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Abstract. The Last Interglacial (LIG) period, which had
higher summer solar insolation than today, has been sug-
gested as the last time that Arctic summers were ice free.
However, the latest suite of Coupled Modelling Intercom-
parison Project 6 Paleoclimate (CMIP6-PMIP4) simulations
of the LIG produce a wide range of Arctic summer mini-
mum sea ice area (SIA) results, with a 30 % to 96 % reduc-
tion from the pre-industrial (PI) period. Sea ice proxies are
also currently neither abundant nor consistent enough to de-
termine the most realistic state. Here we estimate LIG mini-
mum SIA indirectly through the use of 21 proxy records for
LIG summer surface air temperature (SSAT) and 11 CMIP6-
PMIP4 models for the LIG. We use two approaches. First,
we use two tests to determine how skilful models are at
simulating reconstructed 1SSAT from proxy records (where
1 refers to LIG-PI). This identifies a positive correlation be-
tween model skill and the magnitude of 1SIA: the most re-
liable models simulate a larger sea ice reduction. Averag-
ing the two most skilful models yields an average SIA of
1.3×106 km2 for the LIG. This equates to a 4.5×106 km2 or
79 % SIA reduction from the PI to the LIG. Second, across
the 11 models, the averaged 1SSAT at the 21 proxy loca-
tions and the pan-Arctic average 1SSAT are inversely cor-
related with 1SIA (r =−0.86 and −0.79, respectively). In
other words, the models show that a larger Arctic warming is
associated with a greater sea ice reduction. Using the proxy-
record-averaged 1SSAT of 4.5± 1.7 K and the relationship
between1SSAT and1SIA suggests an estimated sea ice re-
duction of 4.2±1.4×106 km2 or about 74 % less sea ice than
the PI period. The mean proxy-location1SSAT is well corre-
lated with the Arctic-wide1SSAT north of 60◦ N (r = 0.97),
and this relationship is used to show that the mean proxy

record 1SSAT is equivalent to an Arctic-wide warming of
3.7± 1.5 K at the LIG compared to the PI period. Apply-
ing this Arctic-wide 1SSAT and its modelled relationship to
1SIA, results in a similar estimate of LIG sea ice reduction
of 4.1± 1.2× 106 km2. These LIG climatological minimum
SIA of 1.3 to 1.5×106 km2 are close to the definition of a
summer ice-free Arctic, which is a maximum sea ice extent
of less than 1×106 km2. The results of this study thus sug-
gest that the Arctic likely experienced a mixture of ice-free
and near-ice-free summers during the LIG.

1 Introduction

The rapid decline in Arctic sea ice over the last 40 years
is an icon of contemporary climate change. Climate mod-
els have struggled to fully capture this sea ice loss (Notz and
the SIMIP Community, 2020), which can sometimes reduce
confidence in their future projections (e.g. IPCC, 2021). One
line of investigation to address this problem that has not been
fully exploited is the use of past climates to provide informa-
tion on the future (e.g. Bracegirdle et al., 2019). Investigat-
ing the physics and causes of sea ice change, concentrating
on Arctic changes during the most recent warm climate peri-
ods, can help us address this problem (Guarino et al., 2020b).
Interglacials are periods of globally higher temperatures that
occur between cold glacial periods (Sime et al., 2009; Otto-
Bliesner et al., 2013; Fischer et al., 2018). The differences
between colder glacial and warmer interglacial periods are
driven by climate feedbacks and changes in the Earth’s orbit
that affect incoming radiation. The Last Interglacial (LIG)
occurred 130 000–116 000 years ago. At 127 000 years ago,
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at high latitudes orbital forcing led to summertime top-of-
atmosphere shortwave radiation 60–75 W m−2 greater than
the pre-industrial (PI) period. Summer temperatures in the
Arctic during the LIG are estimated to be around 4.5 K above
those of today (CAPE members, 2006; Kaspar et al., 2005;
IPCC, 2013; Capron et al., 2017). Prior to 2020, most cli-
mate models simulated summer LIG temperatures that were
too cool compared with these LIG temperature observa-
tions (Otto-Bliesner et al., 2013; IPCC, 2013). This led Lunt
et al. (2013). Otto-Bliesner et al. (2013) and IPCC (2013)
to suggest that the representation of dynamic vegetation
changes in the Arctic might be key to understanding LIG
summertime Arctic warmth.

Guarino et al. (2020b) argued that loss of Arctic sea ice
in the summer could cause the warm summer Arctic temper-
atures without the need for dynamic vegetation. Using the
HadGEM3 model, which was the UK’s contribution to the
LIG CMIP6-PMIP4 project, Guarino et al. (2020b) found
that the model simulated a fully sea-ice-free Arctic during
the summer, i.e. it had less than 1×106 km2 of sea ice ex-
tent at its minimum. This unique and near-complete loss of
summer sea ice appears to happen in the UK model because
it includes a highly advanced representation of melt ponds
(Guarino et al., 2020b; Diamond et al., 2021). These are shal-
low pools of water that form on the surface of Arctic sea ice
and determine how much sunlight is absorbed or reflected by
the ice (Guarino et al., 2020b).

Malmierca-Vallet et al. (2018) found the signature of
summertime Arctic sea ice loss in Greenland ice cores.
Kageyama et al. (2021) then led the international commu-
nity in compiling all available marine core Arctic sea ice
proxy data for the LIG and testing them against CMIP6-
PMIP4 simulations. The Kageyama et al. (2021) synthesis of
ocean core-based proxy records of LIG Arctic sea ice change,
like Malmierca-Vallet et al. (2018), showed that compared to
the PI period it is very likely that Arctic sea ice was reduced.
However, Kageyama et al. (2021) also showed that directly
determining sea ice changes from marine core data is diffi-
cult. The marine core observations suffer some conflicting
interpretations of proxy data, sometimes from the same core,
and imprecision in dating materials to the LIG period in the
high Arctic. Thus, determining the mechanisms and distri-
bution of sea ice loss during the LIG by directly inferring
sea ice presence (or absence) from these preserved biologi-
cal data alone is not possible (Kageyama et al., 2021).

The Coupled Model Intercomparison Project
Phase 6 (CMIP6) Paleoclimate Model Intercomparison
Project Phase (PMIP4) or CMIP6-PMIP4 LIG experimental
protocol prescribes differences between the LIG and PI in
orbital parameters, as well as differences in trace greenhouse
gas concentrations (Otto-Bliesner et al., 2017). This stan-
dardized climate modelling protocol is therefore an ideal
opportunity for the community to use models to explore the
causes of Arctic warmth using multi-model approaches. In
particular, the existing non-dynamic vegetation PMIP4 LIG

protocol and associated simulations offer the opportunity
to address the question of whether the Arctic sea ice loss
alone is sufficient to explain LIG summertime temperature
observations, or whether active vegetation modelling and the
idea of vegetation feedbacks (Lunt et al., 2013; Otto-Bliesner
et al., 2013; IPCC, 2013) are required. That being said, we
recognize that in reality there must also be LIG Arctic
vegetation feedbacks. These should be explored in future
modelling work.

Guarino et al. (2020b) showed that the HadGEM3, the
only CMIP-PMIP4 model with an ice-free Arctic at the
LIG, has an excellent match with reconstructed Arctic air
temperature in summer. The LIG-PI average summer sur-
face air temperature (1SSAT, where 1 refers to LIG-PI)
in HadGEM3, for all locations with proxy observations, is
+4.9±1.2 K compared with the proxy mean of+4.5±1.7 K.
This model also matched all marine core sea ice data points
from Kageyama et al. (2021) except one. Here we investigate
whether there are more CMIP6-PMIP4 models with a simi-
larly good 1SSAT, and, if so, whether other models with a
good match also suggest a much-reduced sea ice area (SIA)
during the LIG. We further compute the correlation and lin-
ear relationship in the models between 1SSAT and 1SIA
and subsequently use this equation and proxies for 1SSAT
to estimate 1SIA. Section 2 describes the proxy data and
models used in this study, as well as the analysis methods.
The results are presented in Sect. 3, which first evaluates the
modelled PI and LIG sea ice distribution against proxy re-
constructions and then uses the above-described approaches
to estimate the sea ice reduction at the LIG. Section 4 sum-
marizes the results and discusses their shortcomings and im-
plications.

2 Data and methods

2.1 Proxy reconstructions for LIG

The LIG SSAT proxy observations used to assess LIG Arc-
tic sea ice in the Guarino et al. (2020b) study were previ-
ously published by CAPE members (2006) and Kaspar et
al. (2005), and 20 of them were also used to assess CMIP5
models in the IPCC (2013) report. A detailed description
of each record is available (CAPE members, 2006; Kas-
par et al., 2005; IPCC, 2013; Capron et al., 2017). Each
proxy record is thought to be of summer LIG air tem-
perature anomaly relative to present day and is located in
the circum-Arctic region; all sites are from north of 51◦ N.
There are seven terrestrial temperature records, eight lacus-
trine records, two marine pollen-based records and three ice
core records included in the original IPCC (2013) compila-
tion. Guarino et al. (2020b) added to this an additional new
record from the NEEM Greenland ice core from Capron et
al. (2017), bringing the total number of proxies records to 21
(Table 1). Figure 1 shows the location and type for each
numbered proxy record. Terrestrial climate can be recon-
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Figure 1. Map of data locations numbered to match Table 1. This combines the Kageyama et al. (2021) sea ice locations 1 to 20 with the
temperature proxies from Table 1. Open symbols correspond to records with uncertain chronology, and filled symbols correspond to records
with good chronology.

structed from diagnostic assemblages of biotic proxies pre-
served in lacustrine, peat, alluvial and marine archives and
isotopic changes preserved in ice cores and marine and la-
custrine carbonates (CAPE members, 2006; Guarino et al.,
2020b). Quantitative reconstructions of climatic departures
from the present day are derived from range extensions of
individual taxa, mutual climatic range estimations based on
groups of taxa and analogue techniques (CAPE members,
2006). These proxy records are considered to represent the
summer surface air temperature because summer tempera-
ture is also the most effective predictor for most biologi-
cal processes, although seasonality and moisture availabil-
ity may influence phenomena such as evergreen versus de-
ciduous biotic dominance (Kaplan et al., 2003). While the
exact timing of this peak warmth has not yet been defini-
tively determined, it is reasonable to assume that these mea-
surements are approximately synchronous across the Arc-

tic. It is, however, very unlikely that the peak warmth was
synchronous across both hemispheres (see Capron et al.,
2014; Govin et al., 2015), and further investigation of the
synchronicity of peak warmth across the Northern Hemi-
sphere is merited. For consistency with modelled data, tem-
perature anomalies computed against present-day conditions
(i.e. 1961–1990 baseline) were corrected to account for a
+0.4 K of global warming between the PI (1850) period and
present day (1961–1990) (Turney and Jones, 2010). There-
fore, Table 1 and Guarino et al. (2020b) values differ slightly
(+0.4 K) from the original datasets so that they represent
temperature anomalies relative to the PI period.

Most of the sites have temperature uncertainty (1 standard
deviation) estimates, which are provided in Table 1. How-
ever, for nine sites, the standard deviation of the tempera-
ture data was not available. A standard deviation of ±0.5 K
was used to account for this missing uncertainty. This is the
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Table 1. Compilation of LIG-PI summertime surface air temperature (SSAT) anomalies used by Guarino et al. (2020b).

No. Lat Long Site Observation type Observation
(K)

1 55 18 Europe Terrestrial: pollen, plant macrofossils 3.4± 0.5
2 55 −3 UK Terrestrial: pollen, plant macrofossils 2.4± 0.5
3 61 152.5 Magadan Terrestrial: pollen 6.4± 2
4 68 80 Western central Siberia Terrestrial: pollen, plant macrofossils 5.4± 2
5 68 160 Northeastern Siberia Terrestrial: pollen 6.4± 2
6 70 −72.5 Flitaway Terrestrial: insects, plant remains 4.9± 0.5
7 73.33 141.5 Bolshoy Iyadhovshy Terrestrial: pollen 4.9± 0.5
8 63 −66 Robinson Lake Lacustrine: pollen 5.4± 0.5
9 64 −150 Birch Creek Lacustrine: pollen 1.4± 1
10 66 −69.2 Amarok Lake Lacustrine: pollen 4.9± 0.5
11 67 −160 Squirrel Lake Lacustrine: pollen, plant macrofossils 1.9± 1.5
12 67 −62 Cumber Lacustrine: pollen 5.9± 1.5
13 67.5 172.08 Lake El’gygytgyn Lacustrine: pollen 3.4± 1
14 69 −151 Ahaliorak Lake Lacustrine: pollen 1.9± 1.5
15 69 −133 Lake Tuk 5 Lacustrine: plant macrofossils and beetles 2.4± 0.5
16 71.75 −23 Jamson Marine: pollen, plant macrofossils, beetles, other invertebrates 5.4± 0.5
17 76.35 −68.3 Thule Marine: pollen, chironomids 4.4± 0.5
18 73 −25 Renland Ice core: δ18O, δD 5.4± 0.5
19 73 −38 GISP2 Ice core: δ18O, δD 5.4± 0.5
20 75 −42 NGRIP Ice core: δ18O, δD 5.4± 0.5
21 76.4 −44.8 NEEM Ice core: δ18O, δD 8± 4

– – – Arctic Mean of observations 1 to 21 4.5± 1.7

smallest standard deviation found in any proxy record across
all sites and is thus a conservative estimation of the uncer-
tainty associated with the proxy data (Guarino et al., 2020b).

2.2 Models and model output

We analyse tier 1 LIG simulations based on the standard
CMIP6-PMIP4 LIG experimental protocol (Otto-Bliesner
et al., 2017). The prescribed LIG (127 ka) protocol differs
from the CMIP6 PI simulation protocol in astronomical pa-
rameters and the atmospheric trace greenhouse gas (GHG)
concentrations. LIG astronomical parameters are prescribed
according to orbital constants (Berger and Loutre, 1991),
and atmospheric trace GHG concentrations are based on ice
core measurements: 275 ppm for CO2, 685 ppb for CH4 and
255 ppb for N2O (Otto-Bliesner et al., 2017).

The CMIP6-PMIP4 model simulations were run follow-
ing the Otto-Bliesner et al. (2017) protocol, except CNRM-
CM6-1, which used GHGs at their PI values rather than using
LIG values. For all models, all other boundary conditions,
including solar activity, ice sheets and aerosol emissions, are
identical to the PI simulation. In terms of the Greenland and
Antarctica ice sheets, a PI configuration for the LIG sim-
ulation is not unreasonable (Kageyama et al., 2021; Otto-
Bliesner et al., 2021). LIG simulations were initialized either
from a previous LIG run or from the standard CMIP6 pro-
tocol PI simulations, using constant 1850 GHGs, ozone, so-

lar, tropospheric aerosol, stratospheric volcanic aerosol and
land use forcing. While PI and LIG spin-ups vary between
the models, with CNRM being the shortest at 100 years,
most model groups aimed to allow the land and oceanic
masses to attain approximate steady state, i.e. to reach atmo-
spheric equilibrium and to achieve an upper-oceanic equilib-
rium, which generally seems to take around 300 to 400 years.
LIG production runs are all between 100 and 200 years long,
which is an appropriate length for Arctic sea ice analysis
(Guarino et al., 2020a).

While 15 models have run the CMIP6-PMIP4 LIG simu-
lation (Kageyama et al., 2021; Otto-Bliesner et al., 2021) and
have uploaded model data to the Earth System Grid Federa-
tion (ESGF), we exclude four simulations for the following
reasons. The AWI-ESM and Nor-ESM models have LIG sim-
ulations with two versions of model. To avoid undue biassing
of results, we include only the simulation from the latest ver-
sion for each model. Additionally, for INM-CM4-8 model,
no ocean or sea ice fields were available for download, ex-
cluding this model from our analysis. Finally, we exclude the
CNRM model in the analysis because, apart from using PI in-
stead of LIG GHG concentrations and having a short spin-up
time, the model also has known issues with its sea ice model.
The model produces much too thin sea ice in September and
March compared with observational evidence, and the snow
layer on the ice is considerably overestimated (Voldoire et al.,
2019). As a possible consequence of these issues, the CNRM
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model is also an outlier in an otherwise highly correlated (in-
verse) relationship in the models between the LIG-PI albedo
change over the Arctic sea ice and the LIG-PI SSAT change
over the ice, being the only model that produces a warmer
LIG with almost no reduction in albedo (Fig. A1). While we
consider the CNRM ice model unreliable for this study, we
note that the inclusion of the model in our analysis reduces
the correlation coefficients but does not change the overall
conclusions.

We thus analyse the difference between the PI and LIG
simulations from 11 models. Out of the 11 simulations of
the LIG, 7 have a 200-year simulation length (data available
to download in ESGF), while the remaining 4 are 100 years
in length. For PI control runs, we use the last 200 years of
PI control run available in ESGF for each model. Details
of each model, i.e. model denomination, physical core com-
ponents, horizontal and vertical grid specifications, details
on prescribed versus interactive boundary conditions, details
of published model description, and LIG simulation length
(spin-up and production runs), are contained in Kageyama
et al. (2021). Data were downloaded from the ESGF data
node: https://esgf-node.llnl.gov/projects/esgf-llnl/ (last ac-
cess: 23 June 2021).

The spatial distribution of sea ice is usually computed in
the following two ways: by its total area or its extent. The
sea ice extent (SIE) is the total area of the Arctic Ocean
where there is at least 15 % ice concentration. The total sea
ice area (SIA) is the sum of the sea ice concentration times
the area of a grid cell for all cells that contain some sea ice.
In this paper, the SIA refers to the SIA of the month of min-
imum sea ice, as computed by using the climatology of the
whole simulation.

2.3 Assessing model skill to simulate reconstructions
of ∆SSAT

The model skill is quantified using two measures based
on (1) the root-mean-square error (RMSE) of the modelled
SSAT compared to the proxies and (2) the percentage of the
21 proxies for 1SSAT (in Table 1) for which the model pro-
duces a value within the error bars. To assess whether the
model matches a proxy point, we compute summer mean
(June to August) surface air temperatures for every year
for the PI period and LIG for each model. Climatologi-
cal summer temperature is the time mean of these summer
temperatures for the entire simulation length. Our calcu-
lated model uncertainties regarding the climatological sum-
mer mean temperatures are 1 standard deviation of summer
mean time series for each model. Bilinear interpolation in
latitude–longitude space was used to extract values at the
proxy locations from the gridded model output. For clima-
tological summer mean temperature, if there is an overlap
between proxy SSAT (plus uncertainty) and the simulated
SSAT (plus model uncertainty), then for that location the re-
sult is considered a match. Similarly, the RMSE is calculated

using the modelled SSAT values averaged over the summer
months of the entire simulation length.

3 Results

3.1 Simulated Arctic sea ice distribution

The sea ice distribution in the models has been reported
previously in Kageyama et al. (2021) and is included
here to make this work self-reliant. For the PI period, the
model mean value for summer minimum monthly SIA is
6.4×106 km2. Due to a lack of direct observations for the PI
period, the PI model results are compared with 1981 to
2002 satellite observations, keeping in mind that the present-
day observations are for a climate with a higher atmospheric
CO2 level of ∼ 380 ppm, compared to the PI atmospheric
CO2 levels of 280 ppm. The modern observed mean mini-
mum SIA is 5.7×106 km2 (Reynolds et al., 2002). In gen-
eral, the simulations show a realistic representation of the
geographical extent for the summer minimum. More models
show a slightly smaller area compared to the present-day ob-
servations; however, EC-Earth, FGOALS-g3 and GISS170
E2-1-G simulate too much ice (Fig. 2). Overestimations
appear to be due to too much sea ice being simulated in
the Barents–Kara seas area (FGOALS-g3, GISS-E2-1-G),
in the Nordic Seas (EC-Earth, FGOALS-g3) and in Baf-
fin Bay (EC-Earth). Kageyama et al. (2021) also note that
MIROC-ES2L performs rather poorly for the PI period, with
insufficient ice close to the continents. The other models have
a relatively close match to the 15 % isoline in the NOAA Op-
timum Interpolation version 2 data (Reynolds et al., 2002;
Kageyama et al., 2021).

For the LIG, the model output is compared against the
LIG sea ice synthesis of Kageyama et al. (2021), which in-
clude marine cores collected in the Arctic Ocean, Nordic
Seas and northern North Atlantic (Fig. 3). These data show
that south of 79◦ N in the Atlantic and Nordic Seas the LIG
was seasonally ice free. These southern sea ice records pro-
vide quantitative estimates of sea surface parameters based
on dinoflagellate cysts (dinocysts). North of 79◦ N, the sea-
ice-related records are more difficult to obtain and inter-
pret. A core at 81.5◦ N brings evidence of summer proba-
bly being seasonally ice-free during the LIG from two in-
dicators: dinocysts and IP25/PIP25. However, an anoma-
lous core close by at the northernmost location of 81.9◦ N
with good chronology shows IP25-based evidence of sub-
stantial (> 75 %) sea ice concentration all year round. Other
northerly cores do not currently have good enough chrono-
logical control to confidently date material of LIG age. All
models except FGOALS generally tend to match the results
from proxies of summertime Arctic sea ice in marine cores
with good LIG chronology (Fig. 3), apart from the anoma-
lous northernmost core for which the IP25 evidence suggest
perennial sea ice (Kageyama et al., 2021). Stein et al. (2017)
suggest that PIP25 records obtained from the central Arctic
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Figure 2. Climatological minimum PI sea ice concentration maps for each model. The first panel represents the multi-model mean (MMM).

Ocean cores indicating a perennial sea ice cover have to be
interpreted cautiously, given that biomarker concentrations
are very low to absent, and thus it is difficult to know how
much weight to place on this particular result. Additionally,
given Hillaire-Marcel et al. (2017) question the age model of
the data from the central Arctic Ocean, these IP25 data need
to be interpreted with some caution. This may mean that all
the models tend to have similar problems in simulating Arc-
tic sea ice during the LIG or that the LIG IP25 signal in the
Arctic indicates something else. What is clear is that a new
approach with other Arctic datasets, such as SSAT, may be
needed to make progress on the LIG Arctic sea ice question.

For the LIG, there is very little difference between the
maximum (wintertime) Arctic SIA and that of the PI pe-
riod (which is 15–16×106 km2 between the PI period and
the LIG in most models), but every model shows a reduc-
tion in summer sea ice in the LIG compared to the PI pe-
riod (Table 2). Our model mean LIG summertime Arctic is
2.9×106 km2, compared to 6.4×106 km2 for the PI period, or
a 55 % PI to LIG decrease. There is large inter-model vari-
ability for the LIG SIA during the summer (Fig. 4). All mod-
els show a larger sea ice area seasonal amplitude for LIG

than for PI, and the range of model SIA is larger for the LIG
than for the PI period (Fig. A2). The results for individual
years show that no model is close to the ice-free threshold
in summer during their PI simulation (Fig. 4), but for the
LIG summer SIA there are three models that are lower than
1×106 km2 for at least one summer during the LIG simula-
tion (Fig. 4). Of these three, HadGEM3 shows a LIG Arctic
Ocean free of sea ice in all summers, i.e. its maximum SIE is
lower than 1×106 km2 in all LIG simulation years. CESM2
and NESM3 show low climatological SIA values (slightly
above 2×106 km2) in summer for the LIG simulation, and
both have at least 1 year with a SIE minimum that is be-
low 1×106 km2, although their average minimum SIE values
are just below 3×106 km2. Of these low LIG sea ice models,
HadGEM3 and CESM2 realistically capture the PI Arctic sea
ice seasonal cycle, while NESM3 overestimates winter ice
and the amplitude of the seasonal cycle (Cao et al., 2018).

3.2 Estimating ∆SIA from model skill to simulate ∆SSAT

We first investigate whether there is a relationship between
how well models match proxy 1SSAT and the magnitude of
SIA reduction that they simulate for the LIG. A visual com-
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Figure 3. Climatological minimum LIG sea ice concentration maps for each model. Marine core results are from Kageyama et al. (2021):
orange outlines indicate that the dating is uncertain; green outlines indicate the data point is from the LIG. The first panel represents the
multi-model mean.

Table 2. The minimum climatological sea ice area for the PI and the LIG, changes, and the associated 1SSAT anomalies. Percentage
reductions are calculated from PI minimum SIA for each model.

MODEL SIA PI SIA LIG 1SIA SIA 1SSAT
(units) (×106 km2) (×106 km2) (×106 km2) (% (K)

loss)

MMM 6.36 2.93 −3.43 53.87 3.6± 1.3
ACCESS-ESM1-5 5.48 2.39 −3.09 56.44 2.6± 1
AWI-ESM-1-1-LR 5.37 3.76 −1.61 29.99 1.7± 1.1
CESM2 5.31 1.62 −3.69 69.54 3.3± 1
EC-Earth3-LR 8.86 3.65 −5.21 58.84 5.7± 2.6
FGOALS-g3 8.83 5.55 −3.29 37.19 4.8± 1.5
GISS-E2-1-G 8.87 5.54 −3.32 37.47 3.4± 1.4
HadGEM3-GC31-LL 5.21 0.13 −5.07 97.48 4.9± 1.2
IPSL-CM6A-LR 6.42 2.46 −3.96 61.74 4.4± 1.2
MIROC-ES2L 4.20 2.79 −1.41 33.66 2.1± 0.6
NESM3 5.50 1.64 −3.86 70.14 3± 0.9
NorESM2-LM 5.92 2.75 −3.17 53.52 3.6± 1.1
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Figure 4. Cumulative distribution of minimum SIA of individual years in LIG and PI simulations, i.e. SIA versus proportion of years that
fall below the corresponding SIA value. HadGEM3 has a minimum SIA below 1×106 km2 for all years in LIG runs. CESM2 has 6.5 % LIG
years with an SIA below 1×106 km2, and NESM3 has 8 % LIG years with an SIA below 1×106 km2. The lower panels are the same but
for SIE.

parison of modelled1SSAT and proxy estimates for1SSAT
is also shown in Fig. 5. As described in Sect. 2, two differ-
ent approaches are used to quantify the skill of the models
to simulate 1SSAT, based on (1) the RMSE of the model–
data 1SSAT at the proxy record locations and (2) the per-
centage 1SSAT proxies that the model can correctly match
within model and data error. Here the focus is on quantify-
ing model skill across all data records, but for reference the
model-versus-proxy1SSAT for each location is provided for
each model individually in Fig. A3. The RMSE skill estimate
and the percentage match estimate provide very similar indi-
cations of which models have good skill to reproduce proxy
1SSAT. The five models with the lowest RMSE also have the
highest percentage match, and the two models with the high-
est RMSE have the lowest percentage match (Fig. 6). Both
approaches show that the models with better skill to simu-
late 1SSAT have a high absolute 1SIA. The only outlier is
EC-Earth, which has an average skill (sixth best model of the
11) but a high SIA reduction at the LIG. This occurs because
the EC-Earth PI simulation has an excessive SIA, more than
3×106 km2 compared with present-day estimations; this en-
ables it to have a large 1SIA value, while likely retaining
too much LIG SIA. Quantitatively there is a correlation of
r =−0.65 (p = 0.03) between the magnitude of 1SIA and
the RMSE, and a correlation with r = 0.67 (p = 0.02) be-
tween the magnitude of 1SIA and the percentage match of
the model (Fig. 6). Given that the SIA reduction from the PI

period to the LIG could be dependent on the starting SIA at
the PI period, we repeat the analysis for percentage SIA loss
from the PI period (rather than absolute SIA loss) and find
that is correlates similarly to the model skill to reproduce
1SSAT (Fig. A4).

In general, where models have a closer match with the
1SSAT, they have a higher absolute 1SIA and larger per-
centage reduction in SIA from the PI period. We thus look
at our best-performing models for an indication of true LIG
Arctic sea ice reduction. The four models with the best agree-
ment of 1SSAT to proxies are, in order of skill, HadGEM3,
IPSL, NORESM2 and CESM2. The top two best-performing
models simulate an average SIA loss of 4.5×106 km2 from
an average starting PI SIA of 5.8×106 km2 to a final LIG
SIA of 1.3×106 km2, which equates to a percentage SIA
loss of 79 %. When also including the third- and fourth-best-
performing models in the average results in an average SIA
loss of 4.0×106 km2 to a final LIG SIA of 1.7×106 km2 from
an average starting PI SIA of 5.7×106 km2, which equates to
a percentage SIA loss of 71 %.

The question arises as to why there is a linear relationship
between model skill when simulating Arctic1SSAT and SIA
reduction. One possibility is that the mean proxy 1SSAT of
4.5 K is higher than what most models produce and that the
warmer models are thus closer to the proxies and also more
likely to reduce sea ice. In the next section, this question is
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Figure 5. Summertime surface air temperature (SSAT) anomaly (LIG-PI) maps for each model overlain by reconstructed summer tempera-
ture anomalies. Proxies are detailed in Table 1 and Guarino et al. (2020b); colours are the same as those used for the underlying model data.
The first panel represents the multi-model mean.

addressed by investigating whether 1SIA is closely related
to 1SSAT itself.

3.3 Estimating ∆SIA from the modelled ∆SIA–∆SSAT
relationship and proxy ∆SSAT

Here we investigate whether the models suggest a linear re-
lationship between 1SSAT and 1SIA and, if so, exploit that
together with proxy1SSAT to estimate the most likely (true)
value for 1SIA. We first calculate the mean 1SSAT in the
model at all 21 proxy data locations and compare it to the
magnitude of 1SIA in each model (Fig. 7a). The two are
well correlated with r = 0.86 (p = 0.001), and the regression
equation provides a dependence of 1SIA on 1SSAT. Using
this relation, the reconstructed mean1SSAT at the proxy lo-
cations (4.5± 1.7) points to a SIA reduction of 4.2± 1.4×
106 km2 from the PI period. This constitutes about 77 % re-
duction from the present-day observation of 5.7×106 km2,
which is also the average SIA for the PI period in the two
most skilful models identified in the previous section. Using

this value for the PI sea ice suggests that a remaining min-
imum of 1.3×106 km2 of sea ice during the LIG summer.
An average LIG minimum of 1.3×106 km2 implies that some
LIG summers must have been ice free (below 1×106 km2 in
SIE) but that most summers would have had a small amount
of sea ice.

The 1SSAT relationship to 1SIA has so far been com-
puted using the mean 1SSAT at the locations of the data. To
test whether this method would also work for the Arctic in
general, the 1SSAT is next averaged over the whole Arctic
north of 60◦ N and compared with 1SIA (Fig. 7b). The cor-
relation between 1SSAT and 1SIA is a somewhat reduced
when calculating 1SSAT across the whole Arctic, though
it is still highly significant (r = 0.79, p = 0.004). An esti-
mate for proxy-based Arctic-wide 1SSAT can be derived by
applying the close relationship between Arctic 1SSAT and
station 1SSAT in the models (Fig. 8, r = 0.97, p < 0.001).
Inserting the 1SSAT averaged over all proxy records of
4.5± 1.7 K in the regression equation in Fig. 8 gives an es-
timate for proxy-based Arctic-wide 1SSAT of 3.7± 1.5 K.
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Figure 6. Modelled magnitude of 1SIA versus model skill to simulate proxy 1SSAT. (a) The modelled magnitude of 1SIA is scattered
against the RMSE of the modelled 1SSAT compared to the proxy 1SSAT for the 21 data locations. (b) The modelled magnitude of 1SIA
scattered against the percentage of 1SSAT data points that the model can match (see Sect. 2).

Figure 7. Modelled magnitude of1SIA versus modelled1SSAT for the Arctic. (a) The modelled1SIA is scattered against mean modelled
1SSAT at the 21 data locations. (b) The modelled 1SIA is scattered against the mean modelled 1SSAT averaged over the Arctic north of
60◦ N.

Applying the regression equation in Fig. 7b and using this
estimate for Arctic-wide 1SSAT suggests a PI to LIG sea
ice reduction of 4.1± 1.2× 106 km2, which is very simi-
lar to the estimate derived from the station data alone (of
4.2± 1.4× 106 km2).

4 Discussion and conclusions

As discussed in the Introduction, neither proxies nor mod-
elling results alone allow currently for a convincing estimate
of the Arctic sea ice reduction at the LIG. Here we apply
a joint approach to make progress. We deduce how much
sea ice was reduced during the LIG, using 11 of the most
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Figure 8. Modelled Arctic-wide 1SSAT versus modelled mean
1SSAT at the data locations for the 11 models. The markers for
each model are the same as in Fig. 7.

recent CMIP6-PMIP4 LIG model simulations and proxy ob-
servations of summer air temperature changes. The reduc-
tion in sea ice from the PI period to the LIG in the mod-
els range from 30 % to 96 % with an average of 55 %. No
model is close to the ice-free threshold of maximum SIE
lower than 1×106 km2 for any model year summer during
their PI simulation. During the LIG, the HadGEM3 model
is the only one that has an Arctic Ocean free of sea ice in
all summers, although CESM2 and NESM3 show SIA val-
ues of around 2×106 km2 associated with intermittently ice-
free conditions. We found that larger LIG SIA reduction from
the PI period is related to greater SSAT warming, the two be-
ing correlated with r = 0.86 across the models. In particular,
8 out of 11 models are able to match, within uncertainty, the
average PI to LIG summertime Arctic warming of 4.5±1.7 K
as recorded by surface temperature proxies. This magnitude
of warming was difficult to reach with previous generations
of LIG models. Among the models, two of them capture the
magnitude of the observed dSSAT in more than 60 % of the
total proxy locations. These models simulate an average LIG
sea ice area of 1.3×106 km2, which is a 4.5×106 km2 (or
79 %) reduction from their PI values.

We find that the good match between the (ice-free)
HadGEM3 and the Guarino et al. (2020b) summer Arctic
temperature dataset is not unique. However, we find that it
is not random either and that there is a correlation between
model skill to match the 1SSAT and the reduction in SIA
from the PI period to the LIG (both when using an RMSE
skill test and when using a best-match skill test). The two
most skilful models simulate an average LIG sea ice area
of 1.3×106 km2, which is a 4.5×106 km2 or 79 % reduction
from their PI values. While we cannot assume all model er-
ror 1SSAT is attributable to 1SIA, it is reasonable to as-
sume that the better-performing models for 1SSAT are also
better at simulating 1SIA because of the close relationship
between warming and sea ice loss.

Some of the proxies are more difficult for the models
to simulate (Figs. 9 and A3). In particular, it appears that
the Greenland ice core SSAT value from NEEM of +8◦

(proxy record 21 in Table 1 and Fig. 9) is higher than any
model simulates; though with a ±4 K uncertainty it is nev-
ertheless matched by some models. Terrestrial proxies three
and six, with SSAT values of +6.4 K, are also only rarely
matched. Further work on the observational side would be
useful. These LIG SSAT proxy reconstructions were used
in the IPCC (2013) report and by Guarino et al. (2020b)
and were previously published by IPCC (2013), CAPE mem-
bers (2006), Kaspar et al. (2005), and Capron et al. (2017).
Thus, this dataset should ideally be improved. One start point
for this would be adding uncertainties to the (nine) sites that
do not currently have these numbers.

The correlation between model skill to simulate 1SSAT
and the magnitude of 1SIA is convincing (r = 0.66 and
p = 0.003 on average for the two skill tests). However, the
two quantities are not straightforward to relate through a dy-
namical process. On the other hand, it is well known that
there is a positive feedback between Arctic temperature and
Arctic sea ice, with warmer temperatures more likely to melt
sea ice, and less sea ice producing a smaller albedo to incom-
ing solar radiation and thus less cooling from solar reflec-
tion. Figure A6 shows the relationship between summer sur-
face air temperature anomalies versus September sea ice area
from the observational estimates for the period from 1979–
2020. At present, the relationship between minimum SIA and
summer SAT is a 1.32×106 km2 decrease per 1 K tempera-
ture rise. This dynamic relationship is also evident in LIG
simulations, with a strong correlation of r = 0.86 between
the magnitude of 1SIA and 1SSAT across all the models,
and the inter-model relationship suggests a sea ice decrease
of 1.9×106 km2 per 1 K temperature rise (from the regression
equation in Fig. 7b). The reconstructed 1SSAT from prox-
ies, of 4.5± 1.7 K, is larger than most models simulate, and
thus the models that match the 1SSAT most closely would
be the models with a larger1SSAT than average and a larger
1SIA. The only model that has a large SIA reduction and
not a good skill to match SSAT is EC-Earth, which features
a PI simulation with far too much sea ice that allows an ex-
cessive LIG to PI Arctic warming. An additional result of
our study is that the mean 1SSAT at the proxy locations is
strongly correlated to Arctic-wide 1SSAT north of 60◦ N in
the models (r = 0.97). Applying the regression relation be-
tween the two implies that the mean 1SSAT at the proxy lo-
cations, 4.5±1.7 K, is equivalent to an Arctic-wide warming
at the LIG of 3.7± 1.5 K. This is thus a more representative
value for the Arctic warming at the LIG than using the sim-
pler proxy-location average.

The strong linear correlation between the magnitude of
1SIA and 1SSAT is applied to the proxy-reconstructed
1SSAT to give an estimate of the reduction in SIA from
the PI period to LIG of 4.2± 1.4× 106 km2, similar to that
derived from our “best skill” approach. A similar value
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Figure 9. Proxy 1SSAT (violet dots and uncertainty bars) and simulated 1SSAT for all models (coloured dots) for each proxy record
location (rows). Grey boxes extend from the 25th to the 75th percentile of each location’s distribution of simulated values, and the vertical
lines represent the median.

of 4.1± 1.2× 106 km2 is obtained when extrapolating the
method to Arctic-wide 1SSAT north of 60◦ N. The mod-
els and data have uncertainties, and the regressions applied
are not between perfectly correlated quantities. However, it is
clear from both applied methods (each with two variants) that
proxy-reconstructed 1SSAT, in combination with the model
output, implies a larger sea ice reduction than the climato-
logical multi-model mean of 55 %. It suggests a LIG SIA of
∼ 1.5×106 km2, which is consistent with intermittently ice-
free summers – but with (low-ice-area) ice-present summers
likely exceeding the number of ice-free years.

While we have focussed here on the Arctic SIA response
to LIG insolation forcing, Kageyama et al. (2021) found that
the models that respond strongly to LIG insolation forcing
also respond strongly to CO2 forcing. Indeed the models with
the weakest response for the LIG had the weakest response
to the CO2 forcing. This suggests that our assessment here
of model skill against Arctic SIA and SSAT change can also
help to some extent in ascertaining the models that have a
better Arctic SIA and SSAT response to CO2 forcing. Over-
all, the results presented in this study suggest that (i) the fully
ice-free HadGEM3 model is somewhat too sensitive to forc-
ing as it loses summer sea ice too readily during the LIG, and
(ii) most other PMIP4 models are insufficiently sensitive as
these models do not lose enough sea ice.

Appendix A: Inter-model differences in LIG sea ice
simulation

Sea ice formation and melting can be affected by a large
number of factors inherent to the atmosphere and the ocean
dynamics, alongside the representation of sea ice itself within
the model (i.e. the type of sea ice scheme used). In coupled
models it can therefore be difficult to identify the causes of
this coupled behaviour (Kageyama et al., 2021; Sicard et al.,
2022). Nevertheless, Kageyama et al. (2021; Sect. 4), along-
side Diamond et al. (2021), address the question of what
drives model differences in summertime LIG sea ice. Their
points can be summarized as follows.

1. All PMIP4-LIG simulations show a major loss of sum-
mertime Arctic sea ice between the PI period and LIG.

2. Across all models, there is an increased downward
shortwave flux in spring due to the imposed insolation
forcing and a decreased upward shortwave flux in sum-
mer, related to the decrease in the albedo due to the
smaller sea ice cover. Differences between the model
results are due to a difference in phasing of the down-
ward and upward shortwave radiation anomalies.

3. The sea ice albedo feedback is most effective in
HadGEM3. It is also the only model in which the
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anomalies in downward and upward shortwave radia-
tion are exactly in phase.

4. The CESM2 and HadGEM3 models (which both sim-
ulate significant sea ice loss) exhibit an Atlantic merid-
ional overturning circulation (AMOC) that is almost un-
changed between PI and LIG, while in the IPSLCM6
model (with moderate sea ice loss) the AMOC weak-
ens. This implies that a reduced northward oceanic heat
transport could reduce sea ice loss in the central Arctic
in some models.

5. The two models (HadGEM3 and CESM2) that had the
lowest sea ice loss contain explicit melt pond schemes,
which impact the albedo feedback in these models. Di-
amond et al. (2021) show that the summer ice melt in
HadGEM3 is predominantly driven by thermodynamic
processes and that those thermodynamic processes are
significantly impacted by melt ponds.

Figure A1. LIG–PI change in albedo over Arctic sea ice as a function of LIG–PI change in SSAT (◦C) over the ice. The r2 values and the
linear fit lines are for the models including CNRM (blue) and excluding CNRM (black). The CNRM model (upward-pointing triangle) is an
outlier that influences the strength rather than the nature of the correlation.
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Figure A2. Sea ice area climatological seasonal cycle for each model.

Figure A3. Modelled 1SSAT versus proxy 1SSAT. The scatter points show model data versus reconstructions for each proxy location.
Error bars represent 1 standard deviation on either side of the proxy estimate. The correlation coefficients between X and Y , RMSE, and
percentage matches with proxy data for each model are indicated in each panel.
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Figure A4. Modelled percentage sea ice area reduction from the LIG to the PI period versus model skill to simulate proxy 1SSAT. (a) The
modelled percentage SIA reduction is scattered against the RMSE of the modelled 1SSAT compared to the proxy 1SSAT for the 21 data
locations. (b) The modelled percentage SIA reduction scattered against the percentage of 1SSAT data points that the model can match (see
Sect. 2).

Figure A5. Scatterplot for climatological 1SSAT at each proxy location versus climatological 1SSAT averaged north of 60◦ N in each
model.
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Figure A6. Scatterplot of SAT versus SIA for current period.
June–July– August (JJA) surface air temperature versus North-
ern Hemisphere September sea ice area for each year from 1979
to 2020. Anomalies computed from year 1979 values. SIA is
from NSIDC (https://nsidc.org/data/g02135/versions/3, last access:
28 October 2022), and air temperature (area averaged north of
60◦ N) is from ERA5 reanalysis (Hersbach et al., 2020).
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