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Abstract. Previously developed software packages that gen-
erate probabilistic age models for ocean sediment cores are
designed to either interpolate between different age prox-
ies at discrete depths (e.g., radiocarbon, tephra layers, or tie
points) or perform a probabilistic stratigraphic alignment to
a dated target (e.g., of benthic δ18O) and cannot combine age
inferences from both techniques. Furthermore, many radio-
carbon dating packages are not specifically designed for ma-
rine sediment cores, and the default settings may not accu-
rately reflect the probability of sedimentation rate variability
in the deep ocean, thus requiring subjective tuning of the pa-
rameter settings. Here we present a new technique for gener-
ating Bayesian age models and stacks using ocean sediment
core radiocarbon and probabilistic alignment of benthic δ18O
data, implemented in a software package named BIGMACS
(Bayesian Inference Gaussian Process regression and Mul-
tiproxy Alignment of Continuous Signals). BIGMACS con-
structs multiproxy age models by combining age inferences
from both radiocarbon ages and probabilistic benthic δ18O
stratigraphic alignment and constrains sedimentation rates
using an empirically derived prior model based on 37 14C-
dated ocean sediment cores (Lin et al., 2014). BIGMACS
also constructs continuous benthic δ18O stacks via a Gaus-
sian process regression, which requires a smaller number of
cores than previous stacking methods. This feature allows
users to construct stacks for a region that shares a homo-
geneous deep-water δ18O signal, while leveraging radiocar-
bon dates across multiple cores. Thus, BIGMACS efficiently
generates local or regional stacks with smaller uncertainties

in both age and δ18O than previously available techniques.
We present two example regional benthic δ18O stacks and
demonstrate that the multiproxy age models produced by
BIGMACS are more precise than their single-proxy coun-
terparts.

1 Introduction

The accuracy with which ocean sediment core data can re-
construct the timing of past climate events depends on the
quality of the core’s age model (i.e., estimates of age as a
function of core depth). However, age models are often con-
strained by only a single dating proxy type. A common tech-
nique is radiocarbon dating, which directly dates individual
sediment layers. However, this method is restricted to the
last 55 ka, suffers from variable surface reservoir ages (Wael-
broeck et al., 2001; Sikes et al., 2017; Stern and Lisiecki,
2013; Skinner et al., 2019), and radiocarbon data are of-
ten lower resolution than benthic δ18O data. Radiocarbon
age models are sometimes supplemented with stratigraphic
tie points to a dated target; however, this method requires
the subjective identification of shared features that are often
recorded in different archives. An alternative technique is the
stratigraphic alignment of benthic δ18O to a target stack (e.g.,
Imbrie et al., 1984; Lisiecki and Raymo, 2005), which rep-
resents the mean benthic δ18O signal across multiple cores.
Benthic δ18O is often measured at a higher resolution than
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radiocarbon data, but this dating technique provides only rel-
ative age information between cores by assuming that the in-
put and target have synchronous benthic δ18O signals. Tem-
poral offsets between the aligned records can cause age er-
rors in the aligned age model (Skinner and Shackleton, 2005;
Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern and
Lisiecki, 2014; Lund et al., 2015).

Software packages exist to produce age models by in-
terpolating between age proxies (such as radiocarbon ages,
tephra layers, and/or tie points; Blaauw and Christen, 2011;
Lougheed and Obrochta, 2019) or by performing a proba-
bilistic benthic δ18O alignment (in which residuals between
the input and target records are minimized; Lin et al., 2014;
Ahn et al., 2017), but none of these packages can probabilis-
tically combine age inferences from both dating techniques.
While one study presented a Bayesian multiproxy age model
for a single core from the Arctic Ocean, the methodology
is specific to the high-latitude region in which radiocarbon
data are unreliable and aligned to porosity rather than ben-
thic δ18O (Muschitiello et al., 2020). Furthermore, many age
modeling software packages were not specifically designed
for marine sediment cores (Bronk Ramsey, 1995; Haslett and
Parnell, 2008; Blaauw, 2010; Blaauw and Christen, 2011),
and the default settings may not accurately reflect the proba-
bility of the sediment accumulation rate variability in marine
settings. Users must often subjectively choose parameter set-
tings, which may ultimately affect the interpretation of pale-
oclimate records.

Here we present a new technique for generating Bayesian
age models and stacks of ocean sediment core data, which
is implemented in a software package named BIGMACS
(Bayesian Inference Gaussian Process regression and Mul-
tiproxy Alignment of Continuous Signals). BIGMACS con-
structs radiocarbon age models, benthic δ18O age models,
and multiproxy age models, which combine age inferences
from both radiocarbon ages and δ18O stratigraphic align-
ment. Radiocarbon ages directly date sediment layers, while
benthic δ18O provides relative age constraints between radio-
carbon ages and ages beyond 55 ka. We use the term “mul-
tiproxy” to indicate the combined inference from two types
of “age proxies”, namely absolute age information provided
by radiocarbon and relative age information from the strati-
graphic alignment of benthic δ18O. Note that this method is
distinct from an alignment of multiple climate proxies (e.g.,
benthic and planktonic δ18O). BIGMACS can also prob-
abilistically incorporate other types of age information at
specified depths, such as inferences from tephra layers, mag-
netic reversals, or user-identified tie points. Sedimentation
rates are realistically constrained with an empirically derived
prior model from Lin et al. (2014), rather than subjective pa-
rameter settings. Median age models and their uncertainties
are defined by the distribution of Markov chain Monte Carlo
(MCMC) samples. The distribution of MCMC samples at a
given depth of a radiocarbon age model reflects the abso-
lute age uncertainty in the sediment. However, the δ18O age

model uncertainty reflects only the relative age uncertainty
and excludes the absolute age uncertainty in the alignment
target. BIGMACS does not use any orbital tuning, unless
users choose to align to a target stack that has been orbitally
tuned.

Another functionality of BIGMACS is the automated con-
struction of multiproxy benthic δ18O stacks using an itera-
tive process that simultaneously considers the probabilistic
fit to both absolute age information (e.g., from radiocarbon
dates) and relative age information from the alignment of all
cores’ benthic δ18O signals. Age models for each core are
constructed by aligning benthic δ18O to the stack from the
previous iteration, and then a new stack is calculated from
the aligned δ18O from every core. Radiocarbon ages (if in-
cluded) help constrain the age models for their respective
cores during each iteration of stack construction. Similar to
the “errors-in-variables” regression, which is used to con-
struct the IntCal20 curve due to the uncertainty in both the ra-
diocarbon measurements and their calendar ages (Reimer et
al., 2020; Heaton et al., 2020b), BIGMACS calculates time-
dependent means and variances for benthic δ18O by perform-
ing Gaussian process regressions (Rasmussen and Williams,
2006) across MCMC age model samples. The resulting stack
variance is a combination of both age model uncertainty from
individual cores and the spread of benthic δ18O from every
core. This method requires fewer cores than previous stack-
ing methods (e.g., Ahn et al., 2017; Lisiecki and Stern, 2016)
and, thus, allows users to construct target stacks from a small
number of neighboring cores that share homogeneous δ18O
signals.

Section 2 provides a summary of some common tech-
niques used for radiocarbon dating, δ18O alignment, and
δ18O stack construction. Section 3 describes the statistical
methods used in BIGMACS, including an overview of the
Bayesian framework, the prior model that constrains sedi-
mentation rates, and the likelihood models for different proxy
types. We also describe the methods used to draw MCMC
age model samples and the regression technique employed
to construct continuous stacks from a small number of cores.
In Sect. 4, we present two example regional Atlantic stacks,
namely a deep northeast Atlantic (DNEA) stack and an inter-
mediate tropical west Atlantic (ITWA) stack. The two stacks
are composed of six and four cores, respectively, that are cho-
sen based on an evaluation of their water mass histories. In
Sect. 5, we compare a multiproxy age model, a δ18O-only
age model, and a radiocarbon-only age model for one addi-
tional core. We demonstrate that age model precision is in-
creased when using both radiocarbon ages and δ18O align-
ment. Finally, we discuss the potential future applications of
BIGMACS and the factors affecting its runtime.
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2 Background

2.1 Radiocarbon age models

Radiocarbon ages must be calibrated from 14C years to calen-
dar years with a calibration curve that accounts for the chang-
ing magnetic fields of the Sun and Earth, solar storms, and
variations in the terrestrial carbon cycle (Reimer et al., 2020;
Heaton et al., 2020a). The uncertainty in the calibrated age
is a combination of the calibration curve uncertainty, the ra-
diocarbon measurement uncertainty, the time-dependent lo-
cal reservoir age offset from the calibration curve (1R),
and the associated reservoir age uncertainty. Techniques to
calibrate radiocarbon ages have evolved from interpolation
techniques such as CALIB (Stuiver and Reimer, 1993) to
Bayesian calibration methods (e.g., OxCal by Ramsey, 1995;
bCal by Buck and Christen, 1999; MatCal by Lougheed and
Obrochta, 2016), which typically generate asymmetric, non-
parametric calendar age distributions due to slope changes in
the calibration curve.

Planktonic foraminiferal radiocarbon dates must be cor-
rected for the reservoir age of the surface ocean relative to
the atmosphere or calibrated with a curve that accounts for
the reservoir age of the surface ocean (e.g., the Marine20
curve; Heaton et al., 2020a). Previous studies have used dif-
ferent methods to estimate past reservoir ages, including us-
ing modern measurements from the Global Ocean Data Anal-
ysis Project (GLODAP; Key et al., 2004; Waelbroeck et al.,
2019) and the CALIB database (Reimer and Reimer, 2001)
for comparing stratigraphically aligned age models with ra-
diocarbon age models (Stern and Lisiecki, 2013; Skinner et
al., 2021), and modeled reservoir ages from a Large Scale
Geostrophic ocean general circulation model (LSG-OGCM;
Butzin et al., 2017, 2020; Langner and Mulitza, 2019; Heaton
et al., 2020a).

Constructing a sediment core age model, which estimates
sediment ages for all core depths, from a sequence of ra-
diocarbon ages requires assumptions or models of the core’s
evolving sedimentation rate between dated intervals. The me-
dian age model and age model uncertainty depend on the ra-
diocarbon calibration method, the applied sedimentation rate
constraints, and the outlier identification procedure (Chris-
ten, 1994; Bronk Ramsey, 2009; Christen and Peréz, 2009).
Multiple software packages have been published to construct
probabilistic radiocarbon age models that apply a variety of
statistical techniques (e.g., Bronk Ramsey, 1995, 2001; Ram-
say, 2008, 2013; Blaauw and Christen, 2005, 2011; Haslett
and Parnell, 2008; Blaauw, 2010; Lougheed and Obrochta,
2019).

OxCal (Bronk Ramsey, 1995) provides modeling routines
for multiple depositional environments; the routine known
as the P_sequence is commonly used for modeling marine
and lacustrine cores. P_sequence uses a Poisson process in
which the number of depositional events per unit depth is de-
termined by a tuneable, user-specified parameter which af-

fects the uncertainty in the age model. OxCal also includes
multiple options to identify outliers, including an agreement
index which measures the overlap between the posterior dis-
tribution of the age model and the radiocarbon likelihood at
depths where radiocarbon ages exist.

Bchron (Haslett and Parnell, 2008) constructs age–depth
models using a monotone Markov process and piecewise lin-
ear interpolation paths with random durations. Bchron re-
quires few user-specified parameter settings and posits less
prior knowledge on sedimentation rate constraints; thus, age
models constructed with Bchron often have larger age un-
certainties than other software packages, particularly for ra-
diocarbon records of low resolution (Blaauw and Christen,
2011). Bchron identifies two types of outliers based on the
shift required to satisfy the monotonicity constraint. Standard
outliers have a prior probability of 5 % and require a shift de-
fined a priori by a normal distribution, with variance equal to
double the radiocarbon analytical measurement error. Larger
outliers have a prior probability of 0.1 % and are excluded
from the age model construction process.

Bacon (Blaauw and Christen, 2011) separates the cores
into fixed segments and uses an autoregressive gamma pro-
cess to simulate sedimentation rates. The user specifies tune-
able priors for a beta distribution that controls the age model
autocorrelation and a gamma distribution that governs the
sedimentation rate variability. Radiocarbon ages are mod-
eled with a generalized Student’s t distribution (Christen and
Peréz, 2009) that scales the error associated with radiocarbon
measurements. The amount of scaling depends on two pa-
rameters which are set by default to assign a 70 % chance that
the reported error is underestimated by a factor between 1
and 2. Christen and Peréz (2009) explain that the choice of
these parameter values is a “practical guideline”, which they
estimated to reflect the state of radiocarbon data at the time.

Undatable (Lougheed and Obrochta, 2019) uses a Monte
Carlo sampling algorithm designed to emulate statistical
models of sedimentation rate variability with the goal of pro-
ducing quick runtimes. Users set two parameters, namely a
scaling parameter that scales age uncertainties at the mid-
points between radiocarbon ages and a bootstrapping per-
cent that provides a framework to address outlier radiocar-
bon ages. These parameters have large effects on the result-
ing age model, requiring the user to select appropriate val-
ues, e.g., according to recommendations in Lougheed and
Obrochta (2019), rather than relying on a prior model of sed-
imentation rate variability.

2.2 Benthic δ18O age models

In the calcite shells of foraminifera, the ratio of 18O to 16O
measured relative to a standard, denoted δ18O, is a proxy for
the global ice volume, local water temperature, and the local
δ18O of seawater, which often correlates with salinity. Due to
the relatively homogeneous temperature and salinity changes
in the deep ocean, previous studies have assumed benthic
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δ18O changes synchronously (Shackleton, 1967) and have
used the proxy as a global stratigraphic signal to construct
ocean sediment core age models (e.g., Pisias and Shackle-
ton, 1984; Lisiecki and Raymo, 2005). The most conserva-
tive technique for aligning records to a target is to assume
that large, easily identifiable features in the signals, such
as glacial terminations, occurred simultaneously, created tie
points between these features, and linearly interpolated be-
tween the tie points (e.g., Huybers and Wunsch, 2004). How-
ever, this linear interpolation method may misalign smaller-
scale features due to changes in sedimentation rates between
tie points.

Software packages have been published that automate the
alignment process and optimize the fit of the entire sig-
nal. Lisiecki and Lisiecki (2002) developed the deterministic
software package Match, which utilizes dynamic program-
ming to minimize a cost function based on sedimentation rate
changes and the sum of squares error misfit between signals.
Match was used to align 57 benthic δ18O records and con-
struct the global “LR04” Plio-Pleistocene stack (Lisiecki and
Raymo, 2005) and a 1.5 Myr multiproxy geomagnetic pale-
ointensity and δ18O stack (Channell et al., 2009).

The Bayesian package HMM-Match (Lin et al., 2014) per-
forms a point-based alignment using a hidden Markov model
and returns estimates of alignment uncertainty based on the
distribution of the MCMC age model samples. HMM-Match
considers the probability of every possible alignment, given
the fit to the alignment target, and the modeled sedimenta-
tion accumulation rate changes. The probability of a given
benthic δ18O residual to the target is modeled with a fixed
Gaussian distribution, based on the record’s δ18O residuals
and a mean shift from the target. Sedimentation rates are re-
alistically constrained, using a lognormal mixture distribu-
tion fit to normalized sedimentation rate estimates derived by
linearly interpolating between calibrated radiocarbon ages in
37 cores.

Heaton et al. (2013) present an age model construction
method which uses a Gaussian process regression to inter-
polate between benthic δ18O tie points. The method incorpo-
rates uncertainty from the target age model, tie point iden-
tification, and interpolation between tie points and was used
to construct chronologies for records incorporated into the
IntCal13 and IntCal20 curve (Reimer et al., 2013, 2020).
Heaton et al. (2013) argue against using a deterministic auto-
mated alignment process (e.g., Lisiecki and Lisiecki, 2002),
due to a lack of uncertainty estimates and concerns about
aligning across different proxy types, which may differ in
sensitivity to climate responses. We assert that using BIG-
MACS to align across a set of sediment cores with homo-
geneous signals of the same proxy (such as benthic δ18O in
neighboring cores) addresses these concerns. BIGMACS for-
mally incorporates multiple sources of age uncertainty to cre-
ate probabilistic alignments that are both more informative
and less subjective than tie point identification.

Diachronous benthic δ18O signals are an additional source
of uncertainty in benthic δ18O-aligned age models. Previous
studies have identified temporal offsets up to 4 kyr between
δ18O records during terminations (Skinner and Shackleton,
2005; Lisiecki and Raymo, 2009; Stern and Lisiecki, 2014).
Because stratigraphic alignment relies on the assumption that
benthic δ18O between the input and the target core varies
synchronously, these offsets can cause age errors in δ18O-
aligned age models. Thus, without a direct dating proxy (ra-
diocarbon, tephra, etc.), δ18O stratigraphic alignment is an
inadequate tool to study the sequence of climate responses at
different locations during glacial terminations (e.g., Khider
et al., 2017) or millennial-scale events. Causes of offsets in
the timing of benthic δ18O changes include asynchronous
surface signals, changes in deep-ocean water mass geome-
try, and/or different deep-water transit times (Gebbie, 2012).
To mitigate the impacts of diachronous δ18O changes, ben-
thic δ18O alignment should ideally be restricted to cores
which have experienced a similar history of deep-water mass
change. We present one method to identify cores with syn-
chronous benthic δ18O signals in Sect. 4.1.

2.3 Benthic δ18O stacks

Benthic δ18O stacks are used as a common framework by
which new paleoceanographic measurements are compared
and are often used as targets during stratigraphic alignment
(e.g., Imbrie et al., 1984; Lisiecki and Raymo, 2005; Chan-
nell et al., 2009). Stacks require that the individual δ18O
records are first aligned to have comparable relative or ab-
solute ages so that each point in the stack represents a snap-
shot of the δ18O values from multiple locations at the same
time. Inaccuracy in relative age estimates between cores will
typically decrease the signal-to-noise ratio of the stacked sig-
nal, but the over-alignment of noise in the signals could ar-
tificially enhance the variability that was not globally syn-
chronous. The risk of over-alignment can be reduced by
placing constraints on sedimentation rate variability (e.g.,
Lisiecki and Lisiecki, 2002; Lin et al., 2014).

To create a stack using software that performs pairwise
alignments of cores, all δ18O records to be included in the
stack are aligned to a single target core, which is typically a
δ18O record that spans the entire length of the stack with high
resolution, low noise, and no apparent hiatuses. Any prob-
lems in the signal of the target core could propagate to cre-
ate errors in core alignments and the average δ18O value of
the stack. In the LR04 global stack, the authors checked for
such errors by performing pairwise alignments to multiple
target cores and comparing the stacks (Lisiecki and Raymo,
2005); however, this is a laborious process and requires sub-
jective evaluation. Because δ18O variability is not globally
synchronous (Skinner and Shackleton, 2005; Labeyrie et al.,
2005; Waelbroeck et al., 2011; Stern and Lisiecki, 2014;
Lund et al., 2015), Lisiecki and Stern (2016) created regional
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stacks and used a different alignment target for Atlantic ver-
sus Pacific cores.

The sensitivity of stacks to the choice of a single alignment
target can be mitigated by aligning to a target that incorpo-
rates information from all cores in the stack. HMM-Stack
(Ahn et al., 2017), which models the stack using a profile
called hidden Markov model (HMM), begins with an initial
alignment to a user-specified target and then aligns all cores
to an iteratively updated stack, which is optimized to fit all
cores in the stack. Here we present a new stack construc-
tion algorithm which offers several improvements to HMM-
Stack, including the opportunity to simultaneously incorpo-
rate age constraints from all cores during the stacking pro-
cess.

3 Methods

3.1 Bayesian framework

BIGMACS probabilistically constructs realistic age models
and stacks by combining information from age proxies and
stratigraphic alignment with the prior model of sedimenta-
tion rate variability from Lin et al. (2014). In Bayesian statis-
tics, the age information from proxy data are termed “likeli-
hoods”. Specifically, likelihoods return the probability of ob-
serving the age proxies, given the proposed age model and
the set of model parameters. Here we refer to likelihoods
as the emission model. Simply stated, the emission model
returns the probabilities of residuals (or misfit) between ob-
served data and estimated values from a particular age model.
The emission model for each proxy (radiocarbon, δ18O, and
additional age information) is discussed in Sect. 3.3, and de-
tailed formulations are given in the Supplement (Sects. S2
and S4.1).

The prior model represents our a priori understanding of
the sedimentation rate variability and is termed the transition
model. The transition model calculates the probability of a
simulated sequence of sedimentation rates, independent of
the proxy data, as described in Sect. 3.2 and the Supplement
(Sects. S1 and S4.1). The transition model probabilities for
a particular depth in the core are calculated as a function of
both the sedimentation rate change and normalized sedimen-
tation rate (i.e., sedimentation rate expressed as a ratio the
core’s estimated mean sedimentation rate), given model pa-
rameters which are derived from the same sedimentation rate
data, as seen in Lin et al. (2014).

The posterior distribution is calculated using Bayes’ rule
and is proportional to the product of transition and emis-
sion models. The posterior distribution of a multiproxy age
model includes likelihoods returned by the radiocarbon emis-
sion model, the benthic δ18O emission model, and the addi-
tional age emission model. Because there is no closed form
for this posterior distribution (i.e., it is not known), we em-
ploy a sampling approximation. To improve the computa-
tional efficiency, we sample the posterior using a combina-

tion of the particle smoothing (Doucet et al., 2001; Klaas et
al., 2006) and Metropolis–Hastings algorithms (Metropolis
et al., 1953; Hastings, 1970; Martino et al., 2015; Sect. 3.4).

In Bayesian statistics, the parameter of interest (in this
case, the age of sediment at a given depth) is represented by
the posterior distribution rather than a single value. There-
fore, a Bayesian 95 % credible interval spans 95 % of the
central portion of the posterior distribution. This is compared
to a frequentist 95 % confidence interval, which posits that
there is a 95 % chance that the limits are correct and encap-
sulate the true value. Here the 95 % credible intervals and the
median age model are defined by the distribution of Monte
Carlo samples drawn from the posterior distribution.

The stacking algorithm is completed in two steps. First,
there is an age model construction step in which a set of
δ18O records are aligned in parallel to a target stack (as de-
scribed above), and second, there is a stack construction step
in which a nonparametric regression is performed across the
δ18O data on the set of aligned cores. These two steps are
performed iteratively until convergence. The alignment tar-
get during age model construction is the stack from the pre-
vious iteration; for the first iteration, an initial target stack is
provided by the user. The stack construction process is de-
scribed in more detail in Sects. 3.5 and S5.

3.2 Transition model

For a given age, the transition model calculates the probabil-
ity of the normalized sedimentation rate and the change in
sedimentation rate from the previous depth (for a mathemat-
ical description, see Sects. S1 and S4.1). In its default mode,
BIGMACS uses the transmission model developed for the
HMM-Match software by Lin et al. (2014); this study calcu-
lated the probabilities of normalized sedimentation rates with
an empirically derived prior distribution fit to the observed
sedimentation rates in 37 radiocarbon-dated cores. Here we
summarize the methods of Lin et al. (2014) to construct the
prior; however, for more information, see the original publi-
cation.

Radiocarbon ages were calibrated with the Marine09 cal-
ibration curve (Reimer et al., 2009), and sedimentation rates
were assumed to be constant between radiocarbon ages. To
identify outliers and age reversals in a statistically robust
manner, a Bchron age model (Haslett and Parnell, 2008) was
constructed for each core. Sedimentation rates were calcu-
lated by interpolating between the modes of the Bchron ages
at the depths of the radiocarbon measurements. The resulting
sedimentation rates were only included in the final compila-
tion if the following criteria were met: (1) the core was south
of 40◦ N if in the Atlantic (due to high-latitude North Atlantic
reservoir ages; Stern and Lisiecki, 2013); (2) the core had an
average sedimentation rate of at least 8 cm kyr−1; and (3) ad-
jacent pairs of radiocarbon dates were between 0.5 and 4 kyr
apart. After the criteria were met, the compilation totaled
544 kyr of sediment from 37 ocean sediment cores (Fig. 1;
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Table S1 in the Supplement). The original study interpolated
sedimentation rates every 1 kyr; however, we interpolate by
1 cm depth increments and fit a new lognormal mixture dis-
tribution (Fig. 2). Interpolating sedimentation rates by depth
correctly represents the frequency at which higher sedimen-
tation rates are observed in the sediment archive, whereas
interpolating by time over-represents the frequency of lower
sedimentation rates (which deposit less sediment per unit of
time).

Changes in sedimentation rates depend on both the cur-
rent and previous sedimentation rate and thus the previous
two depths. However, because storing all sampled combina-
tions of three consecutive depths is intractable for compu-
tation (O(N3), where N is the number of age model sam-
ples), normalized sedimentation rates are classified into three
states, namely “expansion”, “contraction”, and “steady”. Ex-
pansion specifies a below-average sedimentation rate which
effectively stretches the local portion of the record. Contrac-
tion specifies a higher sedimentation rate than the average,
which requires “squeezing” the record during alignment to
the target. If the local sedimentation rate is within 8 % of the
core’s average, then the state is classified as steady. In BIG-
MACS, the probabilities of transitioning from one state to
the other states are optimized via the Baum–Welch expecta-
tion maximization algorithm (Rabiner, 1989; Durbin et al.,
1998). However, users can also choose to keep these proba-
bilities fixed, using the sedimentation rate data from Lin et
al. (2014).

BIGMACS allows a sedimentation rate change at every
depth where there are proxy data (δ18O, 14C, or additional
age information). However, in the case of low-resolution
records, BIGMACS imposes a minimum age model reso-
lution, which forces a sedimentation rate calculation every
15 cm. This depth interval was selected based on the depth
spacing between the radiocarbon data used for the prior
(Lin et al., 2014). Furthermore, BIGMACS normalizes sed-
imentation rates relative to a time-dependent average sedi-
mentation rate calculated using the Nadaraya–Watson ker-
nel (Langrené and Warin, 2019). This accounts for longer-
scale changes in the depositional environment, which can be
associated with transitions between glacial and interglacial
oceanographic conditions.

3.3 Emission model

BIGMACS uses different emission models for radiocarbon,
δ18O, and additional age information (see S2 and S4.1 for
more information). For radiocarbon and δ18O data, the emis-
sion model is specified via generalized Student’s t distribu-
tions (Christen and Peréz, 2009).

For radiocarbon data, the emission model returns the like-
lihood of observing age offsets from measured radiocarbon
ages and depends on the radiocarbon measurement, calibra-
tion curve, and the reservoir age. The emission model also
depends on two fixed parameters that control the scaling of

the standard deviation. While Christen and Peréz (2009) and
Blaauw and Christen (2011) set the fixed parameters of α
and β to 3 and 4, we choose values of 10 and 11, which pro-
duces a distribution that is more peaked and more similar to
a Gaussian distribution. In other words, our Student’s t dis-
tribution has smaller tails than the distribution from Christen
and Peréz (2009), causing age model samples to pass closer
to the mean radiocarbon age. This effectively improves the
agreement between the age model and the radiocarbon ob-
servations.

The δ18O emission model returns the likelihood of ob-
serving different magnitudes of δ18O offsets from the align-
ment target and depends on the target stack’s time-dependent
mean and variance. During alignment, Gaussian stacks are
translated into a generalized Student’s t distribution, with the
fixed parameters of α and β set to three and four, respec-
tively, based on observed δ18O residuals for the ITWA and
DNEA stacks (Fig. S1 in the Supplement), to address poten-
tial δ18O outliers. The δ18O emission model also includes
core-specific scale and shift parameters which are learned
across alignment iterations with the Baum–Welch expecta-
tion maximization algorithm (Rabiner, 1989; Durbin et al.,
1998). These parameters account for vital effects among dif-
ferent benthic foraminifera species (e.g., Marchitto et al.,
2014) and different local water mass properties at different
locations (e.g., temperature and δ18O of seawater). The fi-
nal mean and amplitude of the stack will reflect a resolution-
weighted average of the stack’s component cores; thus, the
average shift and scale parameters of the stacked cores will
be close to zero and one (when weighted by the resolution of
δ18O data in each core). Optionally, the user can choose not
to shift or scale individual cores during stack construction;
with this setting, the variance in the stack would reflect the
total δ18O variance across cores.

The emission model for the additional age information
(e.g., stratigraphic tie points or dated tephra layers) can ei-
ther be specified as a uniform or Gaussian distribution with
a mean and uncertainty specified by the user. Specifying the
model as a uniform distribution will assign an equal proba-
bility for the age model to pass anywhere through the given
uncertainty range. A Gaussian distribution will assign higher
probabilities to the age model samples that pass close to the
mean of the additional age but allows for potentially larger
residuals due to the tails of the distribution assigning non-
zero probabilities.

3.4 Record alignment

This section describes the sampling strategy employed dur-
ing age model construction. Formulations for the sampling
algorithm are provided in the Supplement (Sect. S4.2).

Because the posterior is not given as a distribution in
a closed form, age model samples are drawn using a
Markov chain Monte Carlo (MCMC) algorithm (Peters,
2008; Martino et al., 2015). To increase the computational

Clim. Past, 19, 1993–2012, 2023 https://doi.org/10.5194/cp-19-1993-2023



T. Lee et al.: Bayesian age models and stacks: combining age inferences from radiocarbon 1999

Figure 1. Locations of cores from Lin et al. (2014) that are used to construct the mixed lognormal distribution.

Figure 2. The lognormal mixture fit to the observed sedimentation
rates from 37 cores compiled in Lin et al. (2014). Sedimentation
rates are interpolated to 1 cm increments.

efficiency, BIGMACS first initializes each sample using par-
ticle smoothing (Doucet et al., 2001; Klaas et al., 2006) and
then refines the initialized samples with the MCMC algo-
rithm. Particle smoothing can be understood as a continu-
ous version of a hidden Markov model (HMM; Durbin et
al., 1998). Whereas the HMM considers all possible hidden
states because they are finite, the particle smoothing con-
siders only a finite number of proposals because there are
infinitely many possible states. In BIGMACS, the hidden
states, or “particles”, represent possible ages for each depth
in the core. Particle smoothing consists of a forward algo-
rithm and a backward algorithm. The forward algorithm iter-
atively samples and re-weights particles, while the backward
algorithm samples from the particles one by one in reverse,
based on their assigned weights. BIGMACS first runs par-
ticle smoothing with the state–space model defined by the
transition and emission models.

BIGMACS then runs the Metropolis–Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970; Martino et al., 2015)
to sample the proposed ages with starting points provided by
the particle smoothing algorithm. The Metropolis–Hastings
algorithm updates the samples block-wise, meaning that hid-
den states in the same sedimentation state category (expan-
sion, contraction, and steady) are simultaneously treated in

each iteration. Initialized age samples from particle smooth-
ing allow the use of shorter chains to reach the burn-in phase.

Once the set of sampled ages is obtained, BIGMACS up-
dates the parameters of the transition and emission models
via the expectation maximization (EM) algorithm (Dempster
et al., 1977) and then iterates the process with the updated
transition and emission models until convergence. If a stack
is to be constructed, then the final age samples are inputs to
the stack construction algorithm.

3.5 Stack construction algorithm

Here we describe the Gaussian process regression used to
construct a stack construction. A formal mathematical de-
scription is presented in the Supplement (Sect. S5). During
stack construction, BIGMACS first aligns the records to an
initial δ18O stack by drawing age model samples from the
posterior and then updates the stack based on the new align-
ments. The updated stack serves as the target for the next
alignment iteration, and the whole process is repeated until
convergence.

A benthic δ18O stack serves as a target for aligning mul-
tiple records simultaneously. Because age models are con-
tinuous, we design the stack construction algorithm to also
be continuous, such that a mean and standard deviation can
be defined explicitly for any age. Previous stack construc-
tion methods (Lisiecki and Stern, 2016; Ahn et al., 2017)
involved binning δ18O data and were thus limited by the vol-
ume of data in each bin. In contrast, the continuous approach
of BIGMACS allows the creation of a stack using a smaller
number of records and/or with uneven data resolution over
time.

BIGMACS constructs a stack using Gaussian process re-
gression (Rasmussen and Williams, 2006), which is a con-
tinuous and nonparametric kernel-based method. In contrast
to the well-known polynomial regression, a distinctive fea-
ture of Gaussian process regression is that its variance func-
tion is permitted to change along the inputs (i.e., the x axis).
BIGMACS uses the Ornstein–Uhlenbeck (OU; Rasmussen
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and Williams, 2006) kernel, which we find allows enough
variance to resolve millennial-scale events (e.g., Sects. 4.3
and 6.1.2). BIGMACS trains the OU kernel’s hyperparame-
ters, which adjust its amplitude and width, across iterations
based on the data used to make the stack.

To allow the stack to reflect changes in the vari-
ance of δ18O as a function of time, BIGMACS follows
a heteroscedastic Gaussian process regression (Lee and
Lawrence, 2019) instead of a homoscedastic one. A ho-
moscedastic Gaussian process assumes that the residuals of
the data from the regression are constant but nevertheless
adjusts its variance function to the proximity of the data
points. Thus, its variance function is narrow when data points
are dense and wide where the data are less dense. A het-
eroscedastic Gaussian process model (used by BIGMACS)
has a variance function that changes in response to the spread
of the data points along inputs, which allows the variance of
the regression to be sensitive to the spread of responses and
to changes in variance associated with data density from the
homoscedastic Gaussian process model.

Gaussian process regressions have two major drawbacks,
namely time complexity and outlier sensitivity. A matrix in-
version, which has a time complexity equal to size of the
data set cubed, is required to estimate hyperparameters for
the kernel and to compute the posterior predictions. Thus,
the model becomes intractable as the size of data set in-
creases. To address this, BIGMACS adopts the variational
free-energy approximation (Titsias, 2009) to make the time
complexity linear to the size of data set. Outliers are identi-
fied by the Gaussian modeling of residuals. During stack con-
struction, BIGMACS disregards outliers before performing
the regression. The following two steps are iterated: (1) ker-
nel hyperparameters are estimated after disregarding outliers,
and (2) outliers are classified based on the stack constructed
from the estimated kernel hyperparameters.

After BIGMACS obtains a Gaussian process regression
using the δ18O data from every core on each sample age
model, the software averages the set of regressions using mo-
ment matching (Murphy, 2012) to produce a single Gaussian
model stack in a closed form. Detailed formulations for the
stack construction algorithm can be found in the Supplement
(Sect. S5).

4 Results

To demonstrate the performance of BIGMACS with differing
volumes and quality of data, we present two example stacks,
namely a deep northeast Atlantic (DNEA) stack and an in-
termediate tropical west Atlantic (ITWA) stack. The DNEA
stack is constructed using high-resolution data with relatively
little noise; it consists of 2112 δ18O data points and 150 ra-
diocarbon ages from six cores that range in depth between
2273 and 3166 m (two from the western Iberian Margin and
three off the west coast of Africa). The ITWA stack is con-

Figure 3. Cores used to construct the DNEA stack (circles) and the
ITWA stack (squares). A star indicates the core for which we use
the DNEA stack as the alignment target. Dotted lines indicate the
east and west transects plotted in Fig. 4.

structed from 1066 δ18O data points and 51 radiocarbon ages
across four cores from the Caribbean to the northern coast
of Brazil that range in depth from 1100 and 1299 m; these
cores contain a relatively large number of δ18O outliers. Core
locations for both stacks are plotted in Fig. 3. The DNEA
stack spans a full glacial cycle, while the ITWA stack ex-
tends to ∼ 55 ka. We used the deep North Atlantic (DNA)
and intermediate North Atlantic (INA) stacks from Lisiecki
and Stern (2016) as initial targets for the DNEA and ITWA
stacks, respectively. Default settings were used to construct
both stacks. Additionally, we construct radiocarbon-only and
δ18O-only age models for each input core to compare with
the stack’s multiproxy age models.

4.1 Core selection and assessing homogeneity

When choosing alignment targets or a population of cores to
construct a stack, we suggest that researchers evaluate core
locations with respect to water mass reconstructions and di-
rectly compare the features of the δ18O time series to eval-
uate whether the algorithm’s assumption of homogeneous
δ18O variability is reasonable. Before constructing a regional
stack, the user should select cores evaluated to have homoge-
neous δ18O signals or similar water mass histories. Figure 4
shows model estimates of the fraction of southern component
water (SCW) in two Atlantic transects, during the present
day (colored contours; Gebbie and Huybers, 2010) and at the
Last Glacial Maximum (LGM; solid black line; Oppo et al.,
2018). Here, SCW refers to water that formed in the Antarc-
tic and sub-Antarctic regions defined by Gebbie and Huy-
bers (2010).

Core sites in the DNEA stack are just below the core of
modern northern component water (NCW; Fig. 4) and are
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Figure 4. (a) Western and (b) eastern Atlantic transects of water mass composition. Transect paths are shown as dotted lines in Fig. 3.
Colored contours show modern southern component water percentages (Gebbie and Huybers, 2010) along each transect, and the solid black
lines show the 50 % contour during the LGM (Oppo et al., 2018). Solid circles represent cores in the DNEA stack, and squares are cores
in the ITWA stack. Histograms of modern (red) and LGM (black) southern component water percentages for cores in the (c) ITWA and
(d) DNEA stacks.

bathed today by 23 %–26 % SCW and 74,%–77 % NCW (Ta-
ble S1). Glacial water mass reconstructions suggest that wa-
ter mass composition at these sites was very similar during
the LGM (Gebbie and Huybers, 2010; Oppo et al., 2018).
A relatively constant water mass composition during the
deglaciation at these sites is also suggested by neodymium
isotope compilations (Howe et al., 2016; Pöppelmeier et al.,
2020). Collectively, these studies support our assumption that
the benthic δ18O signals of these cores changed homoge-
neously (i.e., nearly synchronously) during termination 1.

The cores compiled for the ITWA stack are located near
the boundary between Antarctic Intermediate Water (AAIW)
and North Atlantic Deep Water (NADW), yielding more vari-
ability in their modeled water mass percentages. SCW per-
centages for cores in the ITWA stack range from 31 % to
48 % for the modern and 20 % to 28 % for the LGM. Dur-
ing the deglaciation, AAIW experienced expansion in this re-
gion, as demonstrated by a decrease in nutrients in the phos-
phate maximum zone (Oppo et al., 2018). Thus, the cores
in the ITWA stack may have experienced moderately hetero-
geneous water mass changes during termination 1. Despite

moderate differences between these sites, BIGMACS is able
to align these records and generate a stack that is representa-
tive of their δ18O variability.

4.2 Age proxies

To calibrate radiocarbon ages to calendar years, we use the
Marine20 calibration curve (Heaton et al., 2020a), a constant
reservoir age offset (1R) equal to zero, and a reservoir age
standard deviation of 200 years (although it should be noted
that future users can find potential reservoir age offsets using
the CALIB database; Reimer and Reimer, 2001). We make
no corrections for the different planktonic species used to
measure radiocarbon in each core (see Table 1 for data ci-
tations).

For the longest core in each stack, we provide additional
age information (plus signs in Figs. 5a and 6a) beyond the
last radiocarbon date. Ocean sediment core MD95-2042 in
the DNEA stack is constrained with ages from Lisiecki and
Stern (2016) and identified based on an alignment of the
alkenone-based sea surface temperature (SST) record (Pailler
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Table 1. Core locations and data citations.

Core Lat ◦ N Long ◦ E Depth 14C citation δ18O citation
m

DNEA

MD95-2042 37.80 349.83 3146 Shackleton et al. (2004), Bard et al. (1989, 2004, 2013) Shackleton et al. (2000)
MD99-2334 37.80 339.83 3166 Skinner et al. (2003, 2014, 2021), Skinner and Shackleton (2004) Skinner and Shackleton (2005)
SU81-18 37.77 349.82 3135 Vogelsang et al. (2001) Waelbroeck et al. (2001)
GeoB7920-2 20.75 341.42 2278 Collins et al. (2011) Tjallingii et al. (2008)
ODP658C 20.75 341.42 2273 deMenocal et al. (2000) Knaack and Sarnthein (2005)
GeoB9508-5 14.5 342.05 2384 Mulitza et al. (2008) Mulitza et al. (2008)

ITWA

M35003-4 12.09 298.76 1299 Hüls and Zahn (2000) Hüls and Zahn (2000)
KNR197-3-53GGC 8.23 306.77 1272 Oppo et al. (2018) Oppo et al. (2018)
KNR197-3-9GGC 7.93 306.42 1100 Oppo et al. (2018) Oppo et al. (2018)
GeoB16206-1 −1.58 316.98 1367 Porthilo-Ramos et al. (2017) Voigt et al. (2017)

Example

GIK13289-2 18.07 341.99 2485 Sarnthein et al. (1994) Sarnthein et al. (1994)

and Bard, 2002) to a synthetic Greenland δ18O record on a
speleothem age model (Barker et al., 2011; Barker and Diz,
2014). Ocean sediment core M35003-4 in the ITWA stack
is constrained by an age estimate of 55.4 ka at 9.5 m depth,
based on the alignment by Hüls and Zahn (2000) of vari-
ations in N. dutertrei and CaCO3 to Dansgaard–Oeschger
events in the Greenland Ice Sheet Project (GISP2) δ18O
record (Grootes and Stuiver, 1997). This additional age in-
formation is modeled using Gaussian distributions, with the
standard deviations reported in Lisiecki and Stern (2016) for
MD95-2042 and a standard deviation of 1 kyr for M35003-4.

4.3 Stack results

Figure 7 compares the DNEA and ITWA stacks. The ITWA
stack is, on average, 0.56 ‰ lighter than the DNEA stack,
due to the differences in the deep-water properties at the
core sites. The ITWA core sites which span 1100–1299 m
are bathed by warmer and less saline waters than the DNEA
cores from 2273–3166 m. The time-dependent standard de-
viation in each stack (defined by the distribution of Gaussian
process regressions) reflects the variance in the aligned δ18O
records. Between 0 and 60 ka, the average standard devia-
tion is 0.13 ‰ in the DNEA stack and 0.2 ‰ in the ITWA
stack. In particular, the ITWA stack has a larger standard de-
viation during the termination, which reflects anomalously
high δ18O values during the deglaciation in some of the
ITWA cores. For example, many of the records in the ITWA
stack include several anomalously high δ18O values during
the deglaciation; Oppo et al. (2018) attribute these outliers to
slope instabilities at the Demerara Rise. Because BIGMACS
models a Gaussian distribution for δ18O residuals, the out-
liers produce large, symmetric confidence intervals about the
mean.

The standard deviations of the two BIGMACS stacks
are both smaller than the DNA and INA regional stacks

from Lisiecki and Stern (2016), which average 0.24 ‰ and
0.36 ‰, respectively. This likely stems from greater ben-
thic δ18O spatial variability within the larger regions defined
in Lisiecki and Stern (2016) and the application of (small)
record-specific shift and scale adjustments to the DNEA and
ITWA cores during stacking with BIGMACS.

The Gaussian process regression also creates smoother
stacks than previous binning methods. Figure S3 compares
the new DNEA and ITWA stacks with the deep North At-
lantic (DNA) and intermediate North Atlantic (INA) regional
stacks from Lisiecki and Stern (2016). The Gaussian process
regression creates estimates of δ18O for each point in time
by incorporating information from neighboring data points,
which increases the stack’s autocorrelation when compared
to the binning procedure used in Lisiecki and Stern (2016).
Given the large volume of the deep ocean, we expect changes
in benthic δ18O to respond gradually; hence, smoothing may
actually increase the signal-to-noise ratio of “local” stacks
with less densely sampled δ18O measurements and relatively
few cores. Although there is a risk that the Gaussian pro-
cess regression may over-smooth the data, our DNEA stack
still resolves millennial-scale events. For example, Fig. 5a
shows peaks at 24, 29, and 38 kyr corresponding to approx-
imate ages of Heinrich events H2 to H4 (Hemming, 2004),
which is similar to the DNA stack (Fig. S3).

To evaluate the multiproxy age models of the ITWA and
DNEA stacks, we compare them with radiocarbon-only and
δ18O-only age models for each core (with the inclusion of the
same additional ages in cores MD95-2042 and M35003-4).
We find good agreement between the median radiocarbon-
only and multiproxy age models for each core (panels b and c
in Figs. 5 and 6), indicating that the δ18O alignments did not
cause the multiproxy age models to stray significantly from
the radiocarbon age constraints. Furthermore, the multiproxy
age models have 95 % credible interval widths that are on
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Figure 5. The deep northeast Atlantic (DNEA) stack. (a) The solid black line and shaded region represents the median stack value and 2σ
upper and lower bounds. Filled circles are the shifted and scaled δ18O data points from each core on the multiproxy age models. Filled
triangles mark the radiocarbon ages from the respective cores. Purple plus signs are the tie points for MD95-2042 taken from Lisiecki and
Stern (2016). (b) 14C-only age models vs. the multiproxy age models for each core in the DNEA stack. Each core plots along the dashed
black 1 : 1 line. (c) The difference between the multiproxy age models and the 14C age models for each core in the DNEA stack. Colored
shading shows the joint uncertainty distribution for 14C and multiproxy age estimates for each core.

average 262 years smaller than the radiocarbon age models
and 1.92 kyr smaller than δ18O-only age models (Fig. S2).

The good agreement between the radiocarbon and mul-
tiproxy median age models also supports our assertion that
the input cores for each stack share homogeneous δ18O sig-
nals. If the δ18O records changed asynchronously, the align-
ments (which rely on the assumption of synchronous δ18O
change) would likely cause differences between the median
age estimates of the radiocarbon-only and multiproxy age
models. This assertion of a synchronous δ18O change is also
supported by the relatively small shift and scale parameters
learned for each core during the stacking procedure, indicat-
ing similar δ18O values across all core sites (Table S1).

5 GIK13289-2 age model comparison

To further evaluate the differences between single proxy
and multiproxy age models, we compare the following three
age models for GIK13289-2 constructed by BIGMACS: a
radiocarbon-only age model, a δ18O-only age model, and a
multiproxy age model constrained by both δ18O and radio-
carbon data (Fig. 8). The alignment target for the multiproxy
and δ18O-only age models is the DNEA stack. While the ra-
diocarbon and multiproxy age models have direct age con-
straints via radiocarbon ages, the δ18O-only age model pro-
vides only relative age constraints. Furthermore, the uncer-
tainty for the δ18O-only age model reflects only the “align-
ment” uncertainty. The absolute age uncertainty would be a
combination of the alignment uncertainty and the absolute
age uncertainty from the DNEA stack.
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Figure 6. The intermediate tropical west Atlantic (ITWA) stack. (a) The solid black line and shaded region represents the median stack value
and 2σ upper and lower bounds. Filled circles are the shifted and scaled δ18O data points from each core on the multiproxy age models. Filled
triangles mark radiocarbon ages from the respective cores. The green plus sign is the tie point for M35003-4 from Hüls and Zahn (2000).
(b) 14C-only age models vs. the multiproxy age models for each core in the ITWA stack. Each core plots along the dashed black 1 : 1 line.
(c) The difference between the multiproxy age models and the 14C age models for each core. Colored shading shows the joint uncertainty
distribution for 14C and multiproxy age estimates for each core.

Figure 7. Comparison of the DNEA and ITWA stacks. Median val-
ues are displayed as the thick solid line, and shading marks plus and
minus 2 standard deviations.

The multiproxy and radiocarbon-only age models show
similar median ages. However, the radiocarbon age model
has larger confidence intervals between core depths of
1.7 and 2.2 m, where there is a ∼ 10 kyr gap between ra-
diocarbon measurements. The multiproxy age model is con-
strained by five δ18O data points between these depths, which
serve to decrease the age uncertainty. At a depth of 2 m, the
95 % credible interval width for the multiproxy age model
(5.0 kyr) is 3.8 kyr smaller than the 95 % credible interval
width for the radiocarbon age model (8.8 kyr).

The δ18O-only age model for GIK13289-2 is based only
on δ18O alignment and has considerably larger uncertainty
than the multiproxy age model, with a 95 % credible in-
terval width as much as 6.6 kyr larger. Furthermore, there
is disagreement between the median age models during the
Holocene, with a maximum age difference of 2.2 kyr. The ap-
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Figure 8. Comparison of a δ18O-only age model, radiocarbon-only
age model, and multiproxy age model for GIK13289-2. (a) Age
vs. depth plot, where solid black lines represent calibrated radio-
carbon ages. (b) The shifted and scaled δ18O for the δ18O-only
age model and multiproxy age model aligned to the DNEA stack.
(c) The 95 % credible interval widths for each age model. Black
triangles indicate the depths of the radiocarbon ages. Note that
the radiocarbon-only age model does not extend beyond the top
14C date of ∼ 10 ka, and we do not display the 14C age model in
panel (b).

parent error in median age estimates from δ18O-only align-
ments likely results from near-constant δ18O values during
the Holocene, which allows for more possible alignments
that fit the target and a less precise age model. The 95 %
credible interval for the δ18O age model spans both the multi-
proxy and radiocarbon median ages, suggesting realistic un-
certainty estimates for the alignment.

In Fig. 9, the purple shading of the δ18O-based age model
represents the age model sample density. The non-Gaussian
nature of the δ18O-based age estimates is evident at the end of
the age model, where the median age and darker shading are

located near the upper end of the 95 % credible interval. The
multiproxy age model samples at this depth (which are con-
strained by the final radiocarbon age) agree with the dense
cluster of δ18O-only age model samples. Frameworks have
been developed to use the distribution of age model sam-
ples, such as those provided by BIGMACS, to estimate the
probability of timing differences between climate responses
recorded in multiple cores (Parnell et al., 2008; Khider et al.,
2017).

6 Discussion

6.1 Applications

In this section, we discuss the advantages and limitations
of the BIGMACS software compared to other available age
modeling and stacking techniques and provide practical ad-
vice on the types of applications most suitable for BIG-
MACS.

6.1.1 Applicability of the transition model

Most software packages which generate probabilistic age
models (e.g., Bacon, OxCal, and Undatable) use models
of sedimentation rate variability with tuneable parameters,
which affect the extent of the age uncertainty between age
proxies measured at discrete depths (radiocarbon, tephra lay-
ers, tie points, etc.). During benthic δ18O alignment, sed-
imentation rate constraints also limit the degree to which
the input record is stretched or squeezed to match the tar-
get record. In most cases, users have no specific information
on which values for sedimentation rate parameters are most
appropriate for the specific core analyzed. Thus, parameter
tuning usually increases the subjectivity and labor involved
to create an age model. Therefore, BIGMACS is designed to
be used without parameter tuning. Because BIGMACS uses
a prior that is constructed from a global compilation of ma-
rine sediment cores representing different environments (Lin
et al., 2014; see Fig. 1 and Table S1), the age uncertainty re-
turned by BIGMACS is physically realistic for most marine
cores and less subjective than using tuned parameters in other
software packages.

The current version of BIGMACS uses the same prior
that was used in HMM-Match (Lin et al., 2014), based on
a global compilation of cores. BIGMACS can also adjust its
state change probabilities based on information learned from
the particular cores being aligned (see Sect. S4.3). However,
BIGMACS has the flexibility to use other priors that may
focus on a particular oceanographic setting or are based on
larger compilations of sedimentation rate variability that may
be created. For example, Mulitza et al. (2022) present a com-
pilation of 6153 radiocarbon ages from 598 ocean sediment
cores. This is potentially enough data to construct region-
ally specific priors if trends in the behaviors of sedimentation
rates are observed in different environments.
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Figure 9. (a) Sample density of the δ18O-only age model for GIK13289-2. The median age model and 95 % credible bands are plotted as
solid purple lines. The multiproxy median age model and 95 % confidence bands are also plotted (solid blue lines) along with the calibrated
radiocarbon ages (horizontal black lines). (b) Histogram of δ18O-only age samples (purple) and multiproxy age model samples (blue) for
the last depth in the δ18O-only age model (approximately 2 m). Vertical lines mark the 95 % credible intervals at the same depth for both age
models.

In addition to larger and/or more regionally focused com-
pilations, future work includes plans to address several lim-
itations of the method used for the Lin et al. (2014) compi-
lation. Lin et al. (2014) used Bchron age models to identify
outliers and reversals and calculated sedimentation rates by
interpolating between the mode of the Bchron age model for
each calibrated 14C date rather than the full probability distri-
bution (see Sect. S1 for a more thorough description). Addi-
tionally, Lin et al. (2014) used radiocarbon ages that were
calibrated with the Marine09 curve (Reimer et al., 2009),
with 1R = 0 for reservoir ages. Although we expect this to
introduce relatively little bias to the sedimentation rate pri-
ors, future priors should use the updated Marine20 curve and
estimates of marine reservoir ages (Heaton et al., 2020a).

If users find that the default transition model does not al-
low enough sedimentation rate variability to fit the age prox-
ies for a particular set of cores, then it is also possible to use
one’s own prior distribution (see the user’s manual). How-
ever, we have not encountered such problems in testing the
software, and we encourage users to exercise caution when
changing this distribution.

6.1.2 Multiproxy age models

Multiproxy age models generated by BIGMACS provide
additional advantages compared to traditional probabilistic
14C age models. In 14C-only age models, each core’s age
model is constrained only by the 14C dates from an individ-
ual core; however, multiproxy age models can use age con-
straints from multiple nearby cores, which are often available
for locations that are of particular paleoceanographic interest
(e.g., cores SU81-18, MD95-2042, and MD99-2334 on the
Iberian margin). For cores sharing a similar water mass his-
tory (which is likely for neighboring cores from similar water

depths), multiproxy age models use both benthic δ18O align-
ment and 14C dates to generate age models for each core that
are constrained by all 14C dates in the group of cores. This is
particularly useful for cores with lower-resolution 14C dating
or with ambiguous 14C outliers. Our example of GIK13289-2
(Fig. 8) demonstrates that the multiproxy alignment is help-
ful for extending age estimates beyond the range of 14C dates
(e.g., the Holocene portion of GIK13289-2) and decreasing
age uncertainty between widely spaced 14C dates, even in
cases where benthic δ18O data are also relatively low reso-
lution. In most cases, these age model benefits are enhanced
when BIGMACS is used to generate a multiproxy stack (e.g.,
Figs. 5 and 6) instead of an alignment to a fixed target.

Users should be aware that the age uncertainties returned
by BIGMACS for age models generated by multiproxy align-
ment or stacking do not include the age uncertainty in the
alignment target. Thus, age uncertainties (other than those
from 14C-only mode) should interpreted as relative age un-
certainties that reflect alignment uncertainty, rather than ab-
solute age uncertainty. For multiproxy stacks constrained by
densely sampled 14C dates with a small calibration uncer-
tainty, such as the DNEA stack from 0–25 ka (Fig. 5), the
absolute age uncertainty in the stack will be small. However,
where the absolute age uncertainty in the alignment target
or stack is larger, then an assessment of a core’s absolute
age uncertainty should incorporate both the absolute age un-
certainty in the target/stack and alignment uncertainty. For
example, the absolute age uncertainty for the DNEA stack
beyond 45 ka can be estimated by constructing an age model
for MD95-2042, using only the 14C dates and additional age
information (i.e., tie points marked as plus signs in Fig. 5a).
Because GeoB7920-2 contains no direct age proxies beyond
45 ka, its absolute age uncertainty could be estimated as the
sum of variance in the alignment uncertainty (the age model
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uncertainty resulting from alignment to the DNEA stack) and
the variance of the age model constructed for MD95-2042,
using only radiocarbon data and the additional tie points.

6.1.3 Stacking

Creating a multiproxy stack in BIGMACS offers several ad-
vantages compared to traditional stacking techniques. First,
BIGMACS can create multiproxy stacks with as few as two
cores. All cores in the multiproxy stack must have benthic
δ18O for alignment, but the stack can include cores that lack
14C or other age constraints. Second, whereas most previous
stacks have been constructed by the pairwise alignments of
each core to a single target (e.g., Lisiecki and Stern, 2016),
BIGMACS aligns all cores simultaneously while updating
the alignment target until convergence is achieved. This pro-
cess reduces the time required to create a stack and the sensi-
tivity to the choice of the initial alignment target. Third, the
multiproxy stack’s age model and alignments evolve simul-
taneously, based on the direct age proxies in all the aligned
cores, whereas most previously constructed stacks aligned
all cores before estimating the stack’s age model (e.g., Huy-
bers and Wunsch, 2004; Lisiecki and Raymo, 2005; Lisiecki
and Stern, 2016). Although BIGMACS and HMM-Stack
both iteratively update the alignment target using the aligned
δ18O signals, stacks produced by HMM-Stack implicitly in-
herit the age model of the original alignment target because
HMM-Stack contains no procedure to input absolute age in-
formation or adjust the alignment target’s age model.

Another innovation in BIGMACS is the use of the Gaus-
sian process regression to create time-continuous estimates
of the δ18O stack’s mean and variance. Most previous stacks
relied on either the interpolation of each core’s δ18O mea-
surements to an even time spacing (e.g., Huybers and Wun-
sch, 2004) or binning and averaging the δ18O measurements
of all cores within a certain time window (e.g., Lisiecki
and Raymo, 2005). The Gaussian process regression requires
fewer cores, samples at any resolution without interpolation,
smooths the stack to increase its signal-to-noise ratio, and
realistically increases the stack variance across δ18O gaps.
Learned hyperparameters of the OU kernel determine the
overall smoothness of each stack and, hence, the timescale
of features that are well described by the stack. For the
stacks presented here, smoothing from the Gaussian pro-
cess regression inhibits precise estimates of the amplitude
and rate of change in the events occurring on timescales of
∼ 2 kyr or shorter. For example, the DNA stack of Lisiecki
and Stern (2016), which averaged δ18O values using 0.5 kyr
bins, decreased by 0.47 ‰ in 1.5 kyr (from 87 to 85.5 ka) dur-
ing Heinrich event 8; however, in the DNEA stack produced
by BIGMACS, the δ18O change is spread over an interval at
least twice as long (89 to 85 ka; Fig. S3). Additionally, al-
though a δ18O response during Greenland interstadial 19 is
recorded in both the DNA and DNEA stack at 72 ka, smooth-
ing by the Gaussian process regression and alignment un-

certainty appears to have reduced its amplitude in the BIG-
MACS DNEA stack.

An important caveat that applies to all δ18O alignments,
including BIGMACS multiproxy alignments and stacks, is
that the δ18O records aligned should all be homogeneous,
meaning that they share the same underlying δ18O signal.
Because previous studies have observed temporal offsets be-
tween benthic δ18O signals from core sites bathed by differ-
ent water masses (Skinner and Shackleton, 2005; Labeyrie et
al., 2005; Waelbroeck et al., 2011; Stern and Lisiecki, 2014),
users should only align or stack cores that share the same
deep-water mass history over the length of the records ana-
lyzed. Whether δ18O is homogeneous across core sites can,
in part, be evaluated by comparing the amplitude of change
and mean offset (after species corrections) between cores.
For example, BIGMACS estimates only small shift and scale
differences between the cores included in the DNEA and
ITWA stacks (Table S1), although large shifts are observed
between the stacks. Another test is to compare modern water
mass compositions (Gebbie and Huybers, 2010) with LGM
compositions (Oppo et al., 2018). Although glacial water
mass estimates are inherently uncertain due to differences
between various models and reconstructions, BIGMACS of-
fers the flexibility to easily build different stacks to evaluate
the sensitivity of results to different models of benthic δ18O
homogeneity.

BIGMACS may be able to align and stack proxies other
than benthic δ18O; however, the software can currently only
align and stack one proxy at a time. For BIGMACS to ac-
curately construct a probabilistic stack of an alternate proxy,
the proxy must be homogeneous across the records in the
stack with residuals that can reasonably be described with
the generalized Student’s t distribution that BIGMACS uses
for the δ18O emission model. Because the emission model
is based on the variance that best describes the observations,
it does not require a specific assumption about the level of
noise in the measurements. However, low ratios of signal-to-
noise in the proxy being aligned could yield unreliable re-
sults. A preliminary analysis of planktonic δ18O alignments
and stacks have yielded encouraging results, but the more
heterogeneous nature of surface variability requires caution
in the selection of cores which can reasonably be considered
homogeneous.

The computational complexity of BIGMACS also places
constraints on its applications. For the records in this study,
the multiproxy alignment of a single core to a target takes
only 1–2 min, while the multiproxy stacks take 1–2 h to build
on a typical desktop machine. In testing, we have success-
fully created δ18O-only and multiproxy stacks of Late Pleis-
tocene δ18O spanning the past 800 kyr, which take approxi-
mately 12 h to run. However, we have not yet evaluated the
performance of BIGMACS for records longer than 800 kyr.
For a more detailed discussion of the time complexity for
BIGMACS, see Sect. S6.
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7 Conclusion

The new software package, BIGMACS, constructs multi-
proxy sediment core age models and benthic δ18O stacks
constrained by radiocarbon ages, δ18O alignment, and addi-
tional age constraints. BIGMACS requires no parameter tun-
ing and uses an empirically derived prior model of the sedi-
mentation rate variability specific to the marine depositional
environment. Radiocarbon ages are modeled using a Stu-
dent’s t distribution, following the methods of Christen and
Peréz (2009). BIGMACS also constructs time-continuous
stacks, using Gaussian process regression, and requires fewer
cores than traditional binning methods. This facilitates build-
ing stacks for more localized regions using as few as two
cores from within a homogeneous water mass, as assessed
by deep-water mass reconstructions and/or an evaluation of
the estimated shift and scale parameters for the aligned cores.
Example regional stacks are presented for the deep north-
east Atlantic (DNEA) and intermediate tropical west Atlantic
(ITWA). The stacks’ median δ18O values provide well-dated
regional climate signals, while the stacks’ standard devia-
tions include the effects of spatial variability, multiproxy
age uncertainty, measurement noise, and, in the ITWA stack,
the effects of δ18O outliers likely caused by sediment dis-
turbances. Finally, a comparison of radiocarbon-only, δ18O-
only, and multiproxy age models for one core demonstrates
that the multiproxy age model yields smaller age uncer-
tainties, particularly between radiocarbon measurements and
during the Holocene δ18O plateau.

Code and data availability. The software package BIGMACS
(developed and tested in MATLAB R2021b) and the user guide can
be downloaded from https://doi.org/10.5281/zenodo.8327654 (Lee,
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