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Abstract. The use of paleoclimates to constrain the equilib-
rium climate sensitivity (ECS) has seen a growing interest. In
particular, the Last Glacial Maximum (LGM) and the mid-
Pliocene warm period have been used in emergent-constraint
approaches using simulations from the Paleoclimate Mod-
elling Intercomparison Project (PMIP). Despite lower un-
certainties regarding geological proxy data for the LGM in
comparison with the Pliocene, the robustness of the emergent
constraint between LGM temperature and ECS is weaker at
both global and regional scales. Here, we investigate the cli-
mate of the LGM in models through different PMIP genera-
tions and how various factors in the atmosphere, ocean, land
surface and cryosphere contribute to the spread of the model
ensemble. Certain factors have a large impact on an emergent
constraint, such as state dependency in climate feedbacks or
model dependency on ice sheet forcing. Other factors, such
as models being out of energetic balance and sea surface tem-
perature not responding below —1.8 °C in polar regions, have
a limited influence. We quantify some of the contributions
and find that they mostly have extratropical origins. Con-
trary to what has previously been suggested, from a statistical
point of view, the PMIP model generations do not differ sub-
stantially. Moreover, we show that the lack of high- or low-
ECS models in the ensembles critically limits the strength
and reliability of the emergent constraints. Single-model en-
sembles may be promising tools for the future of LGM emer-
gent constraint, as they permit a large range of ECS and re-
duce the noise from inter-model structural issues. Finally, we
provide recommendations for a paleo-based emergent con-
straint and notably which paleoclimate is ideal for such an
approach.

1 Introduction

The long-term global mean surface temperature response
of the Earth to a doubling of atmospheric CO, from pre-
industrial conditions, referred as equilibrium climate sensi-
tivity (ECS), is an important metric in constraining future
climate change (e.g., Forster et al., 2021; Huusko et al.,
2021). However, the estimated range of ECS, particularly
its upper bound, has been the subject of debate for more
than a century (Arrhenius, 1896). In recent years “‘emer-
gent constraints”, the building of statistical relationships be-
tween two variables of the climate system existing in an en-
semble of climate models, allowing us to infer one by ob-
serving the other, have been extensively used (e.g., Covey
et al., 2000; Hall and Qu, 2006). In particular, the possibil-
ity of constraining climate properties that are difficult or im-
possible to measure or observe, such as ECS, makes emer-
gent constraints a powerful tool. Several paleoclimates have
a large forcing and temperature anomaly compared to pre-
industrial conditions and subsequently receive growing in-
terest for such emergent-constraint analyses (Crucifix, 2006;
Hargreaves et al., 2007; Hargreaves and Annan, 2009; Har-
greaves et al., 2012; Schmidt et al., 2014; Hopcroft and
Valdes, 2015; Hargreaves and Annan, 2016; Renoult et al.,
2020). Other methods have calculated ECS by estimating
temperature and radiative forcing from the proxy record,
such as ECS = AZLE’M x Faxco,, where ATigm refers to
the temperature difference between the Last Glacial Maxi-
mum (LGM) and pre-industrial state and AR refers to the
difference in radiative forcing, including greenhouse gas
forcing, ice sheet forcing and sometimes mineral dust forc-
ing (e.g., PALAEOSENS Project Members, 2012; Sherwood
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et al., 2020; Tierney et al., 2020). The emergent-constraint
theory differs from this approach by providing more trans-
parency on the role of global climate models and takes into
account the state dependency as simulated by climate mod-
els.

Two paleoclimate events particularly stand out within
emergent-constraint frameworks: the Last Glacial Maximum
(23-19 kyr ago, hereafter LGM) and the mid-Pliocene warm
period (3.29-2.97 Myr ago, hereafter Pliocene). The LGM
represents peak conditions at the last glacial period with a
maximum extent of sea ice and ice sheets, minimum green-
house gas concentrations, and high atmospheric loading of
dust particles, leading to an estimated radiative forcing of
—6.8Wm2 (—9.6t0 —5.2W m~2,95 % confidence interval
(Tierney et al., 2020)). By contrast, the Pliocene is a warm
paleoclimate with a continental configuration and green-
house gas concentrations close to modern times, which make
the Pliocene a potential analog of future climates (Dowsett
et al., 2009; Haywood et al., 2011). The LGM was one of
the initial focus periods of the Paleoclimate Modelling Inter-
comparison Project (PMIP) Phase 1 (Joussaume and Taylor,
1995), and more than 40 models have simulated the LGM
through the four generations of PMIP. The LGM has a rela-
tive abundance of proxy data as a result of its proximity to
the present day, and a large forcing signal and reconstructed
LGM temperatures are better constrained than those for the
Pliocene. However, despite the LGM being a more promising
candidate for a temperature-based constraint on ECS than the
Pliocene, studies using the tropical LGM temperatures have
estimated a wider range and a higher upper bound of ECS
(0.6-5.2 K, 90 % interval) than from the Pliocene (0.5-4.4 K,
90 % interval) (Renoult et al., 2020).

As ECS is defined by global mean temperature, one can
argue that in general a model with higher ECS should gen-
erate a cooler LGM global temperature than a model with
lower ECS. However, previous studies have reported a weak
correlation between global LGM temperature and ECS (Cru-
cifix, 2006; Hargreaves et al., 2012), and the more robust
constraints were based on tropical LGM temperature (Harg-
reaves et al., 2012; Schmidt et al., 2014; Hopcroft and Valdes,
2015; Renoult et al., 2020). Using the latter has the advan-
tage of mitigating the large effect of extratropical non-CO»
forcing, namely the Northern Hemisphere ice sheets or the
Antarctic ice sheets. In addition, the coverage in geological
proxy data at the LGM is generally good in the tropics (e.g.,
Tierney et al., 2020) and until PMIP2, most of the spread in
ECS was driven by the spread in tropical climate feedbacks
(Bony et al., 2006; Webb et al., 20006).

Since PMIP3, the strength of the LGM emergent con-
straint has decreased considerably compared to its Pliocene
counterpart. Another disadvantage is that the spread of trop-
ical temperatures within climate models at the LGM is
smaller than the spread in global temperatures, owing to the
larger amplitude of LGM polar temperatures. For example,
Renoult et al. (2020) showed a tropical temperature spread
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of around 2 °C in the whole PMIP ensemble, while Harg-
reaves et al. (2012) had a spread of more than 3.5 °C in the
global temperature of the PMIP2 ensemble. A narrow range
is an issue for emergent-constraint analysis, as it renders sta-
tistical methods more sensitive to outliers and noise. In this
study, we define noise as the uncertainty arising from cli-
mate physics in the ensemble of models which impacts the
statistical relationship, potentially different from a system-
atic bias. In Fig. 1, we show that the relationship from the
global constraint is nonexistent at the LGM after PMIP3,
while the Pliocene constraint can be regarded as robust across
the model generations. The reasons suggested for a weaker
LGM constraint can be summarized as follow:

— Structural differences in LGM simulations. Despite
more models simulating the LGM, Hopcroft and Valdes
(2015) suggested that differences in model evolution
and in particular the additions of dynamical vegetation
and aerosol-related effects were enough to generate dis-
crepancies between PMIP generations. This would af-
fect LGM models more as these span four generations
of models, whereas the Pliocene spans only the two
most recent generations of models. Whilst the argument
of Hopcroft and Valdes (2015) is reasonable, we show in
this paper that this explanation alone is insufficient. No-
tably, models are suspected of being out of equilibrium
at the LGM as well as having various representations
of ice sheet forcing, ocean circulation and snow-albedo
feedbacks.

— State dependency between LGM and abruptd x CO;.
Because the LGM is a cold climate, feedbacks may be-
have differently compared to a warmer climate. This
state dependency usually leads to model-based esti-
mates of ECS from LGM temperature being lower
than from 4 x CO; experiments (PALAEOSENS Project
Members, 2012; von der Heydt et al., 2014). We show in
this study that several aspects of the climate are affected
differently between cooling and warming climates and
could weaken the relationship between the LGM and
future climate change. Specifically, cloud, albedo and
water vapor feedbacks may differ in strength between
the LGM and the abrupt4 x CO; state from which the
ECS is computed.

The aim of this paper is to provide a framework for the fu-
ture development of paleo-emergent constraints by address-
ing the following question: why are the LGM regional and
global constraints weakly correlated with ECS compared to
the Pliocene constraint?

The paper is organized as follows:

— Sect. 2 — we define the climate sensitivity, temperature
variable and emergent-constraint theory. We describe
the PMIP models and the ensemble of analysis per-
formed to investigate the spread of models.
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Figure 1. Emergent constraints for the LGM (a) tropical and (c) global SST anomaly and the ECS of PMIP2, PMIP3 and PMIP4 models.
Emergent constraints for the Pliocene (b) tropical and (d) global SST anomaly from PlioMIP1 and PlioMIP2 models. Ordinary least squares
regression is calculated, and the coefficients of determination r2 from each sub-ensemble is shown to illustrate the quality of the regression.
For the LGM, CESM2.1 is filtered out as discussed in Sect. 6.

— Sect. 3 — we extend on methodological considerations — Sect. 6 — we further discuss issues of the LGM ensem-

by analyzing global and regional correlations between
temperatures and ECS in the LGM ensembles so as to
provide a better view on potential tropical and extrat-
ropical biases.

Sect. 4 — we show the different aspects of the climate
system which can be suspected as significant contrib-
utors of noise in the emergent constraints. This consid-
ers several climate components, i.e., atmosphere, ocean,
land surface and cryosphere.

Sect. 5 — we discuss the results of Sect. 4, in particular
the contribution and amplitude of noise in the emergent-
constraint relationship arising from the LGM-modeled
climate. We categorize the sources of noise as state-
dependent or structural.
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ble which are not be directly connected to the physics
of the LGM, such as the effect of outlier models and
differences between PMIP generations.

Sect. 7 — we investigate the current potential of single-
model ensembles in emergent constraints on ECS by
analyzing perturbed physics ensembles of the Max
Planck Institute Earth System Model version 1.2 (MPI-
ESM1.2-LR), the Community Earth System Model ver-
sion 2.1 (CESM2.1) and the CESM model family.

Sect. 8 — we provide further recommendations on using
paleoclimates to constrain ECS. We reflect on the biases
affecting the LGM constraint and evaluate which past
climate is ideal for the emergent-constraint approach.
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2 Methodological consideration

In this section, we summarize how paleo-emergent con-
straints on ECS have been defined within the literature as
well as discussing the use of surface air temperature (SAT)
and sea surface temperature (SST). We describe the PMIP
ensembles since PMIP1 and the two models used for feed-
back analysis and single-model ensembles: MPI-ESM1.2-
LR and CESM2.1. We also detail the sampling and resam-
pling methods applied in Sects. 3 and 6.

2.1 Definition of the emergent constraint

The emergent-constraint approach in its simplest form is a
statistical relationship between two climate variables, where
one is predicted and the other an observed predictor. In most
cases, the predicted variable is difficult to measure or ob-
serve, either because it is an idealized metric such as ECS
or an outcome in the future (e.g., future sea-ice change; Boé
et al., 2009). In this paper, the two variables of interest are
the temperature of the LGM and the ECS of climate models.
In previous studies, temperature and ECS have been inter-
changed, with ECS appearing as both the predicted variable
(e.g., Hargreaves et al., 2012; Schmidt et al., 2014) and the
predictor variable (Renoult et al., 2020). Following the def-
inition of an emergent constraint as a simple linear relation-
ship, the former can be written as Eq. (1) and the latter as
Eq. (2).

ECS=y xT+8+¢ (D
T=axECS+B+e¢ )

Both Eqgs. (1) and (2) are defined with slopes y and « and in-
tercepts ¢ and B, which are obtained by regressing ECS over
temperature or vice versa. The parameters ¢ and € usually
follow a normal distribution N(0, o2) and represent uncer-
tainty arising in the regression from the spread of the model
ensembles. The parameters ¢ and € are of particular inter-
est for our study, as they are connected to the aspects of the
climate which contribute to the noise of the LGM emergent
constraint. It is also possible to add an uncertainty param-
eter dependent of the predicted variable (i.e., on the left-
hand side of Eqgs. 1 or 2) and certain statistical methods,
such as orthogonal distance regression, take into accounts
errors in both predicted and predictor and have been used
in other emergent-constraint analyses (Jiménez-de-la Cuesta
and Mauritsen, 2019).

It is debated which statistical method is best applied in
emergent-constraint frameworks. However, the noise exist-
ing in an ensemble of models is independent of the choice of
statistical approach used to infer ECS, as models are not built
to be related by specific statistical relationships. The Pearson
correlation coefficient arising from the relationship between
the LGM temperatures and ECS is also independent of the
choice of Eqs. (1) or (2) as it is symmetrical. Therefore, dis-
cussions regarding statistical methods are beyond the scope
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of this study, but we provide ECS estimates when discussing
single-model ensembles in Sect. 7.

Both SAT (Hargreaves et al., 2012; Renoult et al., 2020)
and SST (Hargreaves and Annan, 2016; Renoult et al., 2020)
have been used in emergent-constraint studies. From a geo-
logical point of view, marine proxies are more abundant than
land-based proxies, and so using SST is more meaningful.
For the LGM, there is relatively good coverage of land prox-
ies (Cleator et al., 2020), in contrast to the Pliocene, which
creates the potential for using either land-only or all-surfaces
temperatures. However, ECS values are often computed from
SAT in models (e.g., Andrews et al., 2012), which can lead
to differences with other temperature variables. For example,
MPI-ESM1.2-LR has an ECS reported as 2.77 K in PMIP4
(Kageyama et al., 2021) based on surface temperature, while
Mauritsen et al. (2019) showed an ECS of 3.01 K using SAT.
SAT is extrapolated and amplified by surface temperature
in climate models, whereas observations show the opposite
(Guleyv et al., 2021). Thus, one could expect emergent con-
straints using SAT to be inherently biased by this disagree-
ment. In the case of SST, there is little difference between
SST and surface temperature for a large part of the globe. In
polar regions, discrepancies between the two can be found
due to the presence of sea ice, and it is shown later to influ-
ence the correlation between polar temperatures and ECS.

There is ambiguity in the definition and calculation of cli-
mate sensitivity in climate models. In this paper and unless
specifically noted, ECS refers to the methodology of Gre-
gory et al. (2004), an approximation of the long-term equilib-
rium climate sensitivity from 150-year-long perturbed exper-
iment, as it is commonly adopted by the community. How-
ever, other studies have used the broader S as “sensitivity”
(Hargreaves et al., 2012; Schmidt et al., 2014; Renoult et al.,
2020), and some of the ECS estimates of PMIP1 and PMIP2
models were computed from slab ocean experiments (Harg-
reaves et al., 2012; Hopcroft and Valdes, 2015). It is possible
that differences in emergent constraints arise from these am-
biguities. However, we do not explore this further.

2.2 Variables and models analyzed

The climate variables analyzed for each model in this study
are summarized in Table 1. PMIP spans 3 decades and the
models used to simulate the LGM in PMIP1 and PMIP2
were considerably less complex than more recent models.
PMIP1 models were typically atmospheric general circula-
tion models (AGCMs) with low resolution and limited rep-
resentation of land surfaces and vegetation. For PMIP2, all
models except ECBILTCLIO were atmosphere—ocean gen-
eral circulation models (AOGCMs). By PMIP3, a few mod-
els started to include complex processes like dynamical veg-
etation and aerosol—cloud interactions (Hopcroft and Valdes,
2015), while the majority of the models of PMIP4 have im-
plementations of those components.
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The availability of the data is based on the current state of
each PMIP database, which differs notably from the studies
of Hargreaves et al. (2012), Hargreaves and Annan (2016),
or Renoult et al. (2020), as models have been removed or
added over time. For PMIP4, which is still ongoing at the
time of writing, only SSTs were available to be examined for
the majority of the models. We have also included several
model variants as they can provide information on the sensi-
tivity of the climate system to specific components. Notably
we included the following: p151 of GISS-E2-R, which has
a different ice sheet mask than other PMIP3 models (“Lau-
rentide enhanced”); p2 of MPI-ESM-P, which has dynam-
ical vegetation enabled as opposed to the pl; and variants
of iLOVECLIMI1.1.4 using the ice sheet mask GLAC-1D
and of HadCM3B-M2.1aD using the mask GLAC-1D and
the PMIP3 mask (blending of ICE-6G, GLAC-1a and ANU),
whereas the most commonly used mask is ICE-6G_C within
PMIP4 (Kageyama et al., 2021). We exclude the variants
from emergent-constraint and correlation analyses, similarly
to previous studies, but include them in SSTs or effective
albedo analyses, as their behavior can be indicative of struc-
tural uncertainties existing in the ensemble.

PMIP1 models were omitted in previous LGM emergent-
constraint studies. This is due to a number of reasons: PMIP1
models were AGCMs and most of them had prescribed SSTs
or ran slab ocean experiments only (Joussaume and Taylor,
1995); their resolutions are low compared to modern stan-
dards (e.g., Williamson et al., 1987; Thompson and Pollard,
1997); there are substantial differences in boundary condi-
tions compared to other PMIPs, such as particularly lower ice
sheets (Peltier, 1994) and an independent definition of non-
CO; trace gases (Joussaume and Taylor, 1995); the ECS of
PMIP1 models and likewise details of the methods, notably
length of integration, are difficult to find. The comparison of
ECS of PMIP1 models to PMIP2, PMIP3 and PMIP4 models
is therefore challenging. Finally, most of the variables ana-
lyzed in our study are not available for PMIP1 models. Thus,
we focus our analyses on PMIP2, PMIP3 and PMIP4, but
results from PMIP1 are explored in Sect. 6.

2.3 Simulation of LGM climate
2.3.1 Partial radiative perturbation

We use the coupled model MPI-ESM1.2 at a low resolution
(~ 2°, MPI-ESM1.2-LR) (Mauritsen et al., 2019) to investi-
gate aspects of the LGM climate in this study. MPI-ESM1.2-
LR contributed to the Climate Modelling Intercomparison
Project Phase 6 (CMIP6) and PMIP4, and its predecessors
were present in all generations of PMIP since PMIP1. MPI-
ESM1.2-LR matches the warming observed since the pre-
industrial period well (Mauritsen and Roeckner, 2020) as
well as reconstructions of the LGM SSTs but is found to be
too warm compared to LGM land temperature reconstruc-
tions (Kageyama et al., 2021).
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To perform climate feedback analysis, we used an on-
line module of partial radiative perturbation (PRP) in
ECHAMBS6.3. The method has been described by Wetherald
and Manabe (1988) and Colman and McAvaney (1997), and
its implementation in ECHAM was carried out in Meraner
et al. (2013). The PRP method exchanges variables of sur-
face albedo, clouds, humidity and temperature between a
stored control state and the current state of interest and calcu-
lates the influence on top-of-atmosphere (TOA) fluxes aris-
ing from each component. In this study, we were interested in
exchanging cloud-related properties between control (LGM
and pre-industrial states) and abrupt CO; doubling and halv-
ing experiments as well as albedo and water vapor radiative
properties in order to evaluate the strength of the climate
feedbacks in the model under conditions different from pre-
industrial ones.

From pre-industrial conditions, we ran simulations
for 150 years with instantaneous and sustained dou-
bling (abrupt2 x CO,) and halving (abruptOp5 x CO») of CO;
concentrations, following the protocol of Webb et al. (2017).
The runs were compared to a control pre-industrial run of
the same length. In the case of our LGM simulation, we ran
it for 150 years continuing from the spun-up LGM simula-
tions (Marie-Luise Kapsch, personal communication, 2019),
which follow the PMIP4 protocol of Kageyama et al. (2017).
The latter includes changes in ice sheet masks and reduced
greenhouse gas concentrations compared to PMIP3. From
that state, we abruptly doubled the LGM CO; concentration,
ran it for an additional 150 years and compared it to the con-
trol LGM state to estimate the climate feedbacks.

2.3.2 Perturbed physics ensembles

In addition to the PMIP LGM ensemble, we use two single-
model ensembles from MPI-ESM1.2-LR and CESM2.1 as
well as an ensemble of the CESM model family. For MPI-
ESM1.2-LR, we explore 14 LGM simulations where param-
eters which have a large impact on cloud feedbacks and cli-
mate sensitivity were perturbed in order to create an ensem-
ble with a range of ECS values from 2.7 to 4.8 K (Sagoo,
2023). Pre-industrial, abrupt4 x CO, and LGM simulations
were run for 150 years or until the simulations crashed. The
150 years of the pre-industrial and abrupt4 x CO, simulations
were used to calculate ECS using linear regression (Gregory
et al., 2004). The LGM simulations were branched from the
equilibrated PMIP4 LGM contribution from the Max Planck
Institute, Hamburg (Marie-Luise Kapsch, personal commu-
nication, 2019). The description of the 14 runs is in Table 2.
The MPI-ESM1.2-LR single-model ensemble is compared to
the single-model ensemble made of perturbed cloud physics
versions of CESM2.1 (Zhu et al., 2022a), spanning the range
of ECS of 3.7-6.1 K, calculated using abrupt2 x CO> in slab
ocean model configuration.
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Table 2. Summary of the simulations of the single-model ensemble of MPI-ESM1.2-LR. # Unstable runs, where the temperature is an
estimate of the last 50 years before numerical crash. b Iris effect implementation of Mauritsen and Stevens (2015). € IM19 refers to runs with
all the changes in the table as well as an increase in the relative humidity threshold for cloud formation at high model level, a decrease in
entrainment rate in shallow convection and a decrease in minimum excess buoyancy, as described by Jiménez-de-la Cuesta and Mauritsen

(2019).
No. Change Standard value Changed value ECS LGM
change temperature
°O)
1 No change (Standard LGM) 2.92 —3.86
2 With iris effect? 2.65 —3.70
3 Relative humidity threshold for cloud 0.973 0.988 3.06 —3.83
formation in the lowest model level
4 Determination of vertical profile of the 2 1 3.28 —-3.91
relative humidity threshold for cloud
formation between near-surface and
upper troposphere
5 Value for liquid-cloud inhomogeneity 0.8 0.74 2.94 —-3.89
factor without convection or with
deep and/or mid-level convection
6 Conversion factor of cloud water to 25%x 107451 75%x 10745 2.87 —3.83
precipitation
7 Gravity wave drag coefficient 0.2 0.5 2.92 —3.86
8 Threshold for separation between 5% 1070 kg m3  15x107° kg m—3 287 —4.28
cloud liquid water and cloud ice; larger
values mean more liquid water
9 IM19¢ with modified cloud liquid 5%x10°kgm™3 4x10~*kgm™3 3.96 —5.22
water and ice separation threshold
10 Entrainment rate for shallow 3%x103m™! 3% 10 4m™! 3.73 —4.34
convection
112 Threshold for separation between 5% 10706 kg m=3  25x107 kg m—3  3.54 —4.27
cloud liquid water and cloud ice; larger
values mean more liquid water
122 Threshold for separation between 5% 1070 kg m3  5x107 kg m—3 3.72 —5.13
cloud liquid water and cloud ice; larger
values mean more liquid water
132 IM19¢ 4.74 —4.87
142 IM19 with iris effect” 4.77 -5.22

Additionally, we compare this to the six-member ensemble
of different configurations of CESM1.2 and CESM2.1. These
coupled simulations have been run to quasi-equilibrium,
making this smaller ensemble valuable. This ensemble uses
CESM1.2 with CAMS at a ~ 2° resolution (Zhu and Poulsen,
2021), CESM1.3 with CAMS at a ~ 2° resolution (Zhu
etal., 2017), CESM2.1 with CAMG6 at a ~ 1° resolution (Zhu
etal., 2021), CESM2.1 with CAMS at a ~ 1° resolution (Zhu
et al., 2021), CESM2.1 with CAMS6 at a ~ 1° resolution and
the CAMS ice nucleation scheme (Zhu et al., 2022a), and
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CESM2.1 with paleoclimate-calibrated CAMG6 at ~ 2° (see
Zhu et al., 2022a for details).

2.4 Resampling and sampling methods

The ensemble size of each phase of PMIP is small with an av-
erage of 8 models in comparison to PlioMIP2 with 16 mod-
els. This has been a limitation in studies focused on indi-
vidual ensembles (Crucifix, 2006; Hargreaves et al., 2012).
There is a risk of identifying relationships which are coinci-
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dental in smaller ensembles (Caldwell et al., 2014). There-
fore, a high level of correlation is required for a constraint to
be meaningful in smaller ensembles. For instance, as only
four models were available at that time, Crucifix (2006)
would have needed a correlation higher than 0.9 from a 95 %
threshold one-sided test of correlation for a significant rela-
tionship between SST and ECS in PMIP2 (Hargreaves et al.,
2012). Because of those concerns, resampling and sampling
methods are of particular interest, as they can provide new
insights into the correlations and emergent-constraint rela-
tionships.

In this study, we apply one resampling method, the per-
mutation test, and one sampling method, the simple random
sampling. For the permutation test, we interchange the sen-
sitivity of PMIP models and generate 10000 random en-
sembles to investigate correlation patterns between SST and
ECS around the globe, similar to Hargreaves et al. (2012)
for the PMIP2 ensemble. This allows us to test whether a
pattern is likely to appear by chance, notably as an artifact
of small size ensemble. We compute the 5th and 95th per-
centiles of the distribution of correlation coefficients of each
of the 10000 permuted ensembles at each grid cell, with the
models regridded at a 10° resolution to minimize dependency
in neighboring cells. If the correlation in the real ensemble is
outside of the computed 5 %—95 % interval, then such a cor-
relation is unlikely to happen by chance. Here, we extend
on Hargreaves et al. (2012) as we include the ensemble of
PMIP3 and PMIP4 in the permutation tests to check if cer-
tain patterns would appear in ensembles of 15 to 26 mem-
bers. These results are explored in Sect. 3.

For the case of simple random sampling, we investigate the
creation of smaller sub-ensembles of models from the larger
PMIP ensemble by randomly sampling models and gener-
ating 100000 smaller PMIP sub-ensembles. The size of the
sub-ensemble is set to eight members, as it is the average size
of single-generation PMIP ensembles.

3 Regional correlations

The correlation between SST and ECS at the LGM has im-
portant regional and generational disparities. A negative cor-
relation between SST and ECS for the LGM is expected, as it
implies models with high ECS would simulate a larger cool-
ing as opposed to models with low ECS (Hargreaves et al.,
2012). However, patterns of weak, near-zero or positive cor-
relations can be seen around the globe in most ensembles.
This is the opposite of the correlation between ECS and SST
in abrupt4 x CO, simulations, where the correlation is almost
globally positively significant (not shown).

We summarize the correlation between SST and ECS at
the LGM and the Pliocene among different PMIP generations
in Fig. 2. Significance is calculated from a one-sided ¢ test at
a 95 % threshold. Correlation maps assume the temperature
of cells to be strictly independent of neighboring cells, which
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is an approximation of reality. Nevertheless, they provide a
useful qualitative representations of the sources of noise in
the emergent constraint between SST and ECS.

For the Pliocene, the correlation is significant in the trop-
ics in PMIP3 and extends far into the extratropics in PMIP4.
Regions with low or negative correlation are the Southern
Ocean and the North Atlantic. These patterns of correla-
tion are close to the ones arising from ECS and SST in
abrupt4 x CO, experiments. From these two model gener-
ations, emergent constraints between SST and ECS seem ro-
bust for the Pliocene.

The evolution of LGM-based emergent constraints is less
clear across the generations. In PMIP2, there is a significant
negative correlation in the tropics, as expected when corre-
lating cooling temperatures to increasing ECS, and positive
correlation in the Southern Ocean. A regional positive cor-
relation means that more sensitive models cool less in those
regions in their LGM simulations than low climate sensitiv-
ity models. In the PMIP3 ensemble, the patterns are broadly
split equally between positive and negative correlation but re-
main weak and below significance on the correlation map. In
PMIP4, the correlation is negative and highly significant in
most of the globe when CESM2.1 is included. This is caused
by the high ECS and resulting large cooling of CESM2.1,
which strengthens the constraint. If CESM2.1 is filtered out,
the correlation drops and is insignificant in most parts of the
globe.

Interestingly, SST over the northern Atlantic Ocean ex-
hibits a relatively large positive correlation with ECS in LGM
simulations. Whether or not CESM2.1 is included in the en-
semble, there are significant correlations in the tropics. How-
ever, the tropical patterns have a low correlation (minimum
of —0.3) when CESM2.1 is not included and the global cor-
relation is close to zero, whereas tropical patterns have a
high correlation (close to —0.6) when CESM2.1 is in the en-
semble. One could reason that if the robustness of an emer-
gent constraint is based solely on the presence of a single
model, the constraint itself may not be reliable or such a sin-
gle model needs to be considered separately of the ensemble.
The value of very low- or high-ECS models, like CESM2.1,
is discussed further in Sect. 6.

The presence of near-zero or positive correlations in the
Southern Ocean at the LGM is particularly interesting and
is seen in most ensembles. The phenomenon was observed
in the PMIP2 ensemble (Hargreaves et al., 2012) and is
visible in the PMIP3 ensemble and the combination of
PMIP2 4 PMIP3 (Fig. 2). This unexpected correlation is not
unique to the LGM, as it has been observed to a lesser extent
during the Pliocene (Fig. 2 and Hargreaves and Annan, 2016)
and abrupt4 x CO, simulations. Hargreaves et al. (2012) sus-
pected the positive correlation to arise from the small size of
the PMIP2 ensemble, but its existence in larger ensembles
contradicts that hypothesis.

In Fig. 3, we show that from permuted individual PMIP2
and PMIP3 ensembles, the Southern Ocean positive corre-
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Figure 2. Summary of the correlation between SST anomaly and ECS through different PMIP generations. Models have been regridded
on 10° grids to minimize dependency between neighboring cells. For both Pliocene and LGM, the left-hand side figures correspond to the
correlation existing in each individual generation of PMIP, while the right-hand side figures are the combination of several generations,
following the “+” sign. In PMIP4, the upper row shows ensembles with CESM2.1 included, while lower row shows ensembles excluding
CESM2.1. Discussions regarding the presence of CESM2.1 are made in Sect. 6. Red dotted areas are of positive significance; blue dotted
areas are of negative significance under a one-sided ¢ test (95 % threshold).

lation is likely to appear by chance in the real individual
PMIP2 and PMIP3 ensembles. However, the combination
PMIP2 4 PMIP3 leads to a large part of the Southern Ocean
positive correlation passing the statistical significance test,
indicating that it is unlikely to have such a positive correla-
tion pattern appearing by chance within this 15-model en-
semble. Curiously, the Southern Ocean true correlation in
PMIP2 4 PMIP3 + PMIP4 falls within the permuted ensem-
ble interval, raising the question of whether such a pattern is
influenced by PMIP4 models. When CESM2.1 is included,
the highly negative tropical correlation of the true PMIP en-
semble passes the statistical significance test, indicating it is
unlikely to appear by chance. When CESM2.1 is removed,
only the tropical Indian Ocean passes the significance test
(not shown).

Based on the above analysis, the robustness of a relation-
ship between ECS and LGM SST is compromised. We shall
argue next that this is caused by numerous sources of noise
acting on the relationship between LGM global cooling and
ECS. Moreover, the differences in correlation between the
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extratropics and the tropics may arise from the sources of
noise which are essentially extratropically based, which re-
inforces the use of tropical LGM SST over global SST for
emergent constraints.

4 Investigation of LGM climate physics

In this section, we describe and analyze several potential
sources of noise and biases which may impact the emergent
constraint between LGM temperatures and ECS. This assess-
ment targets all climate components, i.e., the atmosphere,
ocean and land surface, but also investigates whether poten-
tial biases preferentially affect models individually, through
PMIP generations, or the ensemble as a whole. The contri-
bution of each source to the uncertainty of the emergent con-
straint is given in Sect. 5.

4.1 Temperature drift and energy leakage

Climate models which have not been spun-up sufficiently,
i.e., have not been run for the time required for a model to
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Correlation

Figure 3. Correlation between SST anomaly and ECS (as in Fig. 2) in (a) PMIP2, (b) PMIP3, (¢) PMIP2+ PMIP3 and
(d) PMIP2 4 PMIP3 + PMIP4 (CESM2.1 included) and comparison to a 10 000-member permuted ensemble. If hatched, the correlation
in the real ensemble at that cell is outside the 5 %—95 % interval of the correlation distribution of the permuted ensemble and is thus unlikely
to appear by chance. Models have been regridded on 10° grids to minimize dependency between neighboring cells.

reach its steady state, may experience drift of their climate
state. This was shown by Mauritsen et al. (2012) on pre-
industrial simulations in the CMIP3 and CMIP5 ensembles
where some model pre-industrial simulations would drift as
far as 1°C from their initial temperature within 500 years.
Ideally, when in a steady state, climate models would also
have a TOA radiation balance at equilibrium, implying that
energy is neither created nor lost artificially.

We show the time evolution of surface temperature and
TOA imbalance in models simulating the LGM and pre-
industrial climates in Fig. 4 and report the drifts of tempera-
ture per century in Table 3. As limited computational power
was available at the time, PMIP2 models could be suspected
to be further out of equilibrium than newer model genera-
tions. However, several of them applied acceleration tech-
niques to reach near-equilibrium state, namely forced adjust-
ment of SSTs to glacial SSTs (Haney, 1971; Hewitt et al.,
2003) or acceleration of abyssal temperatures (Bryan, 1984;
Shin et al., 2003), though for the most parts, details of the
spin-up procedures are usually undocumented. In PMIP2,
the largest drifts are for FGOALS-1.0g and MIROC3.2, re-
spectively, of —0.116 and —0.050 °C per century (Braconnot
etal., 2007). In PMIP3 and PMIP4, most drifts are comprised
of between —0.1 and —0.05 °C per century, with two mod-
els of PMIP3 standing out: MIROC-ESM and MRI-CGCM3,
with drifts of 0.23 and 0.19°C per century, respectively.
This could be connected to the abandonment of acceleration
techniques when modeling centers could afford running the
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Figure 4. Surface temperature (°C) and top-of-atmosphere (TOA)
radiation imbalance (W m_2) drift in PMIP models simulating
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nects the LGM and piControl simulation of each model. Note that
for PMIP2 models and CCSM4 for PMIP3, time series are not avail-
able.
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Table 3. Temperature trends in degrees Celsius per century for
models of PMIP2, PMIP3 and PMIP4. For PMIP2, we report the
results of Braconnot et al. (2007). Trends in PMIP3 and PMIP4
models are computed as the difference between the mean of the last
30 years and the mean of the first 30 years, normalized by simula-
tion length. * Simulations have a minimum length of 100 years but
may be up to 200 years long (Braconnot et al., 2007).

PMIP Model Length LGMtrend  Pre-industrial
(years) (°C per trend (°C per
century) century)
CCSM3 100*  —0.010 —0.012
ECBILTCLIO 100*  —0.009 —0.025
FGOALS-1.0g 100*  —0.116 —0.025

PMIP2
HadCM3M2 100*  0.032 —3x107*
IPSL-CM4-V1-MR 100*  —0.039 0.019
MIROC3.2 100 —0.050 6x 10~
CNRM-CM5 200 —0.090 0.015
GISS-E2-R-p150 100 —0.013 0.021
IPSL-CMSA-LR 200 —0.072 0.011
PMIP3 MIROC-ESM 100 0.232 0.111
MPI-ESM-P-pl 100 —0.080 —0.002
MRI-CGCM3 100 0.186 0.024
CCSM4 100 Climatology —0.019
INM-CM4-8 200 —0.069 —0.026
MIROC-ES2L 100 —0.021 —0.006
PMIP4 MPI-ESM1.2-LR 500 0.006 —0.005
AWI-ESM-1-1-LR 100  —0.099 —0.014
CESM2.1 150 —0.103 0.031

ocean models to near-equilibrium. As opposed to FGOALS-
1.0g and MIROC3.2, the drifts of MIROC-ESM and MRI-
CGCM3 are positive and would indicate a warm-drifting
LGM equilibrium temperature, implying that the LGM tem-
perature estimate is low-biased in those models.

The models CCSM4 and IPSL-CM4-V1-MR appear to
be either far from equilibrium or have substantial gains and
leaks of energy, respectively, compared to their pre-industrial
states, which lie near zero radiation balance (Fig. 4 and
Brady et al., 2013). This could imply that energy conserva-
tion in these models is state-dependent and that their simu-
lated LGM cooling is biased by model artifacts acting dif-
ferently in the pre-industrial period. All in all, we cannot
identify a systematic bias in the PMIP models simulating the
LGM regarding their drift or state-dependent energy conser-
vation. Although there are fewer models with a gain than a
loss of energy, there is a wide range of TOA energy imbal-
ances as well as temperature drifts. In particular, the hypoth-
esis that PMIP2 models would be either more out-of-balance
or drifting more owing to computation limitations does not
hold when compared with more recent models.

4.2 SST freezing temperature

Paleo-emergent constraints often rely on SSTs as the observ-
able. However, in a cooling climate such as the LGM this can
be problematic as SST can not go below the average freez-
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ing point of approximately —1.8 °C, which would lead to a
decoupling between ECS and SST. We plot polar (70° N and
northwards, 70° S and southwards) SSTs for PMIP2, PMIP3
and PMIP4 models for both pre-industrial and LGM simula-
tions in Fig. 5 and examine whether models with cold-biased
pre-industrial SSTs or high climate sensitivities exhibit phys-
ically bounded SST under the LGM forcing.

The model with the highest ECS is CESM2.1 at 5.15K
(Zelinka et al., 2020), and it simulates a global surface tem-
perature cooling at the LGM of —11.3 °C (Zhu et al., 2021).
However, its south polar (average of 70-90° S) LGM SST is
—1.99°C, and its pre-industrial SST —1.66 °C. The temper-
ature difference of —0.35 °C clearly indicates that the South-
ern Ocean LGM cooling in CESM2.1 is limited by the lower
bound on SST, resulting in a decoupling between its high
ECS and low simulated temperature anomaly.

Out of 32 models, 22 have a polar cap with mean SSTs
close to the —1.8 °C physical bound in either one or both
hemispheres in their LGM simulations. If the pre-industrial
SST is close to —1.8 °C, this will result in a minimal LGM
temperature anomaly. Eight models are affected, but only
FGOALS-1.0g acts accordingly in the Arctic Ocean. As for
models reaching the physical bound owing to their LGM
cooling, 17 models display such behavior in the Arctic Ocean
but only 6 models do so in the Southern Ocean. There is
no clear disparity among generations: models with cold pre-
industrial SST are found in all PMIP as well as models with
large LGM cooling.

The analysis is naturally sensitive to the chosen latitudes.
When instead extending the regions to poleward of 60° N
and 60° S, only CESM2.1 and MIROC-ESM reach the freez-
ing threshold in the Arctic due to LGM cooling as well as
FGOALS-1.0g due to its extensively cold pre-industrial SSTs
(not shown). This is misleading and shows that regional bias
in SST, such as the one poleward of 70° N and 70° S, may
be hidden within global SST. It is unclear why large LGM
cooling and cold pre-industrial SST are preferentially found
in the Arctic and Antarctic oceans, respectively. It may be
connected to how heat is transported by the ocean circulation
northward. In the following sections, we show that there are
large disparities in representing the LGM ocean circulation
within PMIP models.

4.3 Ice sheet forcing

The Laurentide and Fennoscandian ice sheets covered large
parts of Northern Hemisphere continents and were two main
contributors to the negative forcing during the LGM (e.g.,
Braconnot et al., 2012). Whereas their geographical ex-
tent are reasonably well-constrained (Clark and Mix, 2002;
Svendsen et al., 2004; Kleman et al., 2013), their topography
and volume remain a challenge to determine as proxy records
only provide limited information. Through PMIP genera-
tions, the altitude and resolution of the ice sheet masks have
been considerably modified, but the forcing assessments ac-
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Figure 5. SST (°C) of the regions (a) south of 70° S and (b) north of 70° N in PMIP2, PMIP3 and PMIP4 models in LGM (colored) and
pre-industrial (hatched) simulations as well as SST anomaly between the LGM and the pre-industrial period (white dot). The red area bounds
the —1.7 to —2.0 °C range for the freezing point of seawater, which varies among models.

counting for such modifications are scarce (Abe-Ouchi et al.,
2015; Zhu and Poulsen, 2021).

In Fig. 6, we show that high variance in outgoing surface
shortwave radiation is found either on or around the Lau-
rentide and Fennoscandian ice sheets in the different genera-
tions of PMIP. Likewise, the efficacy of LGM ice sheet forc-
ing, i.e., the contribution of ice sheets to temperature change
with respect to a doubling of atmospheric CO», is found to be
model-dependent (Shakun, 2017; Zhu and Poulsen, 2021). If
the temperature change induced by the ice sheets can be writ-
ten as ATis = € X f—l)sl and the LGM temperature anomaly as
AT = ATis + ATymer, With € the ice sheet forcing efficacy,
Fis the forcing from ice sheets only and A the global climate
feedbacks, then the contribution of ice sheets to global LGM
cooling is Eq. (3).

ATis e ¢Fis
AT Elj—li—i—Fi;‘;fr € F1s + Fother

3

The ratio % varies approximately between 0.2 and 0.7 in
12 model simulations (Shakun, 2017). Orbital forcing is ex-
pected to be small (e.g., Liu et al., 2014); thus we set Foher to
the well-constrained forcing coming from greenhouse gases
at the LGM of Fgug = —2.8 Wm™2 (Kéhler et al., 2010).
For Fig, we test values with a range of —1.8 to 520W 2
(Braconnot et al., 2012; Tierney et al., 2020). If ice sheets
contribute to 20 % of temperature change, the efficacy of
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the forcing is between 1.9 for the low ice sheet forcing and
0.7 for the high ice sheet forcing. For a contribution of 70 %,
the efficacy is between 3.6 and 1.3.

In CESM1.2 and CESM2.1, the ice sheet forcing effi-
cacy, quantified using an adjusted forcing—feedback frame-
work, is 1.1 and 1.9, respectively (Zhu and Poulsen, 2021;
Zhu et al., 2021), which is likely connected to the cooling
of Northern Hemisphere SSTs in connection with changes
in wind patterns due to the topography of the ice sheets.
The ice sheets, and notably the Laurentide one, are known
to disturb atmospheric and ocean circulation. Notably, the
Laurentide ice sheet impacts Arctic region temperature (Li-
akka and Lofverstrom, 2018), Atlantic Ocean surface winds
and deepwater formation (e.g., Muglia and Schmittner, 2015;
Sherriff-Tadano et al., 2018), and local cloud feedbacks (Zhu
and Poulsen, 2021).

In summary, the variance in reflected shortwave radiation
due to ice sheets is likely to generate noise, as the efficacy of
the forcing is found to be model-dependent. Current models
do not indicate whether the ice sheet forcing efficacy is above
or below unity but show a substantial inter-model spread.
Since the ice sheet forcing is roughly half the total forcing in
LGM, this means that the ice sheet forcing, and its efficacy,
could be a major source of noise in the model relationship
between LGM cooling and ECS.
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Figure 6. Maps of the variance in outgoing (reflected) surface shortwave radiation in the multi-model ensembles of (a) all PMIP generations,
(b) PMIP2, (¢) PMIP3, and (d) PMIP4. Variance values which are below less than 10 % of the maximum value are masked in gray, to highlight

areas of high variance.

Table 4. Global and tropical (30° S—-30° N) surface albedo feed-
back (Ay) values computed with the PRP method for three simula-
tions performed with MPI-ESM1.2-LR.

Global A3 Tropical 1,
abrupt2 x CO, 0.29 —0.03
LGM abrupt2 x CO, 0.34 0.02
abruptOp5 x CO» 0.55 0.12

4.4 Surface albedo feedbacks

In response to a cooling climate, the surface albedo feed-
back (A,) is thought to strengthen as sea ice, snow cover
and more reflective vegetation biomes extend. Whereas there
is a broad agreement among models on this amplification,
the amplitude of the state dependency in A, is likely model-
dependent. In Table 4, we report the tropical and global A, af-
ter abruptly doubling CO» from pre-industrial and LGM con-
ditions and abruptly halving CO; from pre-industrial condi-
tions in MPI-ESM1.2-LR.

The global value of A, is 0.21 W m~2 higher when halving
CO; compared to the LGM experiment in MPI-ESM1.2-LR,
which itself is only slightly higher than in the abrupt2 x CO,
experiment. In the tropical area, both abrupt2 x CO; simu-
lations from pre-industrial or LGM conditions show almost
the same A, value close to zero, while the abruptOp5 x CO,
Aa is 0.1 Wm™2 larger. Similar findings have been made by
Colman and McAvaney (2009), Yoshimori et al. (2009), and
Zhu and Poulsen (2021).
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The strength of the state dependency on A, remains
difficult to estimate, but the inter-model spread in model
abrupt4 x CO, simulations is substantial, with a standard
deviation of 0.09Wm™2K~! (Zelinka et al., 2020), which
could be used as an indicator of the spread in state depen-
dency. This magnitude would not be inconsistent with the
available anecdotal single-model evidence.

In the following sections, we explore the individual con-
tributions of snow, vegetation and sea-ice albedo feedbacks
at the LGM and how their inter-model differences may act as
sources of noise.

4.41 Snow and vegetation albedo feedbacks

Hopcroft and Valdes (2015) hypothesized that snow and veg-
etation albedo feedbacks might play a part in weakening the
robustness of the emergent constraint by generating noise
within the ensemble. In Fig. 7, we show the maps of effec-
tive surface albedo of MIROC-ESM, MRI-CGCM3, GISS-
E2-R-p150 and p151, and CNRM-CMS5 as well as a com-
parison with the PMIP3 ensemble mean. These models were
characterized with unusual radiation balance changes over
land compared to PMIP2 and PMIP3 models, which was sus-
pected of generating noise in the PMIP3 emergent-constraint
analysis (Hopcroft and Valdes, 2015).

The model CNRM-CMS particularly stands out as it has
patches of unusually low albedo on the Laurentide, Green-
land, Fennoscandian and Antarctic ice sheets. Climate mod-
els usually display different albedo for bare ice and snow, and
the snow albedo is often dependent on various factors, such
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Figure 7. Maps of the effective surface albedo of (b to f) several PMIP3 models and comparison with (a) the PMIP3 ensemble mean. The
ensemble mean excludes the variants GISS-E2-R-p151 and MPI-ESM-P-p2, as they were excluded in the ensembles of Schmidt et al. (2014)

and Renoult et al. (2020).

as snow thickness, temperature and sometimes the history
of the conditions the snow has experienced. A comparison
with the simulated LGM snow cover reveals that the parts of
the Laurentide, Greenland, Antarctic and Fennoscandian ice
sheets as well as the Andes and Himalayan mountain ranges,
which show high effective surface albedo, are connected with
relatively important snow cover. By contrast, the patches of
low albedo are connected with less snow cover or no snow
cover at all in the case of Antarctica. Central to northern Asia
is also slightly covered by snow and also shows a relatively
low albedo. This could indicate that the snow-free albedo of
land in CNRM-CMS is low, in particular compared to the
albedo of snow-covered areas. It is not necessarily singular,
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as the albedo of vegetation is low and there is a large range
in bare ice sheet albedo (Cuffey and Paterson, 2010), but it
contrasts with the other models, where either the land ice
albedo is close to the albedo of fresh snow of 0.8 or the ice
sheets and forests are entirely covered by snow. Regarding
the Laurentide, Antarctic and Greenland ice sheets, the areas
of high snow cover are connected to lower topography, and
restricted snow cover usually happens in areas of topography
higher than 4000 m (Abe-Ouchi et al., 2015). Thus, it may be
that topography limits more snowfall in CNRM-CMS than in
other models, which leads the average surface albedo to be
dominated by the albedo of the bare ice sheet.
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GISS-E2-R has a high effective albedo in northern Asia,
leading to relatively cold local LGM temperatures for its low
ECS. GISS-E2-R uses the prescribed LGM vegetation of Ray
and Adams (2001) rather than the prescribed pre-industrial
or dynamical vegetation as suggested for the PMIP3 experi-
mental design. However, Hopcroft and Valdes (2015) noted
that models with dynamical vegetation which simulated a
greater loss of forest cover (e.g., MIROC-ESM) were not
as cold as GISS-E2-R, implying that the vegetation map is
not fully responsible for the behavior of GISS-E2-R. In-
stead, snow albedo and how the model handles its inter-
action with vegetation is likely to be responsible for this
higher albedo. The representation of snow and canopy in
high-latitude forests was regarded as highly challenging for
general circulation models (GCMs) by the Snow Model In-
tercomparison Project (SnowMIP) Phase 2 (Essery et al.,
2009). In the case of GISS-E2-R, the albedo of the canopy
is prescribed based on vegetation type, but the reflectivity of
the canopy increases when snow sticks to it (Qu and Hall,
2007; Thackeray et al., 2018). It is likely that a fraction of
snow remains over the canopy in GISS-E2-R, whether it is
due to too much snow, properties of the vegetation, or a fixed
process simulating a high albedo for every snowfall over veg-
etation.

Vegetation processes and feedbacks are also important, as
the implementation of dynamical vegetation has been sus-
pected of contributing to the spread in the PMIP3 ensem-
ble (Hopcroft and Valdes, 2015). In PMIP3, only MIROC-
ESM and MPI-ESM-P-p2 included dynamical vegetation.
MIROC-ESM is characterized by a substantial decrease in
surface albedo in the Sahara, due to its dynamical vegetation
response under LGM forcing, leading to a weak total surface
albedo feedback. In Fig. 7, the comparison between MPI-
ESM-P-p1 and MPI-ESM-P-p2 shows an increased effective
surface albedo over Siberia compared to the static vegetation
version, which is likely induced by the replacement of trees
with lower-vegetation, snow-covered areas. MRI-CGCM3 is
a special case as it does not have dynamical vegetation, but
it exhibits a relatively strong albedo feedback, which is in-
duced by the albedo of the areas of the LGM land mask due
to the lower sea level set to the albedo of bare soil (Hopcroft
and Valdes, 2015).

It is reasonable to argue that the implementation of pro-
cesses such as dynamical vegetation in PMIP3 and some as-
pects of snow-albedo feedbacks might play a role in caus-
ing spread in the ensemble, as hypothesized by Hopcroft
and Valdes (2015). However, they have a limited geograph-
ical impact and only concern a few models. Therefore, it
is difficult to show that the lack of robustness of the emer-
gent constraint would only be induced by these factors. We
note that both GISS-E2-R and CNRM-CMS5 have seasonal
cycles of snow-albedo feedbacks matching observations of
modern times (Fletcher et al., 2015; Thackeray et al., 2018),
despite being locally either too cold (GISS-E2-R) or too
warm (CNRM-CM)5) at the LGM.
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4.4.2 Sea-ice albedo feedback

Owing to the importance of sea-ice extent at the LGM, it
is plausible that the LGM sea-ice albedo feedback may also
contribute to a decoupling between ECS and surface tem-
perature or SAT in those regions. In Fig. 6, we show that
there is a high variance in surface shortwave radiation in po-
lar oceans. This high variance is located towards the sea-ice
edge, as there are disparities in sea-ice extent among mod-
els, with implications for the sea-ice albedo feedback. For
instance in Fig. 7, the model GISS-E2-R has a small surface
albedo in the Southern Ocean, indicative of a limited sea-ice
extent, whereas the PMIP3 ensemble mean shows an extent
equatorwards of 60° S.

A spread in sea-ice albedo feedback is not necessarily an
issue for emergent constraint, similarly to snow and vege-
tation albedo feedbacks, but it becomes a concern if mod-
els show a behavior in sea-ice albedo feedback which is not
expected at first from their ECS value. This is the case for
FGOALS-1.0g and ECBILTCLIO, two models with an ECS
value below 2 K, which show a large extent of sea ice, where
FGOALS-1.0g Arctic Ocean sea-ice extent reaches 40° N at
the LGM compared to 55° N in the pre-industrial period (not
shown). The strength of the sea-ice albedo feedback is also
influenced by the presence or absence of snow, whereas the
albedo of snow-free sea ice varies greatly among models.
Therefore, we contend that sea-ice albedo feedback might
be a contributor of noise within the ensemble of PMIP, aris-
ing from a few models. Similarly to the snow and vegetation
feedbacks, the contribution is regional, and therefore the sea-
ice albedo feedback is unlikely to be the main driver for the
weakness of the emergent constraint.

4.5 Ocean structure and dynamics

An accurate representation of ocean circulation in models
is necessary as it impacts heat transport and SST. The At-
lantic meridional overturning circulation (AMOC) and the
Southern Ocean dynamics are important regulators of the cli-
mate via many roles, which include energy and heat trans-
port, deepwater formation, and interactions with sea ice.
In this section we investigate the contribution of noise in
the emergent-constraint framework from the AMOC and the
Southern Ocean via the representation of two water masses:
North Atlantic deep water (NADW) and Antarctic bottom
water (AABW).

4.5.1 The AMOC

Both CMIPS5 and CMIP6 model ensemble means show a de-
cline in AMOC strength in response to future warming sce-
narios (Weijer et al., 2020; Lee et al., 2021). This results in
a Northern Hemisphere cooling as less heat is transported
from the Equator to the Arctic (Jackson et al., 2015). Geo-
logical reconstructions of the LGM indicate that the glacial
AMOC was as vigorous as it is in the present day (Yu et al.,
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Figure 8. Examples of three typical cases of AMOC structure in PMIP models. Panels (a) and (b): AMOC in agreement with proxy
data (CCSM3); (c) and (d): too deep LGM intrusion of NADW (FGOALS-g2); (e) and (f): AMOC with little difference between the LGM

and the pre-industrial period (MPI-ESM1.2-LR).

1996; Lynch-Stieglitz, 2017), 30 to 40 % weaker (McManus
et al., 2004) or potentially stronger (Lippold et al., 2012).
Proxy data do agree that during the LGM NADW shoaled
and there was a northward intrusion of AABW due to in-
creased sea-ice extent in the Southern Ocean (Rahmstorf,
2002; Lynch-Stieglitz et al., 2007; Bohm et al., 2015; Lip-
pold et al., 2016). Recently, Kageyama et al. (2021) showed
that most of the PMIP4 LGM simulations have substantial
intrusion of AABW and a shoaling of NADW for two of the
models, but earlier AMOC simulations in PMIP3 and PMIP2
models were more divided (e.g., Otto-Bliesner et al., 2007;
Sherriff-Tadano and Klockmann, 2021).

The representations of the AMOC can be divided into
three categories, with examples provided in Fig. 8. For exam-
ple, CCSM3 is one of the models which matches the proxy
data fairly well, with a substantial northward intrusion of
AABW and a shoaling of NADW. MPI-ESM1.2-LR is an ex-
ample of a model simulating little change between the LGM
and the pre-industrial period. Whereas it agrees with a proxy
indicative of the strength of the AMOC being similar to the
pre-industrial period, these models do not show a substan-
tial intrusion of AABW as seen in the proxy record, and in
most cases the NADW does not shoal substantially. Finally,
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CNRM-CMS is an example of a model which strongly dis-
agrees with proxy data. Here, the NADW reaches the seafloor
at the LGM, and although glacial AMOC can be stronger
than the pre-industrial period, proxy and 2D models do not
support the LGM AMOC to be more than 10 Sv stronger than
during the pre-industrial period (Lippold et al., 2012), which
is the case for CNRM-CM5 and other models (Otto-Bliesner
et al., 2007; Muglia and Schmittner, 2015).

It is unclear if an inaccurate representation of the AMOC
has an influence on global or hemispheric temperatures and
consequently on the emergent constraint between SST and
ECS. Indeed, we find no relationship between by how much
a model matches the proxy reconstruction of the AMOC and
its Northern Hemisphere surface temperature. Models which
simulate a substantial strengthening of the AMOC under
the LGM forcing are not necessarily warmer, which could
have been expected based on the pre-industrial simulations
of Jackson et al. (2015). Moreover, the reasons behind the
spread in modeled AMOC structure and strength are unclear
(Sherriff-Tadano and Klockmann, 2021). Notably, the effects
of density (Weber et al., 2007), salinity (Otto-Bliesner et al.,
2007), wind changes driven by the Laurentide topography
(e.g., Muglia and Schmittner, 2015; Sherriff-Tadano et al.,
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2018), or limited Antarctic sea-ice formation (Marzocchi and
Jansen, 2017) have been suspected of influencing the AMOC
in PMIP models.

Recently, Marzocchi and Jansen (2017) suggested that
models behaving similarly to CNRM-CMS5 might simulate
a substantial deepening of NADW due to too short spin-up
periods. In an extended 900-year-long run from its spin-up
phase, the AMOC of CCSM4 shallowed by 400 m and weak-
ened by 9 Sv, leading to values closer to proxy data (Rahm-
storf, 2002; Bohm et al., 2015; Lippold et al., 2016). While
the drift does not slow down after 900 years, it is not vis-
ible within the 100-year time series of PMIP3 as it is ob-
scured by natural variability. We perform a similar analysis
with MPI-ESM1.2-LR, a model which shows little change in
AMOC strength and position between the LGM and the pre-
industrial period. We run 621 years from the spin-up phase,
which lasted 3850 years (Marie-Luise Kapsch, personal com-
munication, 2021). The trend in AMOC strength is lower
than 0.05 Sv per century compared to almost 1 Sv per cen-
tury for CCSM4; thus we conclude that there is no substantial
drift of AMOC in MPI-ESM1.2-LR. This could indicate that
the observations of Marzocchi and Jansen (2017) are model-
dependent and only affect CCSM4 or that the simulation is
still not long enough or that recent PMIP4 models have an
AMOC closer to equilibrium owing to their longer integra-
tion times (i.e., 6760 years for MIROC-ES2L, Ohgaito et al.,
2021).

It is likely that the inter-model disagreements regarding
AMOC representations contribute to the spread of models
in the emergent-constraint framework. Nevertheless, we do
not find a clear relationship between AMOC representations
and simulated LGM temperatures, which indicates that either
the different AMOC representations are compensated for on
a broader scale or they are limited sources of noise for the
emergent-constraint relationship.

4.5.2 Southern Ocean dynamics

Geological reconstructions strongly indicate that AABW in-
truded further north in the LGM owing to Southern Ocean
dynamics. This intrusion is seen in very few models un-
til PMIP4 (Kageyama et al., 2021). The models which best
match proxy records show extensive annual Southern Ocean
sea ice, which is known to play a part in the ocean circulation
via brine rejection (Marzocchi and Jansen, 2017). Recently,
Zhu and Poulsen (2021) showed that the strong coupling
existing between Southern Ocean convection, upper-ocean
heat convergence and sea ice contributes to a stronger LGM
global cooling of ~ 1 °C in CESM1.2. Following that, we hy-
pothesize that models with a large intrusion of AABW, and
thus a highly convective Southern Ocean, could be relatively
colder than other models with respect to their ECS. Similar
to the AMOC, we do not find a clear relationship between
Southern Hemisphere temperature and the representations of
the Southern Ocean matching proxy data well (not shown).
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The spread in representations of the AABW in PMIP mod-
els is thus likely to generate noise in the emergent-constraint
relationship but that noise is either small or compensated for.

We emphasize that this analysis is mainly limited to
PMIP2 and PMIP3 models with limited data availability for
PMIP4 models, and Southern Ocean dynamical feedbacks,
which include heat transport and ocean stratification, are sus-
pected of being model-dependent (Zhu and Poulsen, 2021).
Recently, Gregory et al. (2023) found a relationship between
ECS and AMOC strength in climate models in the pre-
industrial period. This supports the idea that the lack of corre-
lation between LGM AMOC and modeled temperatures is in-
fluenced by the boundary conditions of the LGM. However,
improving SST biases in pre-industrial oceans at high lati-
tudes is also shown to help LGM-modeled AMOC to match
proxy data (Sherriff-Tadano and Klockmann, 2021). This
might indicate either a limited noise arising from the repre-
sentations of the AMOC, as biases are replicated between the
pre-industrial period and LGM, or a larger noise contribution
if these biases are enhanced or dampened in the cold LGM
with respect to the warmer 4 x CO, scenario from which ECS
is diagnosed. Understanding the full extent of the contribu-
tion of the ocean as a source of noise would require further
sensitivity experiments. Notably, variations in ice sheet to-
pography would indicate its impact on atmosphere and ocean
dynamics, or simulations with different complexity of ocean
dynamics would provide information on slow ocean contri-
butions to LGM temperatures (Zhu and Poulsen, 2021). All
in all, the amplitude of the contribution of ocean dynamics
in the emergent-constraint relationship is in appearance weak
but is potentially underestimated, and it is likely to arise from
both LGM boundary conditions and a decoupling between
the cold LGM and the warm abrupt4 x CO;.

4.6 Cloud feedbacks

Cloud feedbacks (A]) differ substantially across models and
contribute to higher ECS in CMIP6 models (e.g., Zelinka
et al., 2020). Because of different boundary conditions,
A¢l are thought to be regionally different between the LGM
and pre-industrial simulations. We suspect that A are state-
dependent; i.e., A calculated in a cold climate contrasts with
the one computed in abrupt4 x CO; experiments. In this sec-
tion, we investigate the A, between cold and warm states
for a few climate models in Sect. 4.6.1 and then analyze the
cloud radiative effect (CRE) of several CMIP6 models as a
proxy for A in Sect. 4.6.2. Finally, we explore the effect of
the mixed-phase cloud feedback on the LGM in Sect. 4.6.3,
as it is challenging to represent in models and thought to be
one of the main drivers behind the increase in A in CMIP6
models.
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Figure 9. Cloud feedback parameters computed with the PRP method in three simulations performed with MPI-ESM1.2-LR (a—c) and
differences in cloud feedbacks between the three simulations (d—f). (a) abrupt2 x CO, from pre-industrial conditions (560 ppm), (b) abrupt2 x
CO, from LGM conditions (380 ppm), (¢) abruptOp5 x CO; from pre-industrial conditions (180 ppm), (d) LGM-abrupt2 x CO, minus
abruptOp5 x CO», (e) abrupt2 x CO, minus LGM-abrupt2 x CO; and (f) abrupt2 x CO, minus abruptOp5 x CO5.

Table 5. Global and tropical (30° S-30° N) cloud feedback 2] val-
ues computed with the PRP method for three simulations performed
with MPI-ESM1.2-LR.

Global A,  Tropical A¢|
abrupt2 x COy 0.14 0.41
LGM abrupt2 x COy 0.11 0.37
abruptOp5 x CO, -0.0 0.45

4.6.1 Single-model cloud feedbacks

We calculate Ao in three sets of simulations using MPI-
ESM1.2-LR to explore the state dependency between the
LGM and an abrupt2 x CO, experiment. We perform
abrupt2 x CO; from pre-industrial CO;, abrupt2 x CO; from
LGM CO; and boundary conditions, and abruptOp5 x CO,
from pre-industrial CO;. Global maps are shown in Fig. 9,
and global and tropical calculations of )¢ are summarized in
Table 5.

In the two CO; doubling experiments from LGM and pre-
industrial states, global A values are broadly similar and in
contrast lower when CO; is halved. This indicates a weak
global state dependency between LGM and the pre-industrial
period but a more pronounced one between halving and dou-
bling of CO,. The LGM abrupt2 x CO; differs notably from
the pre-industrial abrupt2 x CO, by a A near 0 W m~2 over
the Laurentide ice sheet. A near-zero A, above an ice sur-
face is physically plausible since the presence or absence
of clouds cannot substantially alter the reflection to space.
Changes also occur in the Pacific Ocean, where more posi-
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tive A¢) are found in the east and more negative 1] in the west
in the LGM abrupt2 x CO;.

State dependency and forcing dependency of A have been
assessed in previous studies and models. A slab ocean ver-
sion of MIROC3.2 revealed substantially weaker A at the
LGM than in abrupt2 x CO, experiments (Yoshimori et al.,
2009), and similar observations have been made by Zhu
and Poulsen (2021) in CESM1.2. However, when comparing
halving and doubling of CO, from pre-industrial conditions,
either small differences in global A were found in the Aus-
tralian BRMC model (e.g., Colman and McAvaney, 2009)
or weaker A.; was found in the abruptOp5 x CO; experiment
than abrupt2 x CO, experiment in CESM1.2 (Chalmers et al.,
2022).

Generalizing the results of weaker A in cold climates of
CESM1.2, CESM2.1, MIROC3.2 and MPI-ESM1.2-LR is
tempting, but the results from the BRMC model might in-
dicate that the A dependency over reduced CO, compared
to increased CO; could be model-dependent. Moreover, dis-
entangling the dependency of A over the ice sheets and the
greenhouse gases of the LGM is difficult, and compensations
might happen at the global scale, which leads to broadly sim-
ilar A between the LGM and abrupt2 x CO, experiments.
All in all, it is plausible that the influence of A.; on LGM tem-
perature is model-dependent and that the decoupling between
LGM ) and abrupt4 x CO; A is substantial. Since large dif-
ferences are seen in the tropical Pacific in MPI-ESM1.2-LR
and CESM1.2, cloud feedbacks might have been large con-
tributors to the weakness of the tropical emergent constraint.
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Figure 10. Cloud radiative effect (CRE) regressed on global surface
temperature anomaly in abruptOp5 x CO, (a) and abrupt4 x CO; (b)
experiments by CMIP6 models.

4.6.2 Cross-ensemble variations in CRE change

We assess how large the inter-model spread in A differences
between warming and cooling could be among PMIP mod-
els based on evidence from single-model analyses. To this
end, we analyze the CRE of the CMIP6 models performing
abruptOp5 x CO; and abrupt4 x CO, (Fig. 10). The regres-
sion of the change in CRE over surface temperature AACTRSE
is not the same as A, but variations among models in this
quantity provide a good estimate of the spread of cloud feed-
backs (e.g., Soden et al., 2008). If we suspect a state depen-

dency on A, then the relationships between A and AACTRSE

ACRE
ATS

should differ depending on whether
abruptOp5 x CO; or abrupt4 x COa,.

For almost all models, AACTRSE is smaller in abruptOp5 x CO,
than in abrupt4 x CO,, which is consistent with our single-
model results explored in Sect. 4.6.1. In Fig. 11, we com-
pare the values of AA(:{RSE for abruptOp5 x CO, and abrupt4 x
CO; with the A of Zelinka et al. (2020) calculated from
abrupt4 x CO, simulations. While the intercepts of the two
regression lines are broadly similar, the slopes differ, where
abrupt4 x CO; is the steepest and abruptOp5 x CO; the least
steep. The difference is more pronounced at higher A where
the AACTRSE differs the most. Our analysis indicates a state
dependency in Ay in CMIP6 models, as the slope across
abrupt4 x CO, and abruptOp5 x CO, ensembles differs in
Fig. 11. The state dependency becomes increasingly stronger
with increasing Aq (i.e., ECS), and as the slope within the
abruptOp5 x CO, ensemble is less steep than abrupt4 x CO3,
then models can be suspected of being too warm in cooling
simulation with respect to their ECS. Lastly, the dispersion of
models around the regression lines indicates an inter-model

spread in state dependency on A.. Since A is calculated

is computed from
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Figure 11. Comparison of the AAC%E slopes for abruptOp5 x CO,

and abrupt4 x CO, (shown in Fig. 10) with cloud feedback esti-
mates computed from abrupt4 x CO, in CMIP6 models (values from
Zelinka et al., 2020).

from abrupt4 x COy, the dispersion is minimal around that
line, but it is quantified as a standard error of the regression
of 0.12Wm~2 K~ for abruptOp5 x CO;.

We explore how a variation of 0.12Wm™2K~! of Ay
impacts LGM temperatures by using a low- and high-ECS
model that contributed to both LGM and abruptOp5 x CO,
simulations. In the analysis of Zelinka et al. (2020), MIROC-
ES2L and CESM2.1 have ECS of 2.66 and 5.15 K, respec-
tively. We also use the effective radiative forcing (ERF)
of 2 x CO, and climate feedbacks as calculated in Zelinka
et al. (2020). The temperature change can be computed as
Eq. (4), and we estimate the LGM forcing for each model as
FrLom = (ATLgm/ECS) x F>y, where ATy gm is —4.05 K for
MIROC-ES2L (this study) and —11.3 K for CESM2.1 (Zhu
et al., 2021).

—Figm
ATioy = —SM 4
LM =5730.12 “)

For MIROC-ES2L, with an ECS of 2.66K, ERF at 2 x
CO; of 4.11Wm™2 and a total climate feedback of
—1.54Wm~2K™!, the calculated LGM temperature change
is within the range —3.8 to —4.4 K. For CESM2.1, with an
ECS of 5.15K, ERF at 2 x CO; of 3.26 Wm2 a total cli-
mate feedback of —0.63 Wm~2K™!, the calculated LGM
temperature change is within the range —9.5 to —14.0K.
Thus, CESM2.1 is more than 7 times more sensitive than
MIROC-ES2L for the same forcing. This example suggests a
larger impact on high-ECS models when considering the A
of abrupt4 x CO; in cooling simulations, such that at the
high-end ECS, we might see more diversified LGM cool-
ing if more models than CESM2.1 were to run the simu-
lation. While our analyses are based on the comparison of
abrupt4 x CO; and abruptOp5 x COa, it is reasonable to think
that the LGM could also be affected and that models un-
derestimate the cooling. Further analyses on A at the LGM
are needed, but they indicate that A, could be a substantial
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source of noise in the emergent constraint between ECS and
LGM temperature.

4.6.3 Mixed-phase clouds

The representation of mixed-phase clouds in models are im-
portant for ECS (e.g., Gregory and Morris, 1996; Tan and
Storelvmo, 2016; Lohmann and Neubauer, 2018). Mixed-
phase clouds are notoriously difficult to represent in numer-
ical weather prediction and climate models (Korolev et al.,
2017). However, as theory, observations and understanding
of mixed-phase cloud processes have improved, their repre-
sentation in models has changed substantially. Mixed-phase
clouds contain a mixture of ice and liquid and exist at temper-
atures between 0 and —38 °C. They have a strong influence
on the Earth’s energy budget, and the radiative and thermo-
dynamic properties of these clouds depend on the partition-
ing of cloud liquid water and cloud ice. Liquid clouds are
more reflective than ice clouds and have a longer lifetime,
so as the atmosphere warms and cloud ice converts to lig-
uid, cloud albedo and lifetime increase resulting in a negative
cloud-phase feedback. The cloud-phase feedback is affected
by the mean state of the cloud, and cloud ice processes are
important for cloud water phase in GCMs (Komurcu et al.,
2014). The representation of mixed-phase clouds in GCMs
has changed substantially in models in the past decade and
has been identified as a plausible explanation for the large
spread in ECS in CMIP6 models (Zelinka et al., 2020). In
this section, we consider how these changes may have im-
pacted the ECS and the emergent-constraint relationship in
PMIP.

In PMIP2 models, the physics of mixed-phase clouds were
mainly prognostic, with cloud phase dependent on a simple
temperature threshold, i.e., liquid turning to ice at —15°C
(Sundgqvist et al., 1989). In these models the strength of the
phase feedback is sensitive to the threshold temperature se-
lected (Gregory and Morris, 1996). As liquid water path is
known to exist down to —40 °C, the mean-state liquid wa-
ter path was usually too low and the mean state too icy. This
would contribute to a strong negative cloud-phase feedback,
which could lead to lower ECS estimates in these models.
By CMIP5/PMIP3, the majority of models implemented ice
nucleation and growth processes in their parameterizations,
but cloud liquid is still underestimated at very low tempera-
tures (< —25 °C) (Komurcu et al., 2014; Cesana et al., 2015)
plausibly contributing to strong cloud-phase feedbacks and
lower ECS estimates. In CMIP6/PMIP4, cloud water in the
mean state increased in many models and is associated with
a weakening of the cloud-phase feedback and an increase in
ECS (Zelinka et al., 2020).

Some conjectures are required when considering clouds
in past climates as there are no proxy records available and
the variables required to analyze clouds are rarely available
in the PMIP ensemble. We can speculate that in the colder
LGM atmosphere, the low mean state of liquid in mixed-

Clim. Past, 19, 323-356, 2023

Table 6. Global and tropical (30°° S-30° N) water vapor feed-
back Awy values computed with the PRP method for three simu-
lations performed with MPI-ESM1.2-LR.

Global Awy  Tropical Awy
abrupt2 x COy 2.06 2.99
LGM abrupt2 x CO, 2.07 3.03
abruptOp5 x COy 1.84 2.61

phase clouds in PMIP2 and PMIP3 leads to an overestimate
of LGM cooling with respect to the ECS of models, whereas
it is underestimated for PMIP4 models. Finally, the indirect
effect of mineral dust on mixed-phase clouds has not been
quantified in any generation of LGM model, although it was
predicted to lead to additional cooling (Sagoo and Storelvmo,
2017). In summary it is likely that the behavior of mixed-
phase clouds under LGM forcing is incomplete, and due to
the lack of data, it is challenging to estimate how much noise
they could contribute in emergent-constraint analysis.

4.7 Water vapor feedback

We calculate the water vapor feedback (Ayy), which is
thought to strengthen with warming (e.g., Colman and McA-
vaney, 2009; Mauritsen et al., 2019). In Table 6, we report
tropical and global Ay, in the abrupt2 x CO, experiments,
starting from both the LGM and the pre-industrial period and
the abruptOp5 x CO, with MPI-ESM1.2-LR.

We do not find a large difference in global and tropi-
cal Ayy in the abrupt2 x CO; experiments, but global Ay is
roughly 0.2 W m~2 lower when halving CO,. A similar ob-
servation has been made by Colman and McAvaney (2009)
with the BRMC model, but Yoshimori et al. (2009) found no
change in A,y between an abrupt2 x CO; and abruptly lower-
ing to LGM greenhouse gas concentrations; Zhu and Poulsen
(2021) found the same in a similar experiment. However,
the full LGM simulation revealed lower Ay, compared to a
warming case (Yoshimori et al., 2009). These results indicate
that state dependency in Ay is also model-dependent, and
the inter-model spread might be of the same order of magni-
tude as that for 1. Although there is an understanding on its
increasing strength in warming climates (e.g., Colman and
McAvaney, 2009; Mauritsen et al., 2019), it appears that the
LGM case introduces additional complexity that may offset
this general behavior. We conclude that there is a possibility
of similar to stronger Ayy in 4 x CO; experiments compared
to the LGM, which could be a source of noise in the emergent
constraint.

4.8 Methane

Methane emissions from natural sources are intimately
linked to global mean temperatures, with decreases in wet-
land methane emissions during the LGM attributed to a de-
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crease in wetland area and lower rates of methanogenesis due
to low CO, concentrations (Valdes et al., 2005). However,
most climate models do not treat methane as a feedback but
rather as a forcing since its concentration is prescribed and
coupled models rarely have an active chemistry module. In
abrupt4 x CO; experiments it is usually kept fixed at the pre-
industrial value, whereas in the LGM experiment it is low-
ered relative to pre-industrial levels. This makes methane and
in general biogeochemical and biophysical feedbacks sys-
tematic biases affecting the emergent constraint between the
LGM temperature and the ECS from abrupt4 x CO,.

In order to estimate the impact on the LGM emergent con-
straint of omitting methane feedbacks in abrupt4 x CO; ex-
periments, we perform a simple calculation where we cal-
culate atmospheric methane feedback as AFcn,/ATiGMm,
where Fcy, is the forcing coming from the decrease in
methane at LGM. Methane is well-constrained at the LGM
(Loulergue et al., 2008) and is set at 375ppb in the
PMIP4 experiment design (Kageyama et al., 2017). Follow-
ing the forcing estimates of Etminan et al. (2016), we cal-
culate A Fcp, = —0.37 Wm™2 between the LGM and pre-
industrial concentrations. With a global temperature change
at LGM of —6.1 °C (Tierney et al., 2020), the corresponding
methane feedback is 0.06 Wm™2 K1,

Recent assessment of all non-CO;, biogeochemical and
biogeophysical feedbacks, in which methane feedbacks are
included, have a median value of —0.01 Wm™2 (Forster
etal.,2021). At the LGM, simulations using WACCM6 (Get-
telman et al., 2019) show a 5 % colder LGM state than in the
CESM2.1 runs, with WACCM6 having a high atmosphere
model top and an active chemistry module which better cap-
ture the dynamic and chemical changes in ozone, methane
and stratospheric water vapor (Zhu et al., 2022b). However,
the finding differs from a previous study that suggests a 20%
mitigation of the LGM global cooling by stratospheric chem-
istry using a different climate—chemistry model (Noda et al.,
2018), implying another source of uncertainty.

4.9 Paleoclimate SST patterns and their effects

Models have roughly matched reconstructed global mean
cooling in the LGM but generally have problems match-
ing the pattern of cooling with relatively weak temperature
change in the tropics and strong polar amplification (e.g.,
Haywood et al., 2020; Renoult et al., 2020; Kageyama et al.,
2021). In parallel, focusing on the recent historical warming,
attention has been paid to how patterns of the SST change
can affect feedback mechanisms (e.g., Armour et al., 2013;
Ceppi and Gregory, 2017). Current consensus is that the tem-
porary pattern effect in the historical context dampens the
rate of warming (Forster et al., 2021). At the same time the
long-term equilibrium pattern of warming could amplify or
dampen the warming (Mauritsen, 2016), but this topic is cur-
rently underexplored.
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In order for an equilibrium pattern effect to alter the rela-
tionship between ECS and warming or cooling in a given pa-
leoclimate there would have to be a difference in the bound-
ary conditions that would alter the pattern in the paleocli-
mate in a way that does not happen in the idealized case
of 4 x CO;. One such example could be the presence of ice
sheets or differences in the ocean bathymetry or gateways.
Yet, if these boundary conditions are included in the respec-
tive PMIP case and models on average respond reasonably to
them, then the corresponding pattern effect is accounted for
in the emergent-constraint method.

Reconstructed cooling patterns for the LGM and warming
patterns in the Pliocene are, however, difficult for models to
reproduce (e.g., Haywood et al., 2020; Renoult et al., 2020;
Kageyama et al., 2021). Foremost, reconstructed climates ex-
hibit a stronger polar amplified response than that simulated
by most models. Presumably, such a pattern would prefer-
entially activate the positive high-latitude feedbacks at the
expense of negative tropical feedbacks, yielding a stronger
global mean response which could qualify as an amplifying
long-term pattern effect. Yet, the argument requires that mod-
els simulate the right long-term pattern to 4 x CO» but not to
the LGM and Pliocene boundary conditions.

It would seem that two alternative and simpler explana-
tions are more plausible. First, reconstructions could have
exaggerated polar amplifications, for instance due to using
different proxies at low and high latitudes or that there are
biases in the proxy calibrations that are different in warm and
cold climates. Second, models may simply simulate too lit-
tle polar amplification due to biases in the distribution of for
instance cloud feedbacks (Burls and Fedorov, 2014). Since
these biases are presumably similar in both 4 x CO; and the
Pliocene, it would not affect the emergent-constraint rela-
tionship, but it would impact the emergent-constraint rela-
tionship between 4 x CO, and LGM where the biases differ.

5 Comparison of the sources of noise

In the previous sections, we have analyzed and reviewed
sources of noise which have different geographical and phys-
ical impacts over the LGM and therefore contribute to the
lack of robustness of the emergent constraint between ECS
and LGM temperature. We now discuss the amplitude of each
source and the nature of their contribution, which we divide
into two categories:

— Structural source. The noise arises from structural un-
certainties in the representation of the LGM. The source
of noise has an impact on the LGM temperature but is
not expected to influence the ECS of a model calcu-
lated from abrupt4 x CO, simulation. The models might
simulate lower or higher LGM temperature due to this
source of noise, which will mainly modify the median
inferred ECS in emergent-constraint analysis.
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— State-dependent source. The noise exists because of a
different behavior between the LGM and abrupt4 x CO3,
such that the ECS of models might explain the LGM
temperature poorly following the linear relationship
given for the emergent-constraint framework. Here, we
refer to a decoupling between ECS and temperature,
where either non-linearity can be seen or no response
at the LGM, which will mainly impact the uncertainty
range on inferred ECS.

A summary of the amplitude of each source and whether
it is found to be structural or state-dependent is provided in
Table 7. Several sources are expected to fall into both cate-
gories; in these cases they are classified in both sources of
noise.

Ice sheet forcing and its efficacy is likely the main source
of structural noise as it accounts for half of the radiative forc-
ing at the LGM (Yoshimori et al., 2009; Brady et al., 2013;
Kageyama et al., 2017). Ice sheet forcing is highly model-
dependent, and studies indicate that the simulated tempera-
ture of the LGM might vary to a large extent across models
owing to the ice sheet implementation (e.g., Shakun, 2017;
Zhu and Poulsen, 2021). So far, studies quantifying this phe-
nomenon are scarce but are valuable as other approaches to
calculate ECS from LGM temperature often refer to the ice
sheet forcing as an area of high albedo (e.g., Tierney et al.,
2020).

The representations of both the AMOC and the Southern
Ocean dynamics are likely contributors of noise, but their
amplitude is less clear. Indeed, we did not find any significant
relationship between AMOC and Southern Ocean convection
and LGM temperature, but their impact might be compen-
sated. The oceans also interact with the sea-ice albedo feed-
back, and ocean dynamical feedbacks and their connection
to sea ice are found to be important at the LGM in CESM1.2
(Zhu and Poulsen, 2021). The structural issues of the AMOC
and the Southern Ocean might also arises from their pre-
industrial representations (Sherriff-Tadano and Klockmann,
2021), implying a state dependency in the noise. The state
dependency of the AMOC has been studied for the Pliocene,
where models show consistent global SST warming and
strengthening of the AMOC compared to the pre-industrial
period (Weiffenbach et al., 2023). Pliocene paleogeography
may drive changes in AMOC rather than SSTs (Burton et al.,
2022); however, the warm state of Pliocene North Atlantic
SSTs enhance oceanic heat transport by the subtropical gyre,
which may be responsible for regional SSTs changes (Weif-
fenbach et al., 2023). An additional caveat is that the sim-
ulated LGM is closer to the equilibrium response than the
150-year-long abrupt4 x CO; simulation from which ECS
is diagnosed. There are substantial differences in AMOC
strength and structure between transient and equilibrated
global warming experiments (Jansen et al., 2018). Generally,
decadal timescale transient future simulations of the AMOC
show a slowdown of the circulation (Weijer et al., 2020; Lee
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et al., 2021), where in turn, LGM models show slowdown,
acceleration or an AMOC strength similar to pre-industrial
levels, suggesting that differences and therefore noise may
arise based on how close the simulation is to equilibrium.
Overall, this highlights the complexity of structural issues
and state dependencies in ocean currents and how they con-
tribute as sources of noise in the emergent constraint on ECS.

The albedo of fixed vegetation, the interaction of snow on
vegetation, methane feedback and the drift of model tem-
perature due to restricted spin-up are all small sources of
noise. Their impacts are limited, either acting locally (vege-
tation and snow) or an issue in a few models (vegetation and
drift). Vegetation albedo is a structural issue, as in PMIP2
and PMIP3, most models used fixed vegetation maps, which
had an impact on LGM temperature independently of their
ECS, as a systematic bias. In fact, the true contribution of
prescribed vegetation to the LGM cooling is difficult to con-
strain. It is not thought to be a dominant factor for the case
of the Pliocene warming (Lunt et al., 2012), but that is based
on sensitivity experiments which require interchanging ice
sheets and vegetation maps between the pre-industrial pe-
riod and the Pliocene. Considering the size of the LGM ice
sheets, these sensitivity experiments may be biased and dif-
ficult to apply to the LGM. Nevertheless, vegetation ceases
to be a structural uncertainty with the implementation of dy-
namical vegetation feedbacks. It seems difficult to reconcile
the weakness of the emergent constraint with differences in
vegetation and snow-albedo feedbacks, as hypothesized by
Hopcroft and Valdes (2015). However, the additive effect of
these small sources may be important in the ensemble.

The contribution of state dependency in our analysis
mainly comes from climate feedbacks. Cloud feedbacks, in-
cluding mixed-phase cloud feedbacks, are likely to be major
drivers of noise in the emergent constraint. Cloud feedbacks,
as one of the most uncertain feedbacks, are very model-
dependent, with discrepancies regarding whether they are
similar or weaker at LGM compared to a warming climate.
They are also found to largely increase the predicted LGM
temperature for higher ECS models. The inter-model spread
in water vapor feedback state dependency is also an impor-
tant contributor, potentially of a similar amplitude as cloud
feedbacks. In theory, water vapor feedback is expected to
be stronger in a warming climate than at the LGM (e.g.,
Colman and McAvaney, 2009; Mauritsen et al., 2019), but
this is not found in all models, making its behavior com-
plex. Finally, surface albedo feedback is a smaller source of
noise among the climate feedbacks analyzed but likely plays
a part in the weakness of the emergent constraint. Here, mod-
els mostly agree that surface albedo feedbacks are amplified
in cooling climate, as highly reflective sea ice and snow-
covered areas extend, replacing less reflective biomes such
as forests. In fact, the implementation of dynamical vege-
tation might have amplified the inter-model spread in sur-
face albedo state dependency but could have been compen-
sated for by the removal of the structural uncertainties aris-
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Table 7. Assessment of the different sources of noise as well as whether they arise from structural uncertainties in representing the LGM
or state dependency and varying strength between cold and warm climate. If the category of noise is written within parentheses, then it is
regarded as plausible but less dominant than the category outside parentheses.

Component Source Category of noise ~ Assessment

TOA time series

Temperature drift

Structural

Affects few models. Limited impact.

Energy leakage State-dependent Affects few models. Limited impact.
SST freezing State-dependent Affects most models and is regionally
Ocean threshold critical but minimal on global scale.
AMOC Structural or Large inter-model spread. Could
state-dependent contribute substantially but likely
compensated.
Southern Ocean Structural or Large inter-model spread. Could
dynamics state-dependent contribute substantially but likely
compensated.
Ice sheet forcing Structural Large inter-model spread. Limited
Land . e
understanding, but the contribution is
expected to be large.
Fixed vegetation Structural Systematic bias but limited to land.

Surface albedo feedbacks

Snow-albedo
feedback

State-dependent

Limited source but could contribute
substantially when interacting with

sea ice, ice sheets and vegetation. Likely
stronger at the LGM.

Sea-ice albedo
feedback

State-dependent

Limited source but could contribute
substantially when interacting with
Southern Ocean dynamics. Likely stronger
at the LGM.

Vegetation albedo

feedback

State-dependent

Likely a small contributor. Appeared with
the implementation of dynamical
vegetation. Likely stronger at the LGM.

Cloud feedbacks

Total cloud

State-dependent

Uncertainty direction of sign of

feedbacks state dependency, from similar to
abrupt4 x CO, to weaker. Strongly
model-dependent and is a large
contributor of noise. Most likely to affect
the tropical Pacific.

Mixed-phase cloud  State-dependent Responsible for a large spread of ECS

feedback among PMIP generations. Currently
unclear impact.

Water vapor State-dependent Uncertain direction of sign of

Others feedback state dependency, from similar to

abrupt4 x CO, to weaker. Could be of
similar amplitude as a source of noise as
cloud feedbacks.

Non-CO; trace
gases

Structural

Omitting methane feedback could lead to
a systematic, slight cooling bias.

Pattern effects

Structural or
state-dependent

Unclear impact.
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ing from prescribed LGM vegetation. As a weaker source
of state-dependent noise, we include the physical bound on
SST freezing which is, in fact, an issue of decoupling of tem-
perature and abrupt4 x CO, ECS as it mostly arises due to
cold pre-industrial SST. However, it is only a regional issue
and thus is a small contributor of state-dependent noise. The
pattern effects are categorized as both structural and state-
dependent sources of noise, but the amplitude of their contri-
bution remains difficult to estimate and is the subject of much
current research.

It is important to highlight that the definition of ECS is
similar to that of the Intergovernmental Panel on Climate
Change (IPCC), which includes all feedbacks except the ice
sheet feedback. The latter is therefore a missing feedback
in both abrupt4 x CO,, from which ECS is diagnosed, and
in the LGM state. Its inclusion should therefore affect both
abrupt4 x CO; and LGM temperatures proportionately, such
that climate models would be displaced along the current re-
lationship, and therefore the regression properties should re-
main similar. The issues analyzed in this study are, for the
most part, not missing feedbacks but arise from the lack of
consistency between models. These issues are not expected
to be reduced with the addition of missing feedback; on the
contrary, models would have more freedom to differ from
each other.

All in all, the individual inter-model spread in ice sheet
forcing, cloud and water vapor feedback state dependency
might be large enough to significantly change the emergent-
constraint relationship. However, it is plausible that several
sources are added together and some others appear as com-
pensated, which could act further in modifying the estimates
of ECS from LGM temperature.

6 Statistical view on outlier models and
generational issues

A large spread in a model ensemble is advantageous to
emergent-constraint methods as they are more sensitive to
outliers than models near the middle of the ensemble. We
explore the influence of CESM2.1, which has an ECS of
5.15K and cools 3K more than the next coldest model on
the emergent constraint. We randomly subsample all PMIP
models with a simple random sampling approach and dis-
play the distributions with and without CESM2.1 in Fig. 12.
Excluding CESM2.1 does not impact the median values of
slopes and intercepts, which indicates that the behavior of
CESM2.1 is as expected based on the emergent-constraint
relationship from other models. The correlation coefficient
is, however, strongly affected by the inclusion of CESM2.1:
when CESM2.1 is sampled, the correlation becomes highly
significant.

The robustness of the constraint when CESM2.1 is in-
cluded is encouraging. Emergent-constraint methods do not
require a model to be close to the truth, but it should display a
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physically reasonable relationship between, in our case, the
LGM temperature and ECS. In fact having a wide variety
of modeled ECS, both low and high, is advantageous. The
HadGEM3-GC-31-LL model, which has an ECS of 5.6 K,
plans to contribute to PMIP4 (Dan Lunt, personal commu-
nication, 2021), and it will be interesting to see whether
its LGM temperature is in line with its high ECS and the
emergent-constraint relationship. Currently, with only one
high-ECS model, the emergent-constraint analysis needs to
be done with care as the high correlation might be exagger-
ated when including CESM2.1.

It has been suggested that inherent differences between
PMIP generations contribute to the lack of correlation in the
emergent constraint. Hopcroft and Valdes (2015) hypothe-
sized that the development of new or more complex model
components, for example dynamical vegetation, in PMIP3
relative to PMIP2 would generate additional noise in PMIP3
and be the cause of the lag of correlation. Thus, this might
result in overconfidence in the simpler models used in the
emergent constraint of Hargreaves et al. (2012). In Fig. 12,
we display the true value of the investigated slope, inter-
cept and correlation coefficient in each PMIP ensemble along
with distributions from random subsamples with and without
CESM2.1 described earlier in this section. Despite being rel-
atively close to the lower end, the true value of PMIP2 is
always comprised within the 5 %-95 % intervals of each pa-
rameter analyzed in randomly created sub-ensembles with-
out CESM2.1. This indicates that the value of each parameter
for PMIP2 is unlikely to arise from exceptional differences
between PMIP2 and other random sub-ensembles. There-
fore, the PMIP2 ensemble is not statistically discernible from
the other PMIP ensembles and this does not support the hy-
pothesis of Hopcroft and Valdes (2015).

Finally, we inspect the first-generation PMIP1 model en-
semble. These models are considerably simpler and lower
resolution than more recent models. These models used
mixed-layer oceans with prescribed ocean heat transports
rather than the three dimensional dynamic ocean models used
from PMIP2 and onwards. It has been suggested that for a
given model, using these mixed-layer oceans results in less
cooling during the LGM than would arise if a dynamical
ocean model component was used (Zhu and Poulsen, 2021).
However, from a statistical point of view slope, intercept and
correlation of the PMIP1 ensemble are within the ranges of
randomly sampled sub-ensembles. Therefore, PMIP1 mod-
els are not statistically different from later generations with
regard to the emergent-constraint analysis.

7 Prospects from single-model perturbed physics
ensembles
Single-model perturbed physics ensembles are a convenient

way of avoiding the statistical limitations which may arise
from multi-model PMIP sub-ensembles, with restricted ECS
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Figure 12. (a) LGM tropical SST anomaly and ECS of all models since PMIP1 and distribution of regression (b) slopes, (c) intercepts and
(d) correlations from randomly sampled sub-ensemble of models. The red distribution shows ensembles where CESM2.1 was sampled, while
the black distribution shows ensembles where CESM2.1 was not sampled. The colored arrows pointing at the x axis show the true values of
each PMIP ensembles. Note that PMIP1 models are not available for sampling in this analysis but are only shown for comparison with other
PMIPs.
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Figure 13. Comparison of the emergent-constraint relationship between global LGM surface temperature anomaly and ECS in the multi-
model ensemble of PMIP4, the single-model ensemble of MPI-ESM1.2-LR (this study) and the single-model ensemble of CESM2.1 (Zhu
et al., 2022a). (a) Surface temperatures are averaged over the last 50 years; (b) surface temperatures are extrapolated by linear regression
until top-of-atmosphere imbalance reaches 0 W m~2. The LGM global surface temperature reconstruction of Tierney et al. (2020) is shown
as well as the LGM global surface air temperature reconstruction of Annan et al. (2022).

and temperature ranges. In most cases, modifying cloud pa- ensemble of PMIP in Fig. 13. Simulations have not been run
rameters can lead to a wide range of ECS values, but most of to equilibrium in these ensembles, and the higher-ECS ver-
these ensembles are made of low-complexity models (Gre- sions experience substantial drift of temperature. Thus, cau-
goire et al., 2011) or slab ocean models (Yoshimori et al., tion should be exercised when interpreting the results.

2011). Slab ocean models are suspected of underestimat- We estimate a potential equilibrium temperature by re-
ing the LGM cooling by missing ocean dynamical feedbacks gressing the surface temperature time series with the TOA
(Zhu and Poulsen, 2021) and might not be able to perfectly energy imbalance and show it in Fig. 13. The cooling in the
represent the LGM. We analyze two single-model ensembles higher-ECS versions is amplified, and the regression lines

built from coupled Earth system models (ESMs) — CESM2.1 become almost identical to the line in the PMIP4 ensem-
(Zhu et al., 2022a) and MPI-ESM1.2-LR (this study) — and ble. This is an interesting observation, as it could suggest
plot their temperature and ECS alongside the multi-model that inter-model structural uncertainties, which are minimal

https://doi.org/10.5194/cp-19-323-2023 Clim. Past, 19, 323-356, 2023



348 M. Renoult et al.: Causes of the weak emergent constraint on climate sensitivity at the Last Glacial Maximum

*

w
ECS (K)

G—
= ————
-8 -6 -4 -2
LGM tropical (30° S - 30° N) SST anomaly (°C)
© PMIP4 = Tierney et al. (2020) LGM tropical SST
7ﬁ( CESM versions == = Annan et al. (2022) LGM tropical SST
Y CESM2.1

Figure 14. Emergent constraint between tropical (30° S-30° N)
LGM SST anomaly and ECS in the PMIP4 ensemble with the addi-
tion of several CESM model family versions. The constraint is com-
pared between the presence (red) or absence (blue) of CESM2.1.
The ECS of CESM2.1 is 5.6 K, estimated from abrupt2 x CO; in
slab ocean mode (Zhu et al., 2021), for comparison with the other
CESM versions. The LGM tropical SST reconstructions of Tierney
et al. (2020) and Annan et al. (2022) are shown.

in single-model ensembles as similar versions share the same
ice sheet forcing, in fact contribute little to modifying the
emergent-constraint relationship. This approach is however
limited, as the length of the runs is in fact too short to reach
equilibrium and the control pre-industrial state also has a
trend. Therefore, our temperatures obtained via regression
might be greatly biased. Moreover, we filtered out three ver-
sions of CESM2.1 in this analysis, as their estimated tem-
peratures from regression seemed unrealistically low (colder
than —20°C and as low as —130 °C), which made the slope
of the regression line equal zero.

We create an alternate ensemble using different versions
of the CESM model family that are run to equilibrium:
CESM1.2, CESM1.3 and CESM2.1. The ECS range of this
ensemble is narrower (3.6—4.0 K, calculated using abrupt2 x
COs in slab ocean model configuration) and its size smaller
(six models), so we expand the PMIP4 ensemble with it in
Fig. 14. CESM2.1 is no longer a strong outlier, with little
difference in the constraint whether CESM2.1 is included or
removed. Using the tropical SST reconstruction of —3.5°C
of Tierney et al. (2020), the median ECS estimate is 3.7 K
with CESM2.1 and 3.6 K without. With the tropical SST re-
construction of —2.1°C of Annan et al. (2022), the median
ECS is 3.1 K with and without CESM2.1. These estimates
are in broad agreement with approaches based on LGM forc-
ing estimates (e.g., Tierney et al., 2020).

Despite the progress in generating single-model ensem-
bles, they are currently difficult to use in emergent-constraint
analysis. The ensembles built from CESM2.1 and MPI-
ESM1.2-LR are too far from equilibrium and would bias the
estimates of ECS. Furthermore, the dependency existing be-
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tween versions of the same model is also a source of concern
for statistical methods, while still being poorly understood.
Recent analyses show that the CESM models are substan-
tially different from each other (Annan et al., 2022), which
gives confidence in using them altogether. All in all, single-
model ensembles are promising tools to study the sources of
noise affecting the emergent constraint, particularly as they
are expected to have reduced structural uncertainties and sim-
ilar ice sheet forcing (e.g., Yoshimori et al., 2011).

8 Recommendations on paleo-emergent constraints
on ECS

While the emergent constraint on ECS from LGM tempera-
tures is weak for reasons investigated in this study, the corre-
sponding emergent relationship from Pliocene temperatures
is robust, which suggests that past climates do indeed have
the potential to constrain ECS. PMIP has included several
paleoclimates since its inception, with others planned for the
future (e.g., Burls et al., 2021). In this section, we reflect
on the issues affecting the LGM constraint and discuss what
could be the ideal combinations of boundary conditions, cli-
mate states and proxy data to provide a well-constrained ECS
based on past climates.

Owing to the large contribution of noise from inter-model
differences in ice sheet forcing and state dependency in cli-
mate feedbacks at cold temperatures, the ideal past climate
would be warmer than the pre-industrial period and with lim-
ited or no ice sheets. This is the case for the Pliocene but
also for the Oligocene and Miocene and in particular for
the Miocene Climatic Optimum, which is twice as warm
as the mid-Pliocene warm period (Steinthorsdottir et al.,
2021). Hargreaves et al. (2007) suggested a strong temper-
ature signal for better regional correlations, as it could dras-
tically reduce noise in polar regions. This is notably why, de-
spite being extensively studied, the last interglacial and mid-
Holocene periods are not good candidates for emergent con-
straints on ECS, as their temperature anomalies were small,
which substantially decreases the signal-to-noise ratio. Like-
wise, a very warm past climate such as the Eocene is less
suitable as non-linearities in feedbacks there might also ap-
pear that are not seen in abrupt4 x CO, experiments (e.g.,
Caballero and Huber, 2013).

The large changes in winds, clouds, and ocean currents in-
duced by the presence of ice sheets at the LGM suggest that
important differences in climate feedbacks can arise from
varying topographies. Moreover, Burton et al. (2022) showed
that the closing of the Bering Strait during the Pliocene con-
tributed to changes in North Atlantic SSTs, and Weiffenbach
etal. (2023) suggests that the latter drives substantial changes
in oceanic heat transport, which highlights the role of gate-
ways in modeled global and regional paleo-temperatures.
Overall, a past climate with minimal changes in non-CO;
boundary conditions is preferable in order to reduce poten-

https://doi.org/10.5194/cp-19-323-2023



M. Renoult et al.: Causes of the weak emergent constraint on climate sensitivity at the Last Glacial Maximum 349

tially large structural uncertainties and inter-model disagree-
ments. In that sense, using the Miocene and older past cli-
mates is challenging, as the Pliocene was already slightly in-
fluenced by small changes in paleogeography.

Finally, the ideal past climate for constraining ECS would
have abundant and high-quality proxy data. This is likely the
main strength of the LGM, owing to its proximity to the pre-
industrial period. Even the Pliocene, which is relatively close
in time, shows large observational uncertainties that impact
ECS estimates and data model comparisons, in large part be-
cause the community has decided to focus on a narrow time
window (Renoult et al., 2023). Paleoclimates that are fur-
ther back in time might be difficult to use in an emergent-
constraint framework, as the time resolution is drastically
lower, and the spatial coverage is usually poor. All in all,
a synergistic combination of both the cold LGM and multi-
ple warmer climates will, together with improved reconstruc-
tions, probably be a viable path forwards to constrain ECS.

9 Conclusions

Since its first use in an emergent-constraint framework by
Crucifix (2006), the LGM temperature has often been re-
garded as among the best paleoclimate candidates to con-
strain ECS. However, the robustness of the constraint has
been substantially decreasing in recent model generations,
and the high end of ECS estimates from the LGM is higher
than arising from the more uncertain Pliocene, which is fur-
ther away in time. In this study, we have provided an as-
sessment of the different sources of noise contributing to the
weak constraint on ECS from LGM temperature.

— Sources of noise can impact the atmosphere, land and
ocean either regionally or globally. Most sources have
extratropical origins. Inter-model spread in ice sheet
forcing and state dependency in cloud and water vapor
feedbacks are regarded as the main individual contribu-
tors of noise.

— Some sources are associated with structural uncertain-
ties in the simulation of the LGM, they are thus un-
likely to affect the ECS of models computed from
abrupt4 x CO, experiments. They may bias the LGM
temperature (high or low) and affect the inferred me-
dian ECS in emergent-constraint analysis. This is the
case for ice sheet forcing, ocean dynamics, vegetation
albedo, methane feedback and temperature drift due to
limited model spin-up.

— Some sources emerge from the strength of climate com-
ponents varying between cold and warm climate. These
are linked to state dependency and lead to a decoupling
of the ECS of abrupt4 x CO, and LGM temperature.
These sources are likely to affect the uncertainty range
of inferred ECS, as they disrupt the linear relationship
given in the emergent-constraint framework. This is the
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case for cloud, water vapor and surface albedo feed-
backs as well as the physical bound on SST cooling
temperature and SST pattern effects.

— There is no significant difference between the temper-
atures of PMIP2, PMIP3 and PMIP4. Whereas some
sources of noise might be larger in individual PMIPs,
such as the state dependency in surface albedo feedback
arising from the implementation of dynamical vegeta-
tion, this does not seem to lead to statistically different
PMIP ensembles.

— The constraint is critically affected by outlier models,
i.e., high- and low-ECS models. Currently, there is only
one high-ECS model (CESM2.1, ECS =5.15 K) which
is responsible for the apparent high correlation between
LGM temperature and ECS. The inclusion of further
high-ECS models, such as HaddGEM3-GC31-LL, would
provide additional information on the high end of the
ensemble.

While there are several large sources of noise, the addi-
tive impact of smaller sources may be equally important. The
quantification of sources remains difficult as it would require
sensitivity experiments which do not necessarily exist, and
it is likely that compensation processes are at work. Fur-
thermore, the most uncertain sources, such as mixed-phase
cloud feedbacks and SST pattern effects, might have been
overlooked and could be responsible for a larger noise.

The LGM is currently a weak emergent constraint
on ECS but is broadly consistent with inferences from
data-assimilation and forcing estimate methods (e.g.,
PALAEOSENS Project Members, 2012; Sherwood et al.,
2020; Tierney et al., 2020) but gives a wider range of un-
certainty. This could indicate that either emergent-constraint
approaches are considering too many sources of noise or that
forcing-based methods lead to narrow results.

In comparison, the Pliocene is a robust constraint in both
emergent-constraint and forcing-based methods (Hargreaves
and Annan, 2016; Sherwood et al., 2020; Renoult et al.,
2020). This might be due to the state dependency effect be-
tween abrupt4 x CO; and the warm Pliocene being more lim-
ited than with the LGM temperature. However, several fac-
tors might be neglected for the case of the Pliocene, notably
in structural uncertainties.

The LGM is still the most expanded paleo-ensemble
of simulations and therefore remains of particular interest
for emergent-constraint purposes. Sets of sensitivity experi-
ments involving ice sheet topography, vegetation maps or sea
ice and ocean dynamics would provide useful information on
the reasons of noise as well as the contributions from high-
ECS models, both of which already benefit the Pliocene. This
could give a better understanding of poorly understood phe-
nomena, such as a state-dependent climate feedbacks and
ice sheet forcing efficacy, and increase the robustness of the
emergent constraint on ECS from LGM temperature.
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