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Abstract. The South Asian summer monsoon (SASM)
significantly intensified during the Middle Miocene (17–
12 Ma), but the driver of this change remains an open ques-
tion. The uplift of the Himalaya (HM) and the Iranian
Plateau (IP) and global CO2 variation are prominent fac-
tors among suggested drivers. Particularly, the impact of high
CO2 levels on the Miocene SASM has been little studied,
despite the wide range of reconstructed CO2 values around
this period. Here we investigate their effects on the SASM
using the fully coupled Ocean–Atmosphere Global Climate
Model, CESM1.2, through a series of 12 sensitivity experi-
ments. Our simulations show that the IP uplift plays a domi-
nant role in the intensification of the SASM, mainly in the re-
gion around northwestern India. The effect of the HM uplift
is confined to the range of the HM and its vicinity, produc-
ing orographic precipitation change. The topography forcing
overall out-competes CO2 variation in driving the intensifi-
cation of the SASM. In the case of extremely strong CO2
variation, the effects of these two factors are comparable in
the core SASM region, while in the western region, the to-
pographic forcing is still the dominant driver. We propose
a thermodynamical process linking the uplift of the IP and
the enhanced SASM through the release of latent heat. When
compared with reconstructions, the simulated response of
SASM to the IP uplift is in good agreement with observed
precipitation and wind field, while the effects of the HM up-
lift and CO2 variation are inadequate to interpret the proxies.

1 Introduction

The Middle Miocene (17–12 Ma) was a period character-
ized by major climatic, tectonic, CO2, and environmental
changes (Steinthorsdottir et al., 2021). Increasing evidence
indicates that the South Asian summer monsoon (SASM)
was remarkably intensified in the Middle Miocene (Clift et
al., 2008; Clift and Webb, 2019; Gupta et al., 2015; Bialik
et al., 2020; Vogeli et al., 2018), although its inception was
no later than the Early Miocene (Ali et al., 2021; Licht et al.,
2014; Farnsworth et al., 2019). However, the driving factor
of its evolution remains an issue of great debate. Besides the
effect of geographic change (Ramstein et al., 1997; Fluteau
et al., 1999; Farnsworth et al., 2019; Thomson et al., 2021;
Tardif et al., 2020, 2023; Sarr et al., 2022), the growth of the
Himalaya (HM)–Tibetan Plateau (TP) (HM–TP) has tradi-
tionally been called upon for the SASM development (Clift
et al., 2008; Clift and Webb, 2019; Manabe and Terpstra,
1974; Kutzbach et al., 1989; Prell and Kutzbach, 1992; Ram-
stein et al., 1997; An et al., 2001; Kitoh, 2002; Chakraborty
et al., 2006; Wu et al., 2012; Tada et al., 2016; Tardif et
al., 2020, 2023). The HM, which has long been regarded as
the “southern TP” (Spicer, 2017), receives particular atten-
tion (Boos and Kuang, 2010; Wu et al., 2012; Zhang et al.,
2015). Recent geological evidence (Liu et al., 2016; Ding et
al., 2017, 2022) suggests that, in contrast to previous studies,
the HM had risen to a height of 2.3± 0.9 km by the earli-
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est Miocene, reaching approximately 4 km by 19 Ma. From
15 Ma onwards, the HM projected significantly above the av-
erage elevation of the plateau that had already attained its
modern height before the Miocene (Wang et al., 2014). The
coincidence of the ongoing HM uplift above the TP since
15 Ma and the intensification of SASM appears to support
the hypothesis that the evolution of the SASM is predomi-
nantly driven by the formation of the HM–TP.

However, this traditional view is challenged by many mod-
eling studies that emphasize the importance of peripheral
mountain ranges (Chakraborty et al., 2006; Tardif et al.,
2020, 2023; Sarr et al., 2022; Liu et al., 2017; Tang et al.,
2013; Chen et al., 2014; Acosta and Huber, 2020). Notably,
the Iranian Plateau (IP), which also underwent uplift dur-
ing the same period as the Miocene SASM enhancement at
around 15–12 Ma, is considered a critical factor (McQuarrie
et al., 2003; Mouthereau, 2011; Ballato et al., 2017; Bialik et
al., 2020), although the evolution history of the IP’s buildup
remains hotly debated (Agard et al., 2011; McQuarrie et al.,
2003; Mouthereau, 2011; Ballato et al., 2017). Nevertheless,
most studies suggest a Miocene age for the uplift of most
landforms. Geological evidence indicates that in the north-
ern sectors of the IP, the uplift likely occurred between 16.5–
10.7 Ma (Ballato et al., 2017) and particularly accelerated af-
ter 12.4 Ma, while in regions bordering the IP to the south,
uplift occurred between 15 and 5 Ma (Mouthereau, 2011).
The Zagros orogen, a significant part of the IP, developed in
three distinct pulses within the last ∼ 20 Ma (Mouthereau,
2011; Agard et al., 2011). Therefore, there exists significant
uncertainty regarding the growth of the IP. The respective
contributions of the IP and HM uplift to intensified SASM
during the Middle Miocene remain unclear.

Various mechanisms were proposed to explain the linkage
between the uplift of the IP and HM and the intensification
of SASM rainfall. These include the mechanical blocking ef-
fect (Tang et al., 2013), topographic thermal forcing (Chen
et al., 2014; Wu et al., 2012; Liu et al., 2017), and the role
of a gatekeeper to insulate the pool of high-enthalpy air in
northern India from westerly advection of cool and dry air
(Acosta and Huber, 2020). However, most of these modeling
studies have examined the effects of IP and HM uplift using
the Atmospheric General Circulation Model (AOGCM) with
modern geographies (Liu et al., 2017; Zhang et al., 2015;
Tang et al., 2013; Acosta and Huber, 2020), potentially over-
looking two key factors: (1) the neglect of air–sea interaction
processes (Kitoh, 2002; Su et al., 2018) and (2) the risk of
misinterpreting past changes due to the critical role of land–
sea distribution in shaping the paleoclimate features (Tardif
et al., 2023; Ramstein et al., 1997). Therefore, we opt to
use a fully coupled Atmosphere–Ocean General Circulation
Model (AOGCM) to revisit the response of the SASM to the
IP and HM uplift under Miocene boundary conditions despite
requiring additional computational resources.

The SASM is sensitive to changes in CO2 concentration
(Thomson et al., 2021). The effect of CO2 variation is overall

estimated to be less than that of geography and/or topogra-
phy (Farnsworth et al., 2019; Thomson et al., 2021; Tardif
et al., 2023); however, during the Mid- to Late Miocene,
its contribution to rainfall change is comparable to that of
orographic uplift – even when the CO2 is set from 560 to
280 ppm (Thomson et al., 2021). Proxy records indicate that
the Early to Middle Miocene was a warming period, which
is known as the Middle Miocene Climatic Optimum (∼ 17–
14 Ma), followed by a Late Miocene cooling (Steinthorsdot-
tir et al., 2021). There is large uncertainty in estimated CO2
variation in the Middle Miocene, with a wide range of recon-
structed values from ∼ 180 to ∼ 600 ppmv (parts per mil-
lion by volume) (Foster and Rohling, 2013; Steinthorsdottir
et al., 2021; Pagani et al., 1999; CenCO2pip, 2023) and even
to more than 1000 ppmv (Rae et al., 2021) during the Middle
Miocene Climatic Optimum (MMIO). Nevertheless, accord-
ing to the general concept, the atmospheric CO2 concentra-
tion peaked around 15 Ma and then declined (CenCO2pip,
2023). Therefore, it is necessary to re-examine the effect of
CO2 forcing on SASM rainfall based on the possible range
of CO2 variation.

In this study, we utilize a fully coupled AOGCM to explore
the impact of IP and HM uplift and the CO2 variation on the
SASM. Considering that the uplift of HM and IP predom-
inantly occurred after 15 Ma, roughly coinciding with pro-
nounced CO2 variations during 17–14 Ma, we conduct two
sets of sensitivity experiments based on Middle Miocene ge-
ography. The topographic sensitivity experiments are placed
into the context of the current understanding of the regional
tectonic and geographic settings while a set of CO2 sensi-
tivity experiments ranging from 280 to 1000 ppmv is per-
formed. The model configuration, Middle Miocene boundary
condition, and experimental design are described in Sect. 2.
In Sect. 3, we show the SASM response to IP and HM up-
lift and the effect of CO2 forcing. The mechanisms responsi-
ble for the monsoonal precipitation change are examined in
Sect. 4. The implication of our results to the evolution of the
SASM in the Middle Miocene is discussed in Sect. 5 before
giving conclusions in Sect. 6.

2 Data and methods

2.1 Climate model

The model used in this study is the Community Earth Sys-
tem Model (CESM), version 1.2.1, of the National Center
for Atmospheric Research. It includes the Community At-
mosphere Model (CAM4) (Neale et al., 2013), the Com-
munity Land Model (CLM4) (Hunke and Lipscomb, 2010),
the Parallel Ocean Program (POP2; Smith et al., 2010), and
the Community Ice Sheet Model and the Community Ice
code (Glimmer-CICE4). Both the ice sheet model and the
dynamic vegetation module (Lawrence et al., 2011) incor-
porated in CLM4 are switched off in this study. The hor-
izontal resolution used is 1.9° (latitude)× 2.5° (longitude)
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for CAM4 with 26 vertical levels, and CLM4 has an iden-
tical horizontal resolution. CESM has been extensively used
for modern and tectonic climate studies (Chen et al., 2014;
Goldner et al., 2014; Frigola et al., 2018). In general, this
model simulates modern surface temperature distributions
and Equator-to-pole temperature gradients well (Gent et al.,
2011), although biases exist (Neale et al., 2013). However,
it strongly overestimates the Miocene meridional tempera-
ture gradient compared to reconstructions, which is a thorny
problem for Miocene modeling practice (Burls et al., 2021;
Steinthorsdottir et al., 2021) mainly caused by the inabil-
ity of climate models to reproduce polar-amplified warmth
(Krapp and Jungclaus, 2011; Herold et al., 2011; Goldner et
al., 2014; Burls et al., 2021). Nevertheless, the temperature
biases in low latitudes are small, generally within 1 °C (Burls
et al., 2021).

2.2 Boundary conditions

Our Miocene experiments are configured with geography, to-
pography, bathymetry, and vegetation cover from Frigola et
al. (2018) (henceforth F18), which provide boundary con-
ditions for modeling studies with a focus on the Middle
Miocene. According to F18, the most prominent geographic
differences between the Middle Miocene and present day are
the opening of the Tethys, Indonesian, and Panama seaways,
the closure of the Bering Strait, and lower elevations of most
of the highest regions of the globe. For instance, the African
topographies were reduced to 25 % of their current elevation
(Fig. 1a and b).

The topography of the Tibetan Plateau in F18 is set to
its estimated Early to Middle Miocene elevation. The south-
ern and central plateau reached a near-modern elevation; the
northern plateau is set to 3–4 km, but its northward extend is
reduced to reflect the rapid uplift occurring in the Pliocene
(Harris, 2006). The HM reached to 60 %–80 % of its present
height. As for the IP, here we lumped together all the moun-
tain ranges west of the Himalaya, including the Hindu Kush
region and Pamir as the IP. In F18, the northern part of the
IP reached a near-modern elevation at 1000–2000 m, but its
southern part was lower than 1000 m.

The Miocene vegetation is prescribed as that in F18, which
is a global gridded distribution (Fig. S1 in the Supplement)
merging previous reconstructions (see F18 for more details).
During the Miocene, vegetation types associated with lower
latitudes today encroached on higher latitudes. There was re-
duced presence of ice compared to modern conditions, and
ice-free regions were covered by tundra in Antarctica while
cold, mixed forests spread over Greenland.

2.3 Experimental design

We first perform two simulations: the pre-industrial (piCon-
trol) and the Middle Miocene (MMIO) simulation, which dif-
fer in their applied geography (Fig. 1a and b), bathymetry,

vegetation cover, and the CO2 concentrations, while the so-
lar constant, orbital configuration, and the concentrations
of other greenhouse gases are kept at their modern values.
The CO2 concentration is set to 280 ppmv in the piControl
(Eyring et al., 2016) and 400 ppmv in the MMIO, following
the setting of F18. The choice of 400 ppmv is somewhat low
but within the range of published estimates (see details in F18
and Burls et al., 2021). Both simulations are integrated to
reach quasi-equilibrium, and particularly the MMIO exper-
iment is integrated ca. 3000 years. The difference between
MMIO and piControl provides the background information
of the simulated changes in the SASM between the two peri-
ods.

Starting from the MMIO simulation, we run a set of ex-
periments with altered orography in the HM and the IP. We
examine the joint effects of the HM and IP on the SASM,
assuming the HM and the IP rise simultaneously from flat
(0 %) to 100 % of their reference height (Fig. 1c and d). The
reference height is the modern altitude for the HM and the
reconstructed Miocene altitude for the IP. The experiments
are referred as IP0HM0 and IP100HM100, respectively. To
further separate the climatic effect of the IP and HM uplift,
we conduct another two experiments, namely IP100HM0 and
IP0HM100. In the former (latter) experiment, the HM (IP)
is absent, while the IP (HM) reaches its reference height
(Fig. 1e and f). Combined with the experiments of IP0HM0
and IP100HM100, the effect of elevated IP and HM is es-
timated (see Sect. 3.2). To further reveal the impact of the
IP uplift on the SASM evolution, two other experiments are
conducted, namely IP50HM0 and IP50HM100, indicating
that the IP is reduced by half of its Miocene height while
the HM is absent and fully uplifted, respectively.

To clarify the relative role of CO2 forcing on SASM
rainfall in the Middle Miocene, we also run a set of CO2
sensitivity experiments with the CO2 setting at 280, 560,
800, and 1000 ppmv, referred to as MMIO280, MMIO560,
MMIO800, and MMIO1000, respectively. The high values
of 800 and 1000 ppm are chosen because new reconstructions
of CO2 generally corresponded to 3 times the pre-industrial
levels (Rae et al., 2021). These experiments have the same
boundary conditions as the MMIO simulation, differing only
in CO2 concentration.

The simulations considered in our study are listed in Ta-
ble 1. The sensitivity experiments are integrated from the
MMIO equilibrium state for another 200 (500) years for
the topography (CO2) sensitivity experiments to reach quasi-
equilibrium. The final 50 years of these simulations are used
for analysis.

2.4 South Asian summer monsoon indices

The following indices are defined to illustrate features of the
SASM changes.
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Figure 1. Topography of (a) piControl, (b) MMIO, and orographic sensitivity experiments, including (c) IP0HM0, (d) IP100HM100,
(e) IP100HM0, (f) IP0HM100, (g) IP50HM0, and (h) IP50HM100. (The maps are plotted at 0.5°× 0.5° resolution. The same maps but
at 1.9°× 2.5° resolution are provided in Fig. S2.)
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Table 1. Simulations performed with CESM1.2 in this study. See Fig. 2 for modern and paleogeographical maps.

Experiment Geography Vegetation CO2 IP HM
(ppm)

piControl Modern Modern 280 Modern Modern
MMIO (IP100HM80) M. Miocenea M. Miocene 400 M. Miocene M. Miocene
IP0HM0 M. Miocene M. Miocene 400 0 0
IP50HM0 M. Miocene M. Miocene 400 50 % 0
IP100HM0 M. Miocene M. Miocene 400 100 % 0
IP0HM100 M. Miocene M. Miocene 400 0 100 %b

IP50HM100 M. Miocene M. Miocene 400 50 % 100 %
IP100HM100 M. Miocene M. Miocene 400 100 % 100 %
MMIO280 M. Miocene M. Miocene 280 M. Miocene M. Miocene
MMIO560 M. Miocene M. Miocene 560 M. Miocene M. Miocene
MMIO800 M. Miocene M. Miocene 800 M. Miocene M. Miocene
MMIO1000 M. Miocene M. Miocene 1000 M. Miocene M. Miocene

a M. Miocene is for Middle Miocene. b 100 % of the height of modern HM.

1. All-Indian rainfall (AIR). This is the regional summer
mean precipitation over the land points within the do-
main of 7–30° N, 65–95° E. It represents the precipita-
tion in the core region of the SASM.

2. Webster–Yang index (WYI; Webster and Yang, 1992).
This is the meridional wind stress shear between
850 and 200 hPa (averaged over 0–20° N, 40–110° E)
during June–August.

3. Somali jet strength (SMJ; Sarr et al., 2022). This is the
maximum intensity of the Somali jet over the Arabian
Sea (averaged over 0–20° N, 30–60° E) during June–
August.

2.5 Moisture budget analysis

Moisture budget analysis (MBA) can decompose the precip-
itation change into changes in evaporation and moisture ad-
vection (Chou et al., 2009). It relates the net precipitation
(precipitation minus evaporation; P −E) to the vertically in-
tegrated moisture flux convergence. More details about MBA
are given in Sect. S2. This method has been widely applied to
paleoclimate studies in recent years, such as distinguishing
the physical processes involved in precipitation changes in
the Mid-Holocene (Sun et al., 2023). Here, we apply a MBA
to reveal the physical processes related to SASM precipita-
tion responses to the uplift of IP–HM and to CO2 change.

3 Results

3.1 Climatology of the SASM in the present day and
Middle Miocene

The CESM1.2 is one of the best models for simulating
the present-day SASM (Anand et al., 2018; Jin et al.,
2020). The CESM1.2 reproduced the broad features of

the SASM system, including the onshore flows and strong
monsoonal precipitation, when compared to the observa-
tional datasets, including the Global Precipitation Climatol-
ogy Project (GPCP) (precipitation) and ERA5 (circulation)
(Huffman et al., 2009; Hersbach et al., 2020). The maxi-
mum centers of precipitation are reasonably captured over
the southern slope of the HM, the east Arabian Sea, and
the Bay of Bengal despite biases in intensity and extensions
(Fig. 2a and b), which is largely due to the coarse spatial reso-
lution (Acosta and Huber, 2017; Anand et al., 2018; Botsyun
et al., 2022a, b; Boos and Hurley, 2013). Thus, we focus on
the large-scale circulations and treat the local features with
caution. The regional summer mean precipitation, as mea-
sured by the AIR, is 7.7 mm d−1 in GPCP and 8.7 mm d−1 in
the piControl experiment. The positive bias reflects an over-
estimation of precipitation in the Western Ghats and at the
HM foothills.

Compared with the piControl experiment, the MMIO sim-
ulation displays apparent adjustment of the JJA mean low-
level circulation. The westerlies pass Africa into the Indian
region, and a cyclonic circulation develops over the Arabian
Sea; then, the cross-equatorial flow weakens and displaces
southward (Fig. 2c). There is a considerable enhancement of
monsoonal precipitation in South Asia, but it is not limited
there (Fig. 2c). AIR in the MMIO simulation is 10.4 mm d−1,
which is∼ 20 % higher than that in the piControl experiment.

The wetter Miocene climate is also reflected by the
widespread Afro–Asian monsoon, which was suggested by
previous modeling studies (Herold et al., 2011; Zhang et al.,
2015). Here a monsoon-like climate is defined as the local
(summer minus winter) precipitation exceeding 2 mm d−1

and as the local summer precipitation exceeding 55 % of the
annual total (Wang and Ding, 2008). This monsoon index is
determined by the intensity of the summer monsoonal pre-
cipitation in the region of the South Asian Monsoon (SAM).
Compared with the present day, the domain of the SAM ex-
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Figure 2. Climatology of JJA (June–July–August) seasonal mean South Asia summer monsoon (SASM) precipitation (mm d−1) and 850 hPa
winds (vectors; m s−1) from the (a) observation precipitation from GPCP and circulation from ERA5. (b) Preindustrial control experiment
and (c) MMIO experiment. (d) IP0HM0, (e) IP100HM100, (f) IP100HM0, and (g) IP0HM100. Climatology is the average over 1979–2005
for the observation. As for the piControl and MMIO experiments, we select the last 50 and 100 years of simulation, respectively. All-Indian
rainfall (AIR) is shown at the top right of each panel. AIR indicates precipitation over the land points within the purple square in each panel
(7–30° N, 65–95° E). The black contour in panels (c)–(g) indicates the altitude of 2500 m.

tends westward both on land and over the Arabian Sea, where
it nearly connects the African monsoon (Fig. 3c). Interest-
ingly, this characteristic is also noted in the Miocene study of
Fluteau et al. (1999), despite significant differences in the cli-
mate model and paleogeography employed in the two stud-
ies. The distribution of the simulated SAM is generally con-
sistent with the proxies (Table 2), confirming the wide ex-
istence of SAM in the Middle Miocene in terms of rainfall
seasonality.

3.2 The effect of the HM and IP uplift

We first examine the effect of the joint uplift of the HM and
IP (hereafter referred to as IP–HM). With the uplift of the
IP–HM (Fig. 4a), a prominent cyclonic anomaly is built to
the west of the IP with the intensified southwesterlies from
Africa via the Arabian Sea into the northwestern India. In-
creased precipitation is found along the eastern flank of the
cyclonic anomaly to the slopes of the western HM and north-
eastern IP. In the eastern part of the monsoon region, the en-
hanced precipitation occurs mainly along the southern edge
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Figure 3. The monsoon domains (blue shading) in the (a) GPCP, (b) piControl, (c) MMIO, (d) IP0HM0, (e) IP100HM100, (f) IP0HM100,
and (g) IP100HM0 experiments, which are defined by the regions where local (summer minus winter) precipitation exceeds 2 mm d−1 and
the local summer precipitation exceeds 55 % of the annual total. Dots in panels (c)–(g) represent reconstructions near the SASM region,
solid purple dots denote enhanced SASM, orange circles denote no significant change, and solid pink dots denote weakened SASM from the
Middle to Late Miocene. The black contour in panels (c)–(g) indicates the altitude of 2500 m.

of the HM while the leeward side features a remarkably de-
creased precipitation, indicating the rain shadow effect.

Corresponding to the summer precipitation change in re-
sponse to IP–HM uplift, the domain of the SASM expands
westward over the Arabian Sea and the Indian subcontinent
(Fig. 3d and e). The western extension over land is about
65° E in the IP0HM0 experiment and reaches 60° E in the
IP100HM100 experiment, indicating that the change in the
SASM is significant in the northwest of the Indian subcon-
tinent. Interestingly, monsoonal signal exists in the IP0HM0
experiment, an analogue to the “Early Miocene”, indicating
that the proto-monsoon exists by having TP only, which is
also found in previous studies (Sarr et al., 2022). At the site

of ODP 722B, the monsoonal signal is absent in IP0HM0
(Fig. 3d) but present in IP100HM80 (MMIO; Fig. 3c) and
IP100HM0 (Fig. 3e) when the IP–HM is uplifted.

We further separate the effect of the IP and HM uplift.
The climate response to IP uplift (IP100-IP0) is estimated as
((IP100HM0− IP0HM0)+ (IP100HM100− IP0HM100))/2.
Similarly, the effect of HM uplift HM100-HM0 is
estimated as ((IP0HM100− IP0HM0)+ (IP100HM100−
IP100HM0))/2. The changes in precipitation and low-level
circulation much resemble that attributing to the IP–HM up-
lift (Fig. 4a), indicating that by itself, the IP can sustain major
parts of the precipitation changes except over the central–
eastern HM. The easterly anomaly across the Indian subcon-
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Table 2. Evidence of modern SAM in Middle Miocene from recently published studies. ODP represents the Ocean Discovery Program.

No. Station Location Proxies Intensification Trend∗ Variable References
(lat/long) age (Ma)

1 Well Indus 24/66 Weathering 15–12 Decreasing Precip. Clift et al.
Marine A-1 (2008)

2 ODP 359 5/73 Sedimentary 12.9 Increasing Wind Betzler et
and al. (2016)
geochemical
record

3 ODP 722B 16.6/59.8 Bio-marker 12.9 Increasing Wind Gupta et
al. (2015)

ODP 722B 16.6/59.8 Bio-marker 14 Increasing Wind Bialik et
al. (2020)

4 NGHP-01-01A 15/71 Bio-marker 14 Increasing Precip. Yang et al.
(2020)

5 Varkala 8.7/76.7 Pollen fossil 17–15 No change Precip. Reuter et
al. (2013)

6 ODP 758 5.4/90.4 Weathering 13.9 Increasing Wind Ali et al.
(2021)

7 Surai Khola 27.8/83 Leaf fossil 13 Increasing Precip. Srivastava
et al. (2018),
Bhatia et
al. (2021)

8 Darjeeling 27/88.5 Leaf fossil 13 Increasing Precip. Toohey et
al. (2014)

9 Arunachal 27/93.5 Leaf fossil 13 No change Precip. Toohey et
Pradesh al. (2014)

Arunachal 26/93.5 Weathering 13 No change Precip. Vogeli et
Pradesh al. (2018)

∗ Trend of monsoon index change from Middle to Late Miocene.

Figure 4. Precipitation (shaded; mm d−1) and 850 hPa wind differences between the (a) IP100HM100 and IP0HM0 experiments, (b) IP100
and IP0 experiments, and (c) HM100 and HM0 experiments. Here IP100−IP0= ((IP100HM0−IP0HM0)+(IP100HM100−IP0HM100))/2,
HM100−HM0= ((IP0HM100− IP0HM0)+ (IP100HM100− IP100HM0))/2. The black contour in each panel indicates the altitude of
2500 m. Purple boxes represent western (15–35° N, 50–75° E) and eastern (15–29° N, 75–95° E) parts of the South Asian monsoon region.
Slashes indicate values at the > 95 % confidence level based on Student’s t test.
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tinent indicates that the westerly is blocked by the elevated
IP from northern India, facilitating moisture convergence and
rainfall increase over the northern Indian continent. As a re-
sult, the regional mean precipitation increases by 1.1 and
2.0 mm d−1 over the core (7–30° N, 65–95° E) and western
regions (15–35° N, 50–75° E), respectively.

In contrast to the widespread effect of the IP on the SASM,
the HM uplift only has a local effect (Fig. 4c), which is
mostly confined to the HM and its close vicinity, and the
change in low-level circulation is noisy and weak. The pre-
cipitation strongly increases along the southern slope of the
HM and dramatically decreases on its leeward side, resem-
bling the changes in precipitation in the eastern region caused
by the IP–HM uplift. As a result, there is little change in the
regional mean precipitation over the core and eastern regions
(15–35° N, 75–95° E). Specially, the changes in precipitation
patterns and low-level circulation between IP100HM100 and
MMIO (not shown) closely resemble that shown in Fig. 4c,
albeit with reduced intensity, indicating that further uplift of
HM above the TP does not result in an intensified SASM.

In summary, the joint influences of the IP–HM uplift on
the SASM are the superimposed effect of the IP and HM. In
the western region, i.e., from the Arabian Sea to northwest-
ern India and Pakistan, the IP plays a dominant role, while
in the eastern region, i.e., the eastern part of South Asia, the
changes in the SASM mainly attribute to the HM uplift. And
the western extension of the SASM domain over the Arabian
Sea and the Indian subcontinent is mainly caused by the up-
lift of IP rather than HM (Fig. 3f and g).

3.3 The effects of the CO2 forcing vs. topographic
forcing

To illustrate the effect of CO2 forcing on SASM during the
MMIO, we show the climatology of the SASM at low and
high levels of CO2 concentration based on MMIO280 and
MMIO1000 experiments, respectively (Fig. 5). The spatial
circulation patterns in these two experiments are similar to
that in the MMIO, but the magnitudes change significantly
(Figs. 5a, b and 2c). With the increase in CO2, the merid-
ional cross-equatorial flow slightly strengthens along the east
African coast until 15° N but weakens to the east (Fig. 5c
and d), leading to little change in the regional mean strength
of this flow over the Arabian Sea. Meanwhile, precipitation
enhances along the band of 15–25° N but decreases to the
south, indicating a northward shift in the tropical rainfall belt.
As the CO2 rises from 280 to 400 ppm, and subsequently
to 1000 ppm, the AIR index correspondingly increases by
0.5 and 1.2 mm d−1, respectively. MBA (Sect. S2) further re-
veals that the increased monsoonal precipitation is primarily
induced by enhanced thermodynamic conditions due to at-
mospheric warming, while the contribution from the change
in large-scale monsoon circulation plays a secondary role
(Fig. S5c and d). For instance, the precipitation change be-
tween MMIO1000 and MMIO in the core SASM region is

1.2 mm d−1, of which 0.6 is from the thermodynamical pro-
cesses related to changes in moisture, and 0.25 mm d−1 is
from the dynamical processes related to circulation change.

To compare the effect of CO2 forcing versus topographic
forcing on the SASM, we examine the changes in precip-
itation and low-level circulation between MMIO1000 and
IP0HM0 experiments (Fig. 5e), which actually reflects the
combined effects of the CO2 forcing (MMIO1000–MMIO)
and IP–HM uplift (MMIO–IP0HM0). It is clear that the
SASM changes in Fig. 5e bear the features of Figs. 5d and 4a,
with precipitation enhancing along the band of 15–25° N and
reducing to the south in response to increased CO2 and a
prominent cyclonic anomaly built to the west of the IP in
response to the IP–HM uplift. Moisture budget analysis fur-
ther reveals that the enhanced precipitation of 3.2 mm d−1 in
the western part of the SAM region is equally attributed to
the vertical and horizontal moisture advection of 2.3 mm d−1

(Fig. 6). The moisture advection by anomalous meridional
winds is the dominant contribution term, which is actually
the response to the IP uplift as seen in Sect. 4.

We further examine the impacts of CO2 forcing and topo-
graphic forcing in terms of WYI, SMJ, AIR (Sect. 2.4), and
the mean precipitation over the western part of the SASM re-
gion (Fig. 7). Under the topographic forcing, WYI exhibits
small changes, with the exception of a relatively lower value
in the IP0HM100 experiment. Concurrently, both precipita-
tion and low-level circulation indices increase in response to
the IP uplift, indicating a quasi-circulation–rainfall coupling
relationship. With the increasing CO2 forcing, there is a no-
ticeable decrease in WYI, whereas AIR and the precipitation
in the western SAM region increase significantly, indicating
a decoupling relationship between large-scale circulation and
monsoonal rainfall. The cross-equatorial flow at the lower
level (Somali jet) is insensitive to CO2 change, as already
shown in Fig. 5.

The maximum difference in each index across the set of
CO2 or topographic sensitivity experiments is defined as the
effect of each driver. In terms of WYI (Fig. 7a), the effect
of CO2 forcing is ∼ 150 % greater than that of IP–HM forc-
ing, with values of 2.5 m s−1 vs. 1.0 m s−1. According to the
AIR, the influence of CO2 forcing is ∼ 1.5 mm d−1, which
is comparable to that of IP–HM forcing (∼ 1.5 mm d−1) but
is larger than the individual contributions of IP forcing (∼
1.0 mm d−1) and HM forcing (∼ 0.5 mm d−1). In the west-
ern region, the effect of CO2 forcing is about 75% compared
to that of IP forcing (∼ 1.5 mm d−1 vs. ∼ 2.0 mm d−1). In
summary, CO2 forcing is the dominant driver for large-scale
monsoon circulation, while the uplift of the IP exerts a more
significant effect on regional circulation and the associated
precipitation.

We note that the SASM response to CO2 forcing in the
Middle Miocene is very similar to its response to future cli-
mate change. For instance, increased SASM precipitation
occurring with decreased WYI is also projected under the
abrupt quadrupling of CO2 (Kong et al., 2022). The low-level
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Figure 5. Climatology of JJA (June–July–August) mean South Asia summer monsoon (SASM) precipitation (mm d−1) and 850 hPa winds
(vectors; m s−1) from the (a) MMIO_280 and (b) MMIO_1000 experiments. Precipitation (shaded; mm d−1) and 850 hPa wind differences
(vector; m s−1) between (c) MMIO and MMIO_280 experiments, (d) MMIO_1000 and MMIO experiments, and (e) MMIO_1000 and
IP0HM0 experiments.

monsoon circulations are projected to slightly weaken, con-
sistent with the little change in the intensity of the low-level
cross-equatorial flow in our Miocene simulations (Figs. 5
and 6). Based on an analysis across 20 climate models, Endo
and Kitoh (2014) concluded that in a warmer world, the pro-
jected increase in SASM precipitation is mainly attributed
to thermodynamic processes. This finding aligns with our
MBA result (Fig. S5 in the Supplement). The similarity of
the SASM response to changes in CO2 implies the presence
of a comparable physical mechanism operating during the
two warm periods.

4 Mechanisms of the IP uplift on the SASM
precipitation

To understand the mechanism of increased precipitation
caused by IP uplift and HM uplift, we first use the moisture
budget decomposition to identify the major moisture contrib-
utors. Here we provide the main analysis results (Fig. 8),
and more details are seen in Sect. S2. To focus our analy-
ses on atmospheric dynamics, we neglect the contribution of
evaporation, which is relatively small in our simulation, de-
spite the possibly important role of precipitation in north-
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Figure 6. Moisture budget for regional mean precipitation differ-
ences (mm d−1) over the western part (15–35° N, 50–75° E) of the
South Asian monsoon region between MMIO1000 and IP0HM0 ex-
periments.

western India (Zhang et al., 2019). In response to IP up-
lift, the increased precipitation (2.0 mm d−1) is largely at-
tributed to the horizonal moisture advection (2.1 mm d−1),
in particular the moisture advection by anomalous merid-
ional winds, while the vertical advection plays a secondary
role (1.1 mm d−1). In response to HM uplift, the precipita-
tion change (ca. 1.2 mm d−1) is mainly caused by the ver-
tical moisture advection (0.9 mm d−1) and is offset by the
horizontal moisture advection (−0.4 mm d−1). Its dominant
contributor is a nonlinear term involving strong interactions
between the vertical motion anomalies and moisture change
(see Sect. S2).

We then examine the responses of the monsoon-relevant
variables to the uplifts of the IP and HM and the involved
physical processes with a focus on the effect of the IP. With
IP uplift, the air of the high equivalent potential tempera-
ture (θe) at the lower troposphere is accumulated in the IP
and the surrounding region (Fig. 9a). The increased θe at-
tributes to the enhancement of specific humidity (Fig. 9b), as
moisture is advected by the anomalous southwesterly from
North Africa via the Arabian Sea into northwestern India and
Pakistan (Fig. 9b); meanwhile, it increases the convective in-
stability. When triggered by surface sensible heating (Wu et
al., 2012; Medina et al., 2010), convection takes place. At
500 hPa, the upward motion anomalies are found over the
IP and along the HM (Fig. 9c), reflecting the lifting effect
of the elevated topography. The height of the lifted conden-
sation level (LCL) is significantly reduced over the IP and
along the western edge of the HM (Fig. 9d), which likely re-
sulted from the elevated surface sensible heating (He, 2017).
Reduced LCL facilitates the occurrence of moist convection,
further warming the air parcels by the released latent heating.
Consequently, specific humidity and θe further increase in the
middle troposphere (Fig. 9e), which in turn favors the con-
vection activity. The pattern match between the specific hu-
midity and θe indicates that the increased θe is primarily con-
tributed by the increase in specific humidity and then by the

warming (Fig. 9c). At the upper troposphere, forced by the
latent heating, the warm-centered South Asian high strength-
ens over the IP (Fig. 9f), which is coupled with the cyclonic
anomaly at a low level (Fig. 9b), leading to moisture conver-
gence over the western region and accelerating the convec-
tion activity. Positive feedback is thus built between the pre-
cipitation and circulation. Regarding HM uplift, there is not
a circulation adjustment between the low and high levels; the
precipitation–circulation coupling thus cannot be built.

In this thermodynamical process, the IP’s blocking/me-
chanical effect is also noticeable as it blocks the cold, dry,
and extratropical air from northern India where the air of
high θe cumulates (Fig. 9a). However, this effect is relatively
weak given the small contribution of the easterly anomaly
to precipitation increase (less than 0.3 mm d−1; see Fig. 8a;
−〈u′∂xq〉) according to the moisture budget.

5 Discussion

5.1 Application to monsoonal reconstructions

A remarkable intensification of the SASM in the Middle
Miocene is revealed by increasing evidence (Fig. 3c; Ta-
ble 2). In western India and the Arabian Sea, monsoon-like
precipitation appeared in the Early Miocene (Clift et al.,
2008; Reuter et al., 2013; Ali et al., 2021) and intensified
at ∼ 15–12 Ma (Clift et al., 2008; Yang et al., 2020). In east-
ern India, the intensification of SASM occurred at ca. 15 Ma
(Toohey et al., 2014) to ∼ 13–11 Ma (Bhatia et al., 2021;
Vogeli et al., 2018). In terms of the wind system, a weaker
“proto-monsoon” existed between 25 and 12.9 Ma (Betzler et
al., 2016), and an abrupt intensification occurred at 12.9 Ma,
as inferred from the sedimentary records in the Maldives
and in the western Arabian Sea (Gupta et al., 2015), indi-
cating the inception of a modern Somali jet. Besides, mon-
soonal upwelling and thus possibly the strengthening of wind
speed in the western Arabian Sea has been observed since
ca. 14.8 Ma.

Our modeling results support the existence of the SASM
(Clift et al., 2008) in terms of precipitation seasonality in the
Early Miocene; this is represented by the IP0HM0 experi-
ment when the proto-TP existed while the IP and HM were
low (Fig. 3). With the uplift of the IP rather than the HM dur-
ing Middle Miocene, monsoonal precipitation increased in
the northwest of the Indian landmass, as shown in the∼ IP50,
∼HM50 and IP100HM100 experiments (Fig. 6), corroborat-
ing the hypothesis that increased sedimentary and weathering
fluxes between 25 and 15 Ma could be partially linked with
monsoon intensification related to the coeval of IP–HM (Clift
et al., 2008). Meanwhile, with the deepening of the cycloni-
cal anomaly over the west of the IP (Fig. 4b), the southwest-
erly wind strengthens over the western Arabian Sea, which
somewhat agrees with the reconstructions that suggest the in-
ception of a modern Somali jet (Betzler et al., 2016). But the
inception of the modern Somali jet is more likely attributed
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Figure 7. South Asian summer monsoon circulation and precipitation response in sensitivity experiments. Left: topography experiments.
Right: CO2 experiments. (a) Webster–Yang Index (meridional wind stress shear between 850 and 200 hPa, averaged over 0–20° N, 40–
110° E, during June–August). (b) Maximum intensity of the Somali jet over the Arabian Sea (averaged over 0–20° N, 30–60° E, during June–
August). (c) Regional mean precipitation over the land points within the domain (7–30° N, 65–95° E) named the all-Indian rainfall (AIR).
(d) Precipitation over the western part of South Asian summer monsoon region.

Figure 8. Moisture budget for regional mean precipitation differences (mm d−1) over (a) the western part (15–35° N, 50–75° E) of the South
Asian monsoon region between the IP100 and IP0 experiments and (b) the eastern part (15–29° N, 75–95° E) of the South Asian monsoon
region between HM100 and HM0 experiments.
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Figure 9. The differences in the JJA mean thermal dynamical and dynamical variables between IP100HM100 and IP0HM0 simulations.
(a) Equivalent potential temperature (EPT; shading; unit: K) at 850 hPa. (b) Climatological specific humidity q (shading; g kg−1) and
wind differences (vector; unit: m s−1) at 850 hPa. (c) Vertical velocity in the pressure coordinate (−10−2 Pa s−1) at 500 hPa. (d) Lifting
condensation level (LCL; unit: hPa; positive value represents lower LCL). (e) Specific humidity (shading) and EPT (contours; unit: K)
integrated between 300 and 700 hPa. (f) Geopotential height zg (shading; unit: m), temperature anomalies (contours; unit: K), and wind
(vector; unit: m s−1) at 200 hPa.

to the uplift of the east African topography demonstrated in
modeling studies (Chakraborty et al., 2006; Sarr et al., 2022;
Tardif et al., 2023; Wei and Bordoni, 2016) and/or the emer-
gence of land in the east Arabian Peninsula (Sarr et al., 2022).
This aligns with geological evidence indicating that eastern
Africa began to uplift in the Late Oligocene–Early Miocene
and rapidly uplifted in the Middle–Late Miocene (Macgre-
gor, 2015). We conduct a series of complementary experi-
ments (Sect. S3) and confirm that the elevated east African
highlands play an essential role in producing the modern-like

Somali jet. Meanwhile, it creates an anti-cyclonic anomaly
over the north Arabian Sea, as revealed by previous studies,
leading to reduced moisture transport into Indian landmass
and thus decreased monsoonal precipitation. Therefore, there
is likely a complementary and competing effect on the SASM
evolution between the uplift of the IP and the east African
highlands.

The enhanced precipitation at 13 Ma is inferred from leaf
fossil in the eastern HM, which has been attributed to the
rise in the HM (Toohey et al., 2014; Bhatia et al., 2021).
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But this hypothesis cannot be supported by our sensitivity
experiment nor can it be interpreted by the uplift of the IP
based on our simulations. In contrast, some modeling studies
suggested enhanced precipitation along the HM in response
to mountain uplift in the American region and the northern
TP (Chakraborty et al., 2006; Miao et al., 2022). Therefore,
remote impacts on precipitation change in the eastern HM
should be taken into account.

The CO2 forcing has little impact on the intensity of the
Somali jet, indicating its small contribution to the strengthen-
ing of surface wind inferred from the reconstructions (Gupta
et al., 2015), but its effect on precipitation is likely to su-
perimpose on that of the IP uplift. It is speculated that dur-
ing the early part of the Middle Miocene Climatic Optimum,
an abrupt rise in the CO2 amplifies the effect of the IP up-
lift, leading to the markedly intensified SASM precipitation
at around 15 Ma, as depicted in reconstructions (Clift et al.,
2008; Yang et al., 2020). During the Mid–Late Miocene, the
decreasing tendency of CO2 offsets the effect of the IP up-
lift, although precipitation still intensifies due to the dom-
inant impact of the latter. Given the wide range of recon-
structed CO2 in terms of intensity and timing during the Mid-
dle Miocene, the effect of CO2 forcing experiences large un-
certainty. Nevertheless, the CO2 variation itself cannot inter-
pret the strengthening of wind along the Somali jet or the
evolution of SASM precipitation intensity as inferred from
reconstructions.

The two sites, ODP 359 and 758, situated in the inner sea
of the Maldives and the southern Bay of Bengal, respectively,
indicate an abrupt strengthening of monsoonal circulations in
the SASM regions at 12.9 and 13.9 Ma, respectively. How-
ever, our modeling efforts cannot replicate these enhance-
ments through either the uplift of the IP and HM or a re-
duction in CO2 levels. Hence, it is likely that other factors
exert a more significant influence on the reorganization of
the SASM system. Examples include Antarctic glaciation, as
suggested in Ali et al. (2021) and Sarr et al. (2022), as well as
the closure of the Tethys, as discussed in research by Betzler
et al. (2016) and Bialik et al. (2020).

5.2 Comparison with previous modeling studies

Concerning the effect of uplifted HM and IP on the SASM,
our modeling results confirm the intensified SASM linked
with the uplift of the IP (Liu et al., 2017; Zhang et al., 2015;
Acosta and Huber, 2020; Tardif et al., 2020, 2023) rather than
the HM (Zhang et al., 2012), particularly over the western
region, i.e., from the Arabian Sea to northwestern India and
Pakistan. When the evolution history of the HM–TP is taken
into account, the uplift of the HM against the TP mainly en-
hances the orographic precipitation along the windward side
of the HM and has little impact on regional monsoonal pre-
cipitation. While the effects of IP uplift from our AOGCM
simulations qualitatively agree with previous studies using
AGCMs (Wu et al., 2012; Liu et al., 2017; Acosta and Huber,

2020; Zhang et al., 2015), additional analysis (not shown) re-
veals notable impacts on ocean circulations. These impacts
are evidenced by changes in sea surface temperatures (SSTs)
and precipitation in tropical oceans, potentially influencing
the SASM intensity through teleconnection. However, fur-
ther discussion on the added value of AOGCM extends be-
yond the scope of our current study.

Regarding the mechanism of the IP uplift on the SASM,
our analyses tend to support its thermal forcing effect (Wu
et al., 2012; Liu et al., 2017), but instead of emphasizing
the sensible heating effect, we highlight latent heating as a
crucial link between the convection activity and regional cir-
culations, as in a previous study (He, 2017). This demon-
strates that it is not only temperature but also hydrological
cycle modifications, as depicted in Sect. 4, that must be taken
into account to understand the physical process involved. We
also note that the IP’s blocking/mechanical effect is much
weaker in our study than that reported in Tang et al. (2013).
In their study, the elevated IP effectively blocked the west-
erly flow to the south of the HM, facilitating the moisture
advection from the Bay of Bengal into northern India and
thus strongly enhancing the SASM precipitation, particularly
in eastern India. A similar blocking effect (or role of gate-
keeper) is also reported by Acosta and Huber (2020). Both
studies utilized high spatial resolution models and were con-
ducted using modern geographies. The weak blocking effect
in our study is likely due to the (1) smaller size of the IP
in the Miocene than in the present day and the (2) spatial
lower-resolution model than that used in their studies (∼ 1°
or higher); thus, some critical regional circulations linked to
the SASM are likely misrepresented (Boos and Hurley, 2013;
Acosta and Huber, 2017).

5.3 Uncertainty and methodological limitation

Geography, particularly the land–sea distribution, is another
important driver for Asian monsoon development (Ramstein
et al., 1997; Farnsworth et al., 2019; Sarr et al., 2022; Tardif
et al., 2023). The land–sea distribution used in our Miocene
simulations, like other reconstructions (Herold et al., 2008;
He et al., 2021), inevitably contains uncertainties. For in-
stance, the Bohai Bay and Yellow Sea basins in east Asia
are open in the F18, contrary to the regional stratigraphy
and lithofacial records (Tan et al., 2020). The Greenland–
Scotland Ridge in F18 is set as ∼ 4000 m, which is sig-
nificantly deeper than the middle bathyal environment (<
1000 m deep) indicated by geological evidence (Stoker et
al., 2005). Large uncertainties are also present in the Tethys–
Paratethys configuration. The Tethyan seaway is open, with
a depth of over 3000 m in F18, in contrast to geologi-
cal evidence suggesting intermittent openings during ∼ 15–
12.8 Ma (Sun et al., 2021). The Paratethys was intermittently
connected and disconnected from the global ocean during
the Middle Miocene, according to geological studies (Rögl,
1998). It is assigned to connect to the global ocean in F18 and
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Herold et al. (2008), while it retreats to the Carpathian–Black
Sea–Caspian Sea region and is connected with the Mediter-
ranean in He et al. (2021). In short, the Tethys–Paratethys
configuration in F18 reflects more the features of early Mid-
dle Miocene geography with an open Tethyan seaway and a
smaller IP. However, given that most reconstruction records
focus on the late Middle Miocene period (14–12 Ma), our
Middle Miocene simulations may not adequately capture the
IP’s effects and may be less suitable for comparison with
proxy data. Nonetheless, a previous study (Sarr et al., 2022)
utilizing a Late Miocene (10 Ma) configuration also empha-
sized the significant role of the Anatolia–Iran uplift on the
enhanced SASM. Their experiments showed that this uplift
deepened the low-pressure area over the Arabian Peninsula,
intensifying low-level wind and moisture transport from the
Arabian Sea towards South Asia, which is a process consis-
tent with our simulations (Fig. 4a). We thus emphasize that
constraining the exact timing of IP uplift is crucial to im-
prove our understanding of the evolution of the SAM. Dur-
ing the late Middle Miocene period, significant geological
events occurred, including the final closure of the Tethyan
seaway ∼ 14 Ma (Sun et al., 2021) and the remarkable ex-
pansion of the Antarctic ice sheets from ∼ 14.2 to 13.8 Ma
(Holbourn et al., 2005), resulting in global sea level changes.
These geological events likely led to considerable changes in
the physiography of the Middle East and eastern Africa. Con-
sequently, the atmospheric and oceanic circulations in these
regions and beyond are likely altered during the late Mid-
dle Miocene (Hamon et al., 2013). But some modeling stud-
ies indicated that “the sole effect of the Tethys way closure,
without strong modification of land extension in the Ara-
bian Peninsula region, remain limited” (Tardif et al., 2023),
thereby not supporting the hypothesis that the closure of the
Tethys seaway may contribute to altering the intensity of the
monsoon during the Miocene (Bialik et al., 2020; Sun et al.,
2021).

The uncertainty regarding the effects of CO2 on SASM
primarily arises from the wide range of estimated CO2 values
during the Middle Miocene. While our CO2 sensitivity ex-
periments cover various concentrations, prior studies (Thom-
son et al., 2021) indicate that the impacts of CO2 variation
on SASM are influenced by the background state. For in-
stance, the status of the Tethys Sea, whether open or closed,
introduces uncertain changes in the SASM rainfall. Conse-
quently, understanding the precise impacts of the CO2 vari-
ation on the SASM behavior remains complex and warrants
further investigation. In brief, the evolution of the SASM dur-
ing the Middle Miocene could have been caused by a combi-
nation of changes in topography in the east African and Mid-
dle Eastern physiography, CO2 variation, and the progres-
sive cryosphere expansion in Antarctica. All of these factors
should be addressed in a future study with a careful experi-
mental design.

A high-resolution model is essential for capturing the
monsoon dynamics and thermodynamics to thus improve our

understanding of the monsoonal variation/change (Acosta
and Huber, 2017; Anand et al., 2018; Botsyun et al.,
2022a, b). The climate model employed in the present study
is a version of the low spatial resolution and not sufficient to
reproduce the regional features of the SASM. For instance,
the Indo-Gangetic low-level jet, a key mechanism that intro-
duces the monsoon onshore flow from the Bay of Bengal into
northern India (Acosta and Huber, 2017), is missing from
our modern simulation (just as all the low-resolution mod-
els are). Misrepresentation of this circulation is problematic
when interpreting the effect of HM uplift and reconciling the
modeling–proxy data discrepancy (Toohey et al., 2014; Vo-
geli et al., 2018; Bhatia et al., 2021). The low resolution also
likely underestimates the barrier effect of the IP due to topog-
raphy smoothing (Boos and Hurley, 2013). For instance, the
mechanical blocking effect is more prominent in the stud-
ies with high-resolution models (Tang et al., 2013; Acosta
and Huber, 2020) than those with coarse-resolution models
(Zhang et al., 2015; Wu et al., 2007). Although we are us-
ing computer resources to run coupled paleoclimate simula-
tions and perform many sensitivity experiments with a high-
resolution version, we acknowledge that a better understand-
ing of the impact of the topographic change on the SASM
and the underlying mechanism would benefit from additional
simulations performed with an increased spatial resolution.

The evolution of the SASM is also largely determined by
the large-scale circulation (Wu et al., 2012; Botsyun et al.,
2022a). For instance, the mid-latitude westerly jet migrated
earlier (in the year) and reached a higher latitude during the
warm climate periods than in the pre-industrial period (Bot-
syun et al., 2022b). Our Miocene experiments likely confirm
this point (not shown), but an in-depth investigation needs
to be done in the future. We also acknowledge that running
AOGCMs necessitates an extended period to achieve equi-
librium. Particularly with significant modifications to topog-
raphy or CO2 levels, integrations spanning 200/500 years
may carry the risk of non-equilibrium, potentially affecting
the quantitative estimation of their effects but not essentially
changing the results.

6 Conclusions

In this study, we performed a series of 12 experiments with
the fully coupled AOGCM CESM1.2 (with ∼ 2° horizon-
tal resolution) to investigate the SASM in response to to-
pographic changes in the region surrounding the Tibetan
Plateau and the variations in the global CO2 concentration
during the Middle Miocene. We examined the effect of the
elevated IP and HM on the SASM through a set of to-
pographic sensitivity experiments. Additionally, due to the
large uncertainties in the CO2 reconstructions (Rae et al.,
2021; CenCO2pip, 2023), we conducted a series of CO2 sen-
sitivity experiments to investigate its impact on the SASM.
We explored the underlying mechanisms and compared the
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modeling results with proxy data. The conclusions are as fol-
lows:

1. We confirm and extend previous studies showing that
IP uplift plays a major role in the intensification of
the SASM, particularly in the western region, from the
northern Arabian Sea to northwestern India and Pak-
istan, while it has little impact on eastern India. The ef-
fect of the HM uplift is confined to the range of the HM
and its vicinity, producing an orographic precipitation
change.

2. The response of the SASM to CO2 variation under
Middle Miocene boundary conditions is similar to that
under present-day conditions projecting future SASM
changes. This suggests that similar physical processes
operate during these two warm periods. Enhanced mon-
soonal precipitation is primarily governed by enhanced
thermodynamic conditions due to atmospheric warm-
ing, while the contribution from the change in large-
scale monsoon circulation plays a secondary role. In the
western region, topographic change, particularly the IP
uplift, remains the dominant factor.

3. Topographic changes out-compete CO2 variations in
driving the intensification of the SASM. The forcing of
the CO2 variation is more important for the change in
large-scale monsoon circulation that is decoupled with
the rainfall change. In the case of strong CO2 variation,
that is, from 280 to 1000 ppm, similar to the abrupt 3×
or 4×CO2 experiments, its contribution to SASM pre-
cipitation is comparable (approximately 75 %–100 %)
to that of topographic forcing in the core SAM region.
However, in the western region, topographic forcing re-
mains the dominant factor.

4. We propose a thermodynamic process linking the uplift
of the IP to enhanced SASM, where a deepened ther-
mal low transports moisture from the Arabian Sea to
the western region, coupled with the South Asian High
linked by latent heat release. However, the strong ther-
mal effect of the uplifted IP in our Middle Miocene sim-
ulation is possibly associated with the smaller size of
the IP and model’s low resolution, which tends to un-
derestimate the mechanical effects.

5. Compared with reconstructions, the effect of IP uplift is
in good agreement with the observed evolution of pre-
cipitation and the change in the wind intensity, while the
effects of the HM uplift and CO2 variation are insuffi-
cient to interpret the proxies.
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