

Supplement of

Relative importance of the mechanisms triggering the Eurasian ice sheet deglaciation in the GRISLI2.0 ice sheet model

Victor van Aalderen et al.

Correspondence to: Victor van Aalderen (victor.van-aalderen@lsce.ipsl.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement

Figure S1: Drainage basins used for the basal melting parameterization

Figure S2: Surface mass balance calculated with each GCM forcing for 1°C (top) to 5°C (bottom) atmospheric temperature perturbations.

Figure S3: Ice thickness lost obtained in the EXP1 experiments for each GCM forcing compared to the initial LGM ice sheet for $1^{\circ}C$ (top) to $5^{\circ}C$ (bottom) atmospheric temperature perturbations.

Figure S4: Multi-model mean of the ice thickness lost after 1000 years compared to the initial ice sheet for the EXP2 experiments. (Red: 100% lost). White line indicates the areas where the multi-model mean is done on the 5 models.

Figure S5: Ice thickness lost after 1000 years (top) and 10000 years (bottom) compared to the initial ice sheet for a basal melting perturbation of $Kt = 50 \text{ m} \circ \text{C}^{-1} \text{ yr}^{-1}$ for each GCM forcing. (Red 100% lost).

Figure S6: Average ocean temperature in the BJR (left) and SA sectors as a function of ocean depth.

Figure S7: Multi-model mean of the ice thickness lost after 10000 years compared to the initial ice sheet for EXP3.2. (Red: 100% lost). For this experiment, Kt has been fixed to 7 m $^{\circ}C^{-1}$ yr⁻¹. The white line represents the most credible extent derived from the DATED-1 compilation

Figure S8: Ice thickness lost after 1000 (top) and 10000 (bottom) model years compared to the initial LGM ice sheet for an oceanic temperature perturbation of 10°C for each GCM forcing. (Red: 100% lost).

Figure S9: top/ Ice thickness lost for simulation forced by MPI-ESM-P from 1000 to 10000 years with respect to the ice thickness of the LGM ice-sheet in the EXP1 (4°C) experiment Middle/ same as top/ for EXP3 (50 m °C⁻¹ yr⁻¹). Bottom/ same as top for EXP4 (4°C and 50 m °C⁻¹ yr⁻¹).

Figure S10: Same as Figure S9 for the simulation forced by MPI-ESM1.2

Figure S11: Same as Figure S9 for the simulation forced by MIROC-ESM.

Figure S12: Ice thickness at the end of the spin-up experiments for the different GRISLI configurations: a/ No flux at the grounding line; b/ $\lambda = 4^{\circ}$ C km⁻¹; c/ $\omega = 0.05 ^{\circ}$ C⁻¹; d/ H_{cut} = 50 m; e/ PDD factors -25%; f/ PDD factor +25%; g/ Coulomb's law (plastic dragging law); h/ Transient spin-up method. The orange areas are the simulated ice shelves.

Figure S13: subglacial water height at the end of the spin-up for the constant LGM method (top) and the transient method (bottom).

Figure S14: Ice thickness at the end of the 100,000-year LGM simulation (spin-up) for the different GCMs used as inputs to GRISLI. Basal melting is set to 0.1 m yr^{-1} as in Petrini et al., (2020). The white line is the most credible extent derived from the DATED-1 compilation and the orange areas are the simulated ice shelves.