. The concentration
of the artificial radionuclide 137Cs has a well-defined peak
at 29–28 cm, suggesting that this peak records fallout from
the 1986 Chernobyl accident (Fig. 2). As the peak is well-
resolved, it suggests relatively little sediment mixing within
this core. A smaller and less distinct peak at 45–44 cm may

record the fallout peak in the early 1960s from the atmo-
spheric testing of nuclear weapons. The sedimentation rate
is 2–3 mm a−1 between 897.5 cm (3070+170/−210 cal BP)
and 298 cm (620+35/−50 cal BP) (Fig. 2) and increases
to 4 mm a−1 at 56 cm (7+10/−10 cal BP). Above 56 cm
(7+10/−10 cal BP) the record yields a much higher sedimen-
tation rate of 5–10 mm a−1.

4.2 Sediment composition

Ticlr and Kclr show a significant positive correlation (r =
0.79; Figs. 3 and S1). Ticlr is partly in agreement with grain
size means (r = 0.54), which is mostly related to variations
in sand content (r = 0.94). However, not all Ticlr maxima
are reflected in grain size mean. Grain size means range
from 11.56–56.98 µm with maximum values at the transition
from unit A to B and in units D2 and F (Fig. 3). Maximum
grain size mean is characterized by Sand>125 µm up to 21.5 %
(Fig. 3).

Parameters for organic matter content, LOI550, TOC,
TN, and inc / coh, are significantly correlated (r > 0.70;
Fig. S1), ranging from 8.1 % to 65.5 %, 4.6 % to 20.3 %,
and 0.07 % to 2.2 %, respectively. All agree visually well
with in situ chloropigments (Area600–760; Fig. 3). Addition-
ally, Sr/Ca is significantly correlated with e.g. inc / coh (r =
0.80) or LOI550 (r = 0.62; Fig. S1). Organic matter param-
eters are highest in units B and D2 and minimal in units C
and E (Fig. 3). TOC/TN is mostly < 12, ranging 6.2–21.6
with higher values in units C1 and F. Minimum values are
observed in unit E (Fig. 3). The individual and summed (C21–
C35) n-alkane concentrations correlate with the organic mat-
ter parameters of Schweriner See (r > 0.80; Figs. S1 and S2).
The n-alkane concentration ranges from 6.9 to 42.1 ng g−1,
with maximum values in units B and D2 and minimum val-
ues in units C2 and E (Fig. 3). δ2HC25 shows a similar
pattern as δ2HC23–31 and ranges from −171.9± 1.17 ‰ to
−151.96± 0.05 ‰, being minimal in units C and F and hav-
ing maxima in units B, D2, and E (Figs. S2 and 3). Ca, Sr, and
TIC are significantly correlated with each other but are neg-
atively correlated with LOI550, TOC, TN, and inc / coh (r >
−0.76). Consequently, values are lowest in units B and D2
and highest in units C and E with TIC and carbonate values
ranging from 0.1 % to 7.2 % and 8.4 % to 69.8 %, respec-
tively (Fig. 3).

Diatom abundance is characterized by planktonic di-
atoms between 50.6 % and 90.1 %, with maximum values in
units B and F and minimum values between units B and C
(Fig. 3). Eutraphentic diatoms range from 1.4 % to 22.5 %
in units A–E. Above, they increase up to 92.1 % in unit F
(Fig. 3).

∑
(Cu,Ni,Zn)clr is correlated with eutraphentic di-

atoms (r = 0.63; Fig. S1). The diatoms species S. chantaicus
Genkal & Kuzmina occurs only in units C and E concur-
rently with minima in the organic matter content (Fig. 3).
Pollen composition is characterized by a dominance of arbo-
real pollen (AP) between 77.37 % and 98.91 %, with maxima

https://doi.org/10.5194/cp-20-2143-2024 Clim. Past, 20, 2143–2165, 2024



2150 M.-L. Adolph et al.: North Atlantic Oscillation polarity during the past 3000 years

Figure 3. Sedimentological, geochemical, spectral, and micropaleontological characteristics of sediment sequence SAS21. (a) Wave-
and wind-induced processes (brown lines) are represented by potassium (Kclr), titanium (Ticlr), grain size mean, and sand frac-
tion> 125 µm (Sand>125 µm). Productivity (green lines) is shown by total organic carbon (TOC), total nitrogen (TN), loss on ignition
550 °C (LOI550), the inc / coh ratio, and chlorophyll a and its derivates (area600–760/Rmean, 101-point running average). The n-alkanes
and their isotopic signatures are exemplary (δ2H of nC25). (b) Carbonate precipitation (blue lines) is represented by the carbonate content,
total inorganic carbon (TIC), calcium (Caclr), strontium (Srclr), and the Sr/Ca ratio. Diatom abundance is represented by the percentage
of planktonic (teal area) and benthic (light blue area) diatoms, the abundance of eutraphentic diatoms indicating eutrophication, and the
under-ice blooming diatom Stephanocostis chantaicus. Land cover changes are indicated by palynological investigations represented by the
arboreal pollen (AP) and non-arboreal pollen (NAP) (dark green vs. lime green area) as well as summed Carpinus betulus and Fagus sylvat-
ica (very dark green area) percentages. Human impact is represented by

∑
(Cu, Ni, Zn) (orange line). XRF data (Ti, K, inc / coh, Ca, Sr,

ln(Sr/Ca) and
∑

(Cu, Ni, Zn)) are shown at a 2 mm resolution and as a 9-point running average.
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in units C1 and D2 and minima in units E and F.
∑

(Carpi-
nus betulus, Fagus sylvatica) ranges between 1.3 % and 39 %
with a maximum in unit D2 and minimum values in units A–
C2 and F (Fig. 3).

5 Interpretation and discussion

5.1 Organic matter and δ2H as indicators for
NAO-related hydroclimatic variability

5.1.1 Organic matter as an indicator for winter
temperature variability

Traditionally parameters for organic matter content in lake
sediments (e.g. LOI550, TOC, TN, and inc / coh) are inter-
preted as indicators of changes in organic matter preservation
and/or in-lake productivity (e.g. Dräger et al., 2017; Hodell
and Schelske, 1998). LOI550, TOC, TN, and inc / coh are sig-
nificantly correlated with each other but significantly nega-
tively correlated with parameters indicating carbonate pre-
cipitation (Ca, Sr, and TIC; Haberzettl et al., 2005, 2009,
2019). This suggests that one suite of parameters dilutes the
other. Organic matter parameters agree visually well with in
situ chloropigments (Area600–760; Fig. 3), which are indica-
tive of past primary productivity (van Exem et al., 2022). Ad-
ditionally, TOC/TN is mostly < 12, which suggests a dom-
inance of nonvascular aquatic plants with only a small con-
tribution of vascular plants (Meyers and Ishiwatari, 1993).
Therefore, we consider the organic matter content to be an
indicator for in-lake productivity. This is supported by the
significant correlations between the Sr/Ca ratio and organic
matter parameters. The Sr/Ca ratio suggests changes in the
carbonate precipitation mechanism between biogenic calcite
precipitation (higher Sr/Ca) and inorganic calcite precipita-
tion (lower Sr/Ca) because biogenically precipitated calcite
has higher Sr contents than inorganically precipitated calcite
(Hodell et al., 2008). These phases of increased biogenic cal-
cite precipitation coincide with phases of higher organic mat-
ter content, which supports our conclusion that organic mat-
ter content is driven by in-lake productivity rather than being
a preservation signal (Fig. 3). Moreover, this suggests that in-
organic carbonate precipitation might be the background sed-
imentation at the coring location, which is diluted by changes
in productivity. However, biogenically induced calcite pre-
cipitation during high-productivity periods may have addi-
tionally enhanced the organic matter preservation (Hodell
and Schelske, 1998).

Often, changes in in-lake productivity are related to
changes in temperature and/or nutrient availability (Kasper
et al., 2013; Günther et al., 2016; Doberschütz et al., 2014).
At Schweriner See, the abundance of eutraphentic diatoms
is indicative of increased nutrient availability and correlates
with

∑
(Cu,Ni,Zn)clr, which both suggest an anthropogenic

forcing, namely eutrophication and contamination (Adolph
et al., 2023). However, since the abundance of eutraphen-

tic diatoms (Fig. 4) suggests increased nutrient availability
only after 105+95/−75 cal BP (unit F; Fig. 4), we consider
a major anthropogenic forcing on the in-lake productivity
to have been negligible before. We rather suggest that pro-
ductivity was driven by temperature variability (units A–
E). The influence of temperature variations on in-lake pro-
ductivity is supported by the repeated occurrence of the di-
atom species S. chantaicus during low-productivity phases
(Fig. 4). S. chantaicus grows underneath the ice cover and
is associated with long-lasting ice cover duration until the
spring months (Scheffler and Padisák, 2000). Such long-
lasting ice cover under colder winter conditions may sub-
stantially affect the seasonal heat budget, timing, and length
of stratification but also the productivity of aquatic ecosys-
tems (e.g. Bonsal et al., 2006) because long-lasting ice cover
delays the onset of the growing season and/or reduces water
temperatures. This results in reduced productivity of the lake
system. In contrast, during milder winter temperatures the
growing season may start earlier and surface water temper-
atures may already be increased, which prolongs the grow-
ing season and results in higher productivity of the lake sys-
tem. Based on the sample thickness for diatom analysis of
1 cm, which covers 1–6 years depending on the sedimenta-
tion rate, it is not possible to distinguish between individ-
ual years. However, the regular occurrence of S. chantaicus
suggests that it is not triggered by single events but rather
by long-lasting changes in environmental conditions. This is
also supported by long-lasting phases of lower in-lake pro-
ductivity during which S. chantaicus occurs (units C and E;
Fig. 4).

Therefore, we suggest that before 105+95/−75 cal BP in-
lake productivity was mainly driven by winter temperature
variability modulating ice cover duration and, consequently,
heat budget and growing season length (e.g. Schmidt et al.,
2019; Bonsal et al., 2006; Blenckner et al., 2007). In the fol-
lowing, inc / coh as an organic matter indicator is used as
a winter temperature signal because this parameter has the
highest temporal resolution (Fig. 4).

5.1.2 δ2HC25 as indicators for moisture source changes
and/or evaporative enrichment

Lacustrine sediments generally contain a mixed signal from
terrestrial and aquatic sources, which can be distinguished
by the n-alkane chain-length distribution (e.g. Strobel et al.,
2021; Ficken et al., 2000). Classically, long-chain n-alkanes
(e.g. C27–C31) are suggested to be produced as leaf waxes
by higher terrestrial plants and primarily incorporate the lo-
cal growing season precipitation as their primary source wa-
ter for photosynthesis (e.g. Sachse et al., 2012; Strobel et
al., 2020, 2022a). However, the δ2H signal of precipitation
mainly depends on the atmospheric moisture source of the
precipitation in the mid-latitudes (Strobel et al., 2020, 2022b;
Bliedtner et al., 2020; Wirth and Sessions, 2016). Additional
fractionation processes can occur at the plant–soil interface,
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Figure 4. Stratigraphic diagram of the past 3070+170/−210 cal BP of SAS21 plotted on an age scale showing sediment colour as an indicator
for lithological changes. Sand>125 µm indicates changes in wave energy and, thus, storminess. Ticlr (9-point running average, brown line)
indicates paleo-shoreline distance and inc / coh (green line) productivity, which is influenced by winter temperature variability. Eutraphentic
diatoms represent the trophic state based on nutrient supply to Schweriner See, which only increases after 105+95/−75 cal BP (unit F). The
diatom species Stephanocostis chantaicus (teal line) is strictly associated with ice cover duration (Scheffler and Padisák, 2000) and occurs in
phases of low productivity. δ2HC25 indicates changes in the moisture source region. Land cover is shown by the relation between the arboreal
pollen (AP) and non-arboreal pollen (NAP) (dark green vs. light green area). Additionally, changes in the forest composition are represented
by the sum of Carpinus betulus and Fagus sylvatica (orange line) indicating milder and moister conditions.

with the evaporation of soil water and transpiration of leaf
water being prominent factors (Feakins and Sessions, 2010;
Kahmen et al., 2013; Zech et al., 2015). In contrast, short-
chain n-alkanes are produced by aquatic macrophytes and
algae (e.g. C21–C25) and incorporate the δ2H signal of the
lake’s water, which integrates the δ2H precipitation signal
throughout the year. Depending on the morphometric and
hydrological parameters of the lake itself, lake water can
be strongly modulated by evaporative lake water enrichment
(e.g. Aichner et al., 2022; Mügler et al., 2008; Sachse et al.,
2004; Strobel et al., 2022a). Notably, this classic n-alkane
source attribution (terrestrial vs. aquatic) is not always trivial
because, for example, aquatic emergent plants can also syn-
thesize distinct quantities of long-chain n-alkanes (≥C27).

These also incorporate the δ2H signal of the lake’s water,
challenging the interpretation of the δ2H signal (Ficken et
al., 2000; Yang and Bowen, 2022).

The correlations between individual and summed (C21–
C35) n-alkane concentrations with the organic matter pa-
rameters of Schweriner See indicate a predominance of in
situ aquatically derived n-alkanes (e.g. Strobel et al., 2022b;
Sachse et al., 2004). This is supported by the TOC/TN ratio
mostly being < 12 and therefore indicating the dominance
of nonvascular aquatic plants with only a small contribu-
tion of vascular plants (Meyers and Ishiwatari, 1993). The
comparable pattern of compound-specific isotopic hydrogen
signatures (δ2H) of the n-alkanes C23 to C31 (Fig. S2) fur-
ther indicates a predominant aquatic origin of the n-alkanes

Clim. Past, 20, 2143–2165, 2024 https://doi.org/10.5194/cp-20-2143-2024



M.-L. Adolph et al.: North Atlantic Oscillation polarity during the past 3000 years 2153

(e.g. Strobel et al., 2022b; Sachse et al., 2004). We therefore
suggest that the majority of the n-alkanes are of aquatic ori-
gin. Although the compound-specific δ2H of all detectable n-
alkanes shows a comparable pattern, mixing can complicate
the interpretation of the longer-chained n-alkanes. Therefore,
we will focus on δ2H of C25 (δ2HC25 ) in the following be-
cause C25 and its δ2H signal provide the most robust aquatic
end-member.
δ2HC25 is more enriched during periods of milder win-

ter temperatures (units A–B and D) and more depleted dur-
ing periods of colder winter temperatures (units C and E;
Fig. 4), which can be explained by the following two factors:
(i) since the aquatically derived δ2HC25 primarily reflects δ2H
of the lake’s water and year-round precipitation, Schweriner
See’s position in the mid-latitudes suggests that δ2HC25 is
mostly related to moisture source changes in the North At-
lantic region. More enriched δ2HC25 values may therefore
correspond to isotopically enriched southern–central North
Atlantic moisture sources (Fig. 1a). In contrast, more de-
pleted δ2HC25 values originate from isotopically depleted
moisture sources from the northern North Atlantic and/or
Arctic region (e.g. Baldini et al., 2008). Still, (ii) enriched
δ2HC25 could also result from temperature-driven evapora-
tive lake water enrichment, as frequently reported from semi-
arid regions (Mügler et al., 2008; Strobel et al., 2022a), with
a higher evaporative lake water enrichment during warmer
temperatures and a lower evaporative lake water enrichment
during colder temperatures.

5.1.3 NAO variability during the past 3000 years on an
interregional scale

Distinct variations in winter temperatures, moisture source
region, and/or evaporative lake water enrichment (Fig. 5) are
mainly modulated by the North Atlantic Oscillation (NAO)
in the North Atlantic region (Hurrell and Deser, 2009).
We observe four distinct time slices at Schweriner See:
(i) from 3030+170/−210 to 2820+180/−180 cal BP (unit A–B;
Fig. 4) and 2110+160/−130 to 830+100/−90 cal BP (unit D;
Fig. 4), milder winter temperatures, a southern moisture
source region in the southern–central North Atlantic, and/or
a higher evaporative lake water enrichment indicate NAO+
conditions. On the contrary, (ii) from 2820+180/−180 to
2110+160/−130 cal BP (unit C; Fig. 4) and 830+100/−90 to
105+95/−75 cal BP (unit E; Fig. 4) colder winter tempera-
tures, a northern moisture source in the northern North At-
lantic and/or Arctic regions, and/or lower evaporative lake
water enrichment correspond to NAO− conditions. Rates of
changes between positive and negative NAO conditions vary
between the individual phases, e.g. with a rapid drop in win-
ter temperature around 2820+180/−180 cal BP but a gradual
increase from 2110+160/−130 to 1720+70/−70 cal BP (Fig. 5).

Paleoenvironmental reconstructions from other NAO-
sensitive records from Greenland (Olsen et al., 2012), Nor-
way (Faust et al., 2016), Scotland (Baker et al., 2015), and

Sweden (St. Amour et al., 2010) are in good agreement with
signals from our record (Fig. 5). Similarly, NAO+ conditions
were inferred from 3030+170/−210 to 2820+180/−180 cal BP
for central Scandinavia (St. Amour et al., 2010) and Green-
land (Olsen et al., 2012) (Fig. 5). Subsequent NAO− con-
ditions from 2820+180/−180–2110+160/−130 cal BP corre-
sponding to predominantly NAO− conditions were recon-
structed in all NAO-sensitive records used for comparison
(Fig. 5). Such NAO− conditions coincide with an over-
all shift to cooler and/or wetter and/or windier conditions
around 2800 cal BP (2.8 ka event) in the North Atlantic re-
gion (e.g. Engels et al., 2016; Martin-Puertas et al., 2012;
Rach et al., 2017; van Geel et al., 2000, 2014; Mellström
et al., 2015; Harding et al., 2023; Martínez Cortizas et al.,
2021). These climatic shifts are widely attributed to changes
in solar activity, namely the Homeric Minimum (∼ 2800–
2550 cal BP; Reimer et al., 2020), whose onset is within
the error range of observed cooler conditions at Schweriner
See (2820+180/−180 cal BP). These changes in solar activ-
ity triggered rapid climate change and likely changes in at-
mospheric circulation patterns. Some studies associate solar
minima with shifts to NAO− conditions (e.g. Shindell et al.,
2001; Gray et al., 2016), as observed in this study at Schw-
eriner See. Other studies suggest a weakening of the sub-
polar gyre, resulting in changes in the atmospheric circula-
tion by more frequent and persistent atmospheric blocking
(Moffa-Sánchez et al., 2014), which would mirror NAO−
conditions. Sjolte et al. (2018) suggest a complex response
to solar minima, which is not directly linked to the NAO
but rather to the eastern Atlantic pattern with increased mid-
Atlantic blocking and shifts to intensifying northerly winds.
These changes resemble NAO− conditions. Such shifts in the
eastern Atlantic pattern during solar minima are supported
by Harding et al. (2023) for the North Sea region. Yet, at
Schweriner See negative NAO conditions are inferred un-
til 2110+160/−130 cal BP and thus prevail beyond the Home-
ric Minimum. Contemporaneously, dominating northerly to
easterly winds are reported from 2550 to 2050 BP as deter-
mined by optically stimulated luminescence (OSL) for the
nearby Darss area (ca. 110 km northeast of Schweriner See;
Lampe and Lampe, 2018), which are also commonly asso-
ciated with NAO− conditions in NE Germany. Similarly,
cooler conditions are observed at nearby Rugensee for 2800–
1650 cal BP (Dreßler et al., 2011), both confirming extended
NAO− conditions beyond the Homeric Minimum in NE Ger-
many.

The shift to NAO+ conditions from 2110+160/−130 to
−830+100/−90 cal BP coincides with the Roman Warm Pe-
riod (RWP, ca. 2150–1550 cal BP), which was a period of
general warmth in Europe (Lamb, 2013). Similar shifts to
NAO+ conditions were reconstructed from archives from
Scotland (Baker et al., 2015), Norway (Faust et al., 2016),
and central Scandinavia (St. Amour et al., 2010) (Fig. 5).
Considering chronological uncertainties, this is also in agree-
ment with NAO reconstructions from Greenland (Olsen et
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Figure 5. Comparison of a (hydro)climatic reconstruction from Schweriner See with different archives, solar minima (Usoskin et al., 2007),
and storminess. Phases of higher or lower lake levels of Schweriner See inferred from (paleo-)lacustrine landforms, archaeological findings,
and historical documents are shown in blue and red (Adolph et al., 2022; Lorenz et al., 2017; Konze, 2017; Umweltministerium Mecklenburg-
Vorpommern, 2003), which agree with changes in shoreline distance (brown line, 51-point average) inferred from Ticlr (this study) and
hydroclimatic reconstructions from Dosenmoor (Daley and Barber, 2012) differentiating between drier and wetter conditions. Please note
the reversed axis for both parameters. Moisture source region variations modulated by NAO variations are inferred from δ2HC25 , with more
depleted values suggesting a northwards displacement and/or a lower evaporative enrichment and, on the contrary, more enriched values
suggesting a southwards displacement and/or higher evaporative enrichment. These variations coincide with variations in winter temperature
as inferred from productivity (inc / coh values, green line). NAO time slices were inferred from distinct changes in δ2HC25 and inc / coh.
Hydroclimatic variations are compared to NAO reconstructions from Norway (Trondheimfjord: TJF; Faust et al., 2016), NW Scotland
(stalagmite growth rate; Baker et al., 2015), Greenland (PCA3 of PCA; Olsen et al., 2012), and central Scandinavia (inferred lake water
δ18O records of Lake Spåime and Lake Svartkalstjarn; St. Amour et al., 2010), showing a similar NAO variability over the last 3000 years.
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al., 2012) for which a predominantly stable NAO+ was sug-
gested from 2000 to 550 cal BP.Contemporaneously we ob-
serve a shift in forest composition with an expansion of beech
(Fagus sylvatica) and hornbeam (Carpinus betulus) at Schw-
eriner See (Figs. 3 and 4). This was most likely induced by
overall milder and moister winter conditions leading to op-
timal growing conditions (e.g. Bradshaw et al., 2010). How-
ever, anthropogenic activities, e.g. soil changes, cannot be
excluded (Giesecke et al., 2017).

Predominantly NAO− conditions between
830+100/−90 and 105+95/−75 cal BP are contemporane-
ous with a long-term cooling trend associated with repeated
phases of volcanic-solar downturns in Europe (PAGES 2k
Consortium, 2013). Compared to the previous NAO−
phase, this period shows a stable low winter temperature
but repeated shifts to a northern moisture source region
and/or low evaporative lake water enrichment, e.g. around
860+95/−95 and 540+65/−90 cal BP. Considering chrono-
logical uncertainties, both shifts might align with solar
minima, i.e. the Oort (940–880 cal BP) and Spörer (560–
400 cal BP) solar minima (Usoskin et al., 2007). From
800 to 500 BP (OSL), NAO− conditions are supported
by frequent strong winds from the northern and eastern
directions in the Darss area (Lampe and Lampe, 2018). After
105+95/−75 cal BP, the temperature signal inferred from the
organic matter is likely masked by eutrophication driving
in-lake productivity (Adolph et al., 2023), which prevents us
from linking our NAO reconstruction to recent monitoring
data (e.g. ice cover duration) from Schweriner See.

5.2 Minerogenic input as an indicator for various
interacting processes

5.2.1 Processes affecting minerogenic input at
Schweriner See

The correlated minerogenic elements titanium and potas-
sium are often regarded as a proxy for minerogenic input
from the catchment (Haberzettl et el., 2005, 2019; Davies
et al., 2015). Minerogenic input is associated with windier
and/or wetter conditions (Davies et al., 2015). During times
of increased windiness, one would expect increased minero-
genic input because an additional aeolian component should
be introduced to the lake (Haberzettl et al., 2009). How-
ever, the pollen composition suggests a closed-canopy for-
est (AP pollen; Fig. 4), which inhibits aeolian erosion and
transport. During times of wetter conditions, increased sur-
face run-off should bring more allochthonous material into
the lake (Haberzettl et al., 2007). However, Schweriner See
has hardly any aboveground inflows and is mainly fed by
groundwater (Wöbbecke et al., 2003), which has no impact
on particulate minerogenic matter transport. Therefore, wet-
ter conditions may result in a higher lake level but without an
increased minerogenic matter supply to the coring location.
As aeolian input and aboveground inflow are of minor impor-

tance for Schweriner Außensee, we suggest that minerogenic
input is mainly modulated by the unique morphometry of the
lake basin, in particular the broad shallow-water area in front
of the eastern shoreline (Fig. 1c). This area is most likely
the main source for minerogenic material because surface
sediment sampling revealed the highest values for minero-
genic elements there (e.g. Ti, K; Adolph et al., 2023). During
higher (lower) lake levels, the shallow-water area would be
further away from (closer to) the coring site, which results
in a reduced (higher) transport of wave-eroded minerogenic
material towards the coring site.

Our interpretation of minerogenic matter supply as a
shoreline distance indicator is supported by previous inves-
tigations of (paleo-)lacustrine landforms (e.g. beach ridges,
nearshore bar) on the northeastern shoreline of Schweriner
See (Adolph et al., 2022). These landforms indicate higher
lake levels during reduced minerogenic input at our cor-
ing site at 3020± 260, 330± 50, and 260± 40 BP (OSL;
Fig. 5). In contrast, lower lake levels are implied for 1050 to
950 BP (archaeological findings, Konze, 2017; Lorenz et al.,
2017), 585± 75 BP (OSL; Fig. 5; Adolph et al., 2022), and
120 to 100 BP (historical documents, Umweltministerium
Mecklenburg-Vorpommern, 2003) which coincide with a
higher minerogenic matter supply to our coring site (Fig. 5).
The interpretation of Ticlr as a shoreline distance indicator
is supported by the partial correlation between minerogenic
elements K and Ti with the grain size mean. Both grain size
means and medians have been used in large lakes as paleo-
shoreline distance indicators; e.g. Kasper et al. (2012) and
Haberzettl et al. (2024) argue that during episodes of higher
lake levels – and therefore a larger shoreline distance to the
coring location – coarser grains do not reach the coring loca-
tion. Similarly, Bonk et al. (2023) suggest for Lake Lubińskie
that during lower lake levels, shorelines are exposed and
more susceptible to erosion. Consequently, Ti is increased
at the coring location during lower water levels there as well.

To reliably assign lake-level variations at Schweriner See,
wind speed and wind direction changes have to be con-
sidered as well. Due to a fetch of 6–8 km, the eastern
shoreline of Schweriner See is highly susceptible to wind-
induced wave action, which might have affected the sensitiv-
ity of Ticlr as a lake-level indicator. Therefore, minerogenic
matter supply may additionally be influenced by (i) wind
speed changes and increased storminess and/or (ii) wind di-
rectional changes. Wind speed changes and increased stormi-
ness control the wave energy and, consequently, the amount
of eroded and transported material. Such changes should be
reflected in the grain size mean because during periods of in-
tensified wind coarser grains are reworked. These additional
processes may explain why the minerogenic elements and the
grain size mean are only partly correlated.

Compared to other phases with a similarly high Ti content,
the grain size mean is particularly increased at the transition
from units A to B at 3020+180/−210 to 2940+190/−200 cal BP
and in unit D2 from 1660+40/−50 to 1120+90/−100 cal BP
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(Fig. 5). Concurrently with the first interval, a nearshore
bar (3020± 260 BP; OSL) was deposited at the northeast-
ern shoreline. Despite the high Ti content, this indicates
a higher lake level as it was deposited up to 1.2 m above
today’s lake level (Adolph et al., 2022). Secondly, within
this nearshore bar sediment sequence several layers of very
coarse grains (> 2 mm) were deposited, which is only pos-
sible under high wave energy driven by increased wind
speed. This is in agreement with a higher percentage of sand
at the distal coring location of SAS21 (Fig. 5). Such in-
creased storminess is also reconstructed from records from
the Danish North Sea coast between 3300 and 2800 BP
(Goslin et al., 2018) and SW Sweden from 3050 to 2850 BP
(Björck and Clemmensen, 2004). In the second interval be-
tween 1660+40/−50 and 120+90/−100 cal BP, the Ti signal
is also likely related to strongly increased wind-induced
wave energy which increased the minerogenic supply to
the coring location and masked the shoreline distance sig-
nal. This agrees with similar observations from NW Europe
from 1700 to 1100 cal BP (Pouzet et al., 2018) and 1900 to
1050 cal BP (Sorrel et al., 2012) as well as from SW Swe-
den around 1500 cal BP (de Jong et al., 2006, 2007). Both
phases are consistent with NAO+ conditions (Fig. 5), which
are associated with stronger westerlies and increased stormi-
ness, supporting the interpretation of the coarser grain sizes.
Consequently, sections with high Ti content in combination
with coarser grain sizes do not necessarily correspond to a
lower lake level but may also be triggered by increased wind-
induced wave action. To reliably infer changes in shore-
line distance, Ti has to be evaluated against the grain size
mean and Sand>125 µm as indicators for wind speed changes,
which may sometimes dominate the signal, particularly un-
der NAO+ conditions.

5.2.2 Lake-level variability of Schweriner See

To test the reliability of Ticlr as a proxy for lake-level vari-
ations, we compare it to bog surface wetness reconstruc-
tions from peat bog Dosenmoor (ca. 105 km northwest of
Schweriner See; Fig. 5; Barber et al., 2004; Daley and Bar-
ber, 2012). Bog surface wetness is assumed to reflect the
summer moisture deficits mainly driven by precipitation but
reinforced by temperature (Charman et al., 2009). Simi-
lar processes drive recent lake-level variations at Schwer-
iner See. For example, a summer moisture deficit due to
the 2018 European drought resulted in a severe lake-level
drop (Landesamt für Umwelt, Naturschutz und Geologie
Mecklenburg-Vorpommern, 2018), which could not be com-
pletely compensated for by winter precipitation. Therefore,
we suggest that bog surface wetness is a suitable proxy for
comparison. Generally, lake-level variations from Schwer-
iner See align well with reconstructed wetter and drier con-
ditions at Dosenmoor (Fig. 5; Barber et al., 2004). How-
ever, two instances deviate: (i) despite Ticlr at Schweriner
See at 3020+180/−210 to 2940+190/−200 cal BP being similar

to Dosenmoor (Fig. 5; Barber et al., 2004; Daley and Bar-
ber, 2012), we inferred a higher lake level supported by the
deposition of a nearshore bar for this period. This inconsis-
tency could be resolved if a lake-level drop concurrent with
stormier conditions is assumed. Such a drop may result in the
deposition and preservation of the nearshore bar and a higher
Ti supply due to both processes, i.e. windier conditions and a
subsequent lower lake level (Fig. 5). This is supported by
the sediment succession in the nearshore bar, which sug-
gests rapid continuous sedimentation with no evidence of
post-depositional erosion (Adolph et al., 2022). (ii) From
1660+40/−50 to 1120+90/−100 cal BP our Ticlr shoreline dis-
tance signal indicates dry conditions. However, this period
was masked by increased storminess and therefore differs
from the reconstruction from Dosenmoor. Considering that
wetter conditions were widely reconstructed for several Eu-
ropean records (Magny, 2004; Büntgen et al., 2021; Starkel
et al., 2013; Fig. 6), it is likely that the lake level was higher
at Schweriner See as well.

In summary, we infer the following lake-level his-
tory for Schweriner See: a higher lake level than today
between 3070+170/−210 and 2380+170/−150 cal BP was
followed by a lower lake level from 2380+170/−150 to
2050+130/−110 cal BP and, again, a higher lake level
until 1660+40/−50 cal BP. Despite the contradicting
signals discussed above between 1660+40/−50 and
1120+90/−100 cal BP, the lake level was likely higher
than today. Afterwards, a lower lake level occurred between
1050+90/−70 and 850+100/−90 cal BP, which aligns with a
suggested lake level at least 2 m below the modern one based
on archaeological findings at Schweriner See (Konze, 2017;
Lorenz et al., 2017). This phase is followed by a higher
lake level from 850+100/−90 to 650+40/−40 cal BP and a
lower lake level from 650+40/−40 to 410+95/−110 cal BP,
which coincides with peat deposits below today’s lake level
deposited around 530+35/−25 cal BP (Fig. 5; Adolph et al.,
2022). A higher lake level is indicated from 410+95/−110 to
210+105/−95 cal BP (Fig. 5; OSL; Adolph et al., 2022). The
subsequent lake-level decline concurs with the construction
of the Wallensteingraben in the 16th century (Fig. 1) because
by establishing this second outflow, the major natural
watershed divide between the Baltic Sea and the North
Sea was cut through. The second outflow has changed
discharge characteristics and resulted in a lake-level decline
(Carmer, 2006; Adolph et al., 2022). The other outflow,
the Stör waterway, likely had no significant influence on
the lake level because, for example, around 1830 CE, the
river was so shallow that it was difficult to navigate the
Stör even with boats with shallow drafts (Ruchhöft, 2017).
Only the expansion of the Stör waterway around 1848 CE
forced a lower lake level (Fellner, 2007; Umweltministerium
Mecklenburg-Vorpommern, 2003), which might align with
increased Ti at the coring site (Fig. 5). This resulted in the
division of the two previously openly connected lake basins
of Schweriner See into the two separated ones we see today
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Figure 6. Comparison of hydroclimate records covering the past 3000 years. Left: map of the location of the records. Grey areas indicate the
spatial extent of paleoenvironmental overview studies (A–C). The blue arrow indicates the NW–SE direction where the compared records are
arranged. DEN: Denmark, POL: Poland, CZE: Czechia, AUT: Austria, SUI: Switzerland, FRA: France, BEL: Belgium, NED: Netherlands,
GER: Germany. Right: individual records are shown below the dashed line and hydroclimatic overview studies are above. Summarized
records are from (A) Poland (Starkel et al., 2013), (B) eastern central Europe (Büntgen et al., 2021), and (C) the Jura Mountains (Magny,
2004). Hydroclimate reconstructions, which show wetter (blue bar) and drier (beige bar) conditions, are compared to lake-level variations
and bog surface wetness reflecting hydroclimatic conditions differentiating between lower (light blue bars) and higher (dark blue bars) lake
levels from (1) Svanemosse (Barber et al., 2004), (2) Dosenmoor (Daley and Barber, 2012; Barber et al., 2004), (3) Schweriner See (this
study), (4) Tiefer See (Theuerkauf et al., 2022), (5) Lake Lubińskie (Bonk et al., 2023), and (6) Lake Strzeszyńskie (Pleskot et al., 2018).
Grand solar minima are shown as suggested by Usoskin et al. (2007). The question marks and shaded area in the Schweriner See lake-level
variations mark the period, masked by increased storminess. The lake level during the period was most likely higher.

(Fig. 1) (von Wiebeking, 1960). Additionally, this lake-level
decline enabled the construction of a partially artificial
dam (Paulsdamm; Fig. 1b; Kasten and Rost, 2005) which
connects the western and eastern shorelines. The period after
1850 CE marked an overall change in the sedimentation
from calcareous to organogenic sediments (Adolph et al.,
2023), which likely masked the signal of the Paulsdamm
construction.

5.2.3 Driving mechanisms for lake-level variations

In general, lake-level variations observed at Schweriner See
agree with patterns observed in different archives (e.g. lacus-
trine sediments, peat bogs, tree rings) which reflect lake-level
variations and hydroclimatic conditions in Denmark (Bar-
ber et al., 2004), NE Germany (Daley and Barber, 2012;
Theuerkauf et al., 2022), and western Poland (Pleskot et al.,
2018; Bonk et al., 2023; Starkel et al., 2013) but also eastern
central Europe (Büntgen et al., 2021) and the Jura Mountains
(Magny, 2004) (Fig. 6). Offsets might occur due to chrono-
logical uncertainties, proxy sensitivity, and/or additional lo-
cal to regional influences. For example, some studies argue
for more local to regional influences on the lake level dur-
ing the Late Holocene by identifying (anthropogenic) land
cover changes and forest structures as partly responsible

(e.g. Theuerkauf et al., 2022; Bonk et al., 2023; Dietze et
al., 2016). In particular, an anthropogenically induced change
between forested and open vegetation landscapes is linked to
altered groundwater recharge and, consequently, higher lake
levels under more open vegetation for Tiefer See (∼ 75 ha,
ca. 70 km east of Schweriner See; Theuerkauf et al., 2022).
Such local to regional influences may result in varying on-
sets of lake-level high stands, particularly for smaller lake
systems, which are more susceptible to local and regional
(anthropogenic) influences. For example, at the small Lake
Lubińskie (22.7 ha, ca. 275 km southeast of Schweriner See),
lake-level variations are mainly related to anthropogenic ac-
tivity within the catchment (Bonk et al., 2023), which may
explain the difference to the large Schweriner See. Addi-
tional influences, which may lead to different onsets, are
the hydro(geo)logical network or different climatic settings
such as increasing continentality from west to east (Bonk et
al., 2023). For Schweriner See’s lake level, we suggest that
(i) (anthropogenically) induced land cover changes have a
minor influence because the pollen composition suggests a
closed-canopy forest cover until 665+40/−30 cal BP (Fig. 4)
and (ii) additional local effects were dampened by the lake’s
size.
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As hydroclimatic conditions at Schweriner See are gen-
erally influenced by NAO variability, large-scale changes
in atmospheric circulation systems most likely at least par-
tially drive regional lake-level variations. This is supported
by modelling approaches by Vassiljev (1998) suggesting
that lakes in temperate humid areas are more sensitive to
changes in winter precipitation (i.e. due to NAO variabil-
ity) compared to summer precipitation. At Schweriner See
lower lake levels tend to coincide with NAO− conditions,
which are associated with drier winter conditions (Fig. 5).
The influence of large-scale atmospheric changes on lake-
level variability during the past 3000 years explains the sim-
ilar lake-level variations and hydroclimatic conditions in dif-
ferent archives (Fig. 6). Discrepancies between winter tem-
perature and moisture source region changes, which are
NAO-related, and the lake-level variations at Schweriner See
(Fig. 5) may occur due to sometimes independent forcing
mechanisms. While NAO mostly influences winter hydrocli-
mate, lake-level variability is additionally influenced by sum-
mer moisture deficits, e.g. due to drier summer conditions.
This may result in lake-level declines that cannot be compen-
sated for even by rainy winter conditions. Such conditions
were observed recently after dry summer conditions in 2018
and 2022 (Adolph, 2024). Normally, such summer moisture
deficits should be reflected in δ2HC25 if the isotopic lake wa-
ter composition is driven by evaporative lake water enrich-
ment. δ2HC25 would then show a similar pattern as shoreline
distance and bog surface wetness from Dosenmoor (Fig. 5;
Daley and Barber, 2012), as both are related to changes in
precipitation and evapotranspiration. Such an influence of
evaporative lake water enrichment has been observed e.g. for
several smaller lakes in NE Germany (Aichner et al., 2022).
However, these study sites are located ca. 120 km southeast
of Schweriner See and are affected by more continental cli-
mate conditions compared to Schweriner See. Furthermore,
these areas differ, among others, by their mean annual wa-
ter balance, which is slightly positive at Schweriner See but
becomes negative further east (Adolph, 2024), suggesting in-
creased evaporative lake water enrichment eastwards. More-
over, lake water evaporation in these lakes shows spatially
varying amplitudes and seems to depend on the lake’s mor-
phological parameters and hydrological features (Aichner et
al., 2022). Lakes similar to Schweriner See, i.e. deep lakes
with high water residence times and an absence of river con-
nections, show low evaporative lake water enrichment (Aich-
ner et al., 2022). Such low evaporative lake water enrichment
for Schweriner See is supported by the correlation between
δ2HC25 and winter temperature changes instead of a corre-
lation with lake-level variations (Fig. 5). Therefore, we sug-
gest that δ2HC25 predominantly depends on moisture source
changes in the North Atlantic region. This potentially ex-
plains the differences between the reconstructed NAO condi-
tions and lake-level variations. Still, an additional influence
of evaporative lake water enrichment on δ2HC25 cannot be
completely excluded.

Additional (supra)regional drivers may have affected lake-
level variability. For example, changes in solar activity have
been suggested to be one key driver for Holocene hydrocli-
matic variability in the Jura Mountains, where higher lake
levels were linked to lower solar activity (Magny, 2004).
However, this explanation can only partly be applied to
Schweriner See (Fig. 5) and other compared records (Fig. 6).
We rather observe temporal offsets between low solar ac-
tivity and higher lake levels when comparing records from
e.g. Lake Lubińskie (Bonk et al., 2023), Lake Strzeszyńskie
(Pleskot et al., 2018), and Tiefer See (Theuerkauf et al.,
2022), which might be a result of complex spatial ocean–
land interactions as a response to solar activity as suggested
by Swindles et al. (2007) or additional anthropogenic forc-
ing. For Schweriner See only a few periods of a higher lake
level align with solar minima, e.g. the Homeric Minimum
(2800–2550 cal BP; Figs. 5 and 6). After the 12th century,
anthropogenic interferences, e.g. weirs, the building of mills,
or the construction of the Wallenstein trench, may have in-
fluenced the lake level beyond natural variations.

6 Conclusions

Sediments obtained from Schweriner See are a valuable
archive for studying Late Holocene environmental vari-
ability. Due to its size, local (anthropogenic) effects are
dampened and proxies reflect large-scale climatic variations,
which align well with interregional paleoclimatic reconstruc-
tions for the past 3000 years. Before 105+95/−75 cal BP (∼
1850 CE), in-lake productivity in Schweriner See was mainly
driven by winter temperature variability, which modulates ice
cover duration and growing season length, resulting in lower
productivity during colder periods and higher productivity
during milder periods. These changes in winter tempera-
ture covary with changes in moisture source region (δ2HC25 ):
(i) milder winter temperatures coincide with a southern mois-
ture source region and (ii) colder winter temperatures with
a northern moisture source region. These distinct variations
enable the reconstruction of large-scale atmospheric pro-
cesses, suggesting NAO polarity as a driver. Positive NAO
conditions from 3030+175/−215 to 2820+180/−180 cal BP and
2110+160/−130 to 830+100/−90 cal BP are characterized by
milder winter temperatures and a southern moisture source
region due to stronger westerlies bringing warm, moist air
towards northwest Europe. In contrast, negative NAO con-
ditions from 2820+180/−180 to 2110+160/−130 cal BP and
830+100/−90 to 105+95/−75 cal BP are associated with colder
winter temperatures and a northern moisture source region.
Rates of changes between positive and negative conditions
vary between the individual phases, e.g. with a rapid drop
in winter temperature around 2820+180/−180 cal BP but a
gradual increase from 2110+160/−130 to 1720+65/−65 cal BP.
Only after 105+95/−75 cal BP was the hydroclimatic signal
masked by anthropogenic impacts, mainly eutrophication, on
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Schweriner See, which changed the in-lake productivity from
temperature- to nutrient-driven.

In addition to these long-term shifts in atmospheric cir-
culation systems, short-term hydroclimatic variations can be
reconstructed. In this context, Ti mainly reflects lake-level
variations linked to precipitation and evaporation variabil-
ity with additional influences of wind speed resulting in in-
creased wave action. This mode of minerogenic matter sup-
ply contradicts traditional interpretations and highlights the
importance of carefully considering lake morphology, catch-
ment, and environmental conditions for proxy interpretation.
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