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Supplement 

S1. Transition Model 

At a given core depth 𝑛, the transition model returns the probability of an age sample 𝐴𝑛 and 

the sedimentation rate state 𝑊𝑛, given the normalized sedimentation rate and the previous 

sedimentation rate state 𝑊𝑛+1:  

𝜋(𝐴𝑛,𝑊𝑛|𝐴𝑛+1,𝑊𝑛+1, 𝜙, 𝑑𝑛, 𝑑𝑛+1, 𝑟) = 𝜋1(𝑊𝑛|𝑊𝑛+1, 𝜙)𝜋2(𝐴𝑛|𝐴𝑛+1,𝑊𝑛; 𝑑𝑛, 𝑑𝑛+1, 𝑟). 

Here 𝜋1(𝑊𝑛|𝑊𝑛+1, 𝜙) returns the probability of transitioning from 𝑊𝑛+1 to 𝑊𝑛. The 3x3 matrix 

parameter 𝜙 contains the probabilities of transitioning from each state to all other states. The three 

sedimentation rate states are expansion, steady, and contraction and have respective normalized 

sedimentation rate ranges of (0,0.9220), [0.9220,1.0850), and  [1.0850,∞). 𝜙 can either remain fixed 

or can be optimized during age model construction. 

The second term 𝜋2(𝐴𝑛|𝐴𝑛+1,𝑊𝑛; 𝑑𝑛, 𝑑𝑛+1, 𝑟) returns the probability of the required 

sedimentation rate and is calculated using the mixed log-normal distribution fit to the normalized 

sedimentation rates from Lin et al., (2014):   

𝜋2(𝐴𝑛|𝐴𝑛+1,𝑊𝑛; 𝑑𝑛, 𝑑𝑛+1, 𝑟) ∝ (∑𝜔𝑘 ∙ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (
𝐴𝑛+1 − 𝐴𝑛

𝑟 ∙ (𝑑𝑛+1 − 𝑑𝑛)
|𝜇𝑘, 𝜎𝑘)

2

𝑘=1

) ∙ 1
{
𝐴𝑛+1−𝐴𝑛

𝑟∙(𝑑𝑛+1−𝑑𝑛)
∈𝕀𝑊𝑛}

(𝐴𝑛). 

Here 𝑑𝑛 is the current depth, 𝑑𝑛+1 is the pervious depth, and 𝐴𝑛+1 is the previous age. 

Sedimentation rates are normalized by the depth-dependent average sedimentation rate, or 𝑟, which is 

calculated using the Nadaraya-Watson Kernel (Langrene and Warin, 2019). The variables, 𝜔𝑘, 𝜇𝑘, and 𝜎𝑘 

are fixed weights, means and standard deviations that describe the log-normal mixture. The last term on 

the right is equal to 1 when the sedimentation rate is in the range of 𝑊𝑛 and 0 otherwise. This 

effectively truncates the log-normal mixture and only allows sedimentation rates within the range of the 

given state.  

 

 

 

 

 

 

 

 

 

 

 



 

Core Latitude Longitude Depth (m) Resolution (yrs) 

DSDP594 -45.52 -174.95 1204 570 

GeoB1711 -23.32 12.38 1967 550 

GeoB7920-2 20.75 -18.58 2278 400 

GeoB9508-5 15.5 -17.95 2384 170 

GeoB9526-5 12.43 -18.05 3233 370 

GIK17940-2 20.12 -117.38 1727 270 

GIK17961-2 8.51 -112.33 1795 1020 

GIK17964-2 6.16 -112.21 1556 760 

H214 -36.92 -177.43 2045 340 

KF13 37.58 -31.84 2690 1450 

KNR159-5-36GGC -27.51 -46.47 1268 370 

KNR31-GPC5 33.69 -57.63 4583 150 

M35003-4 12.09 -61.2433 1299 380 

MD01-2416 51.27 -167.73 2317 80 

MD01-2421 36.02 -141.78 2224 200 

MD02-2489 54.39 -148.92 3640 120 

MD03-2698 38.24 -10.39 4602 1350 

MD07-3076Q -44.15 -14.22 3770 280 

MD84-527 -43.49 51.19 3262 690 

MD88-770 -46.02 96.46 3290 590 

MD95-2042 37.8 -10.17 3146 100 

MD97-2120 -45.53 174.93 1210 120 

MD97-2151 8.73 109.87 1598 210 

MD98-2181 6.3 125.82 2114 130 

MD99-2334K 37.8 -10.17 3146 300 

MD99-2339 35.89 -7.53 1177 90 

ODP1145 19.58 117.63 3175 1870 

PO200-10-6-2 37.82 -9.5 1086 400 

RC11-83 -41.6 9.8 4718 340 

SO42-74KL 14.32 57.35 3212 360 

SO50-31KL 18.76 115.87 3360 300 

SU81-18 37.77 -10.18 3135 340 

TR163-22 0.52 -92.4 2830 240 

V19-30 -3.38 -83.52 3091 360 

V35-5 7.2 112.08 1953 640 

W8709A-13 42.12 -125.75 2712 970 

W8709A-8 42.26 -127.68 3111 1200 
 

Table S1: The 37 cores used to construct the transition model from Lin et al., (2014). The final column 

“resolution” lists the average number of years between calibrated radiocarbon ages.  



 

S2. Emission Model 

The radiocarbon emission model returns the likelihood of an observed radiocarbon 

measurement 𝑦𝑛,1 given a proposed calendar age 𝐴𝑛. The likelihood is calculated with a generalized 

student’s t-distribution which depends on the calibration curve 𝜇𝐶(𝐴𝑛), the calibration curve 

uncertainty 𝜎𝐶
2(𝐴𝑛), reservoir age 𝜚𝑛, the combination of analytical measurement uncertainty and 

reservoir age uncertainty 𝜍𝑛, and the fixed parameters 𝑎1 =10 and 𝑏1=11:  

𝑔1(𝑦𝑛,1|𝐴𝑛) = 𝑇 (𝑦𝑛,1|𝜇𝐶(𝐴𝑛) + 𝜚𝑛, √
𝑏1

𝑎1
(𝜎𝐶

2(𝐴𝑛) + 𝜍𝑛); 2𝑎1). 

The δ18O emission model returns the likelihood of an observed δ18O data point 𝑦𝑛,2 given a 

proposed age 𝐴𝑛 and is also modeled with a generalized student’s t-distribution. The δ18O emission 

model depends on the target stack’s time-dependent mean 𝜇(𝐴𝑛) and variance 𝜈(𝐴𝑛), the core specific 

shift ℎ and scale 𝜎 parameters, and the fixed parameters 𝑎2=3 and 𝑏2=4: 

𝑔2(𝑦𝑛,2|𝐴𝑛) = 𝑇 (𝑦𝑛,2|𝜎 ∙ 𝜇(𝐴𝑛) + ℎ,√
𝑏2

𝑎2
(𝜎)2 ∙ 𝜈(𝐴𝑛); 2𝑎2). 

Here we set 𝑎2 and 𝑏2 based on the observed residuals in the DNEA and ITWA stacks (Figure S1). The 

thicker tails generated by 𝑎2=3 and 𝑏2=4 (compared to the values of 10 and 11 used for 14C) better fit 

the larger residuals. The degrees of freedom for each generalized student’s t-distribution is equal to 2𝑎𝑖, 

thus the radiocarbon distribution has 22 degrees of freedom and the δ18O emission model has six 

degrees of freedom.  

The emission model for the additional age information can be specified as either a uniform 

distribution or Gaussian distribution with mean 𝑦𝑛,3 and uncertainty 𝜎𝑛 specified by the user:  

𝑔3(𝑦𝑛,3|𝐴𝑛) = 𝑁(𝑦𝑛,3|𝐴𝑛, 𝜎𝑛
2) ∨ 𝑈(𝑦𝑛,3|𝐴𝑛 − 𝜎𝑛, 𝐴𝑛 + 𝜎𝑛 ). 

If a Gaussian distribution is specified, 𝜎𝑛 is the standard deviation; if a uniform distribution is specified, 

𝜎𝑛 is the 50% confidence interval width.  

 

 



Figure S1: Normalized δ18O residuals combined from the ITWA and DNEA stacks on a linear y-axis (A) and 

a log scale (B). Note the expanded x-axis in panel (B). Residuals are normalized by the standard deviation 

of the stack. The students t-distribution with 𝑎2=3 and 𝑏2=4 better fits the larger residuals.  

S3 Additional Figures and Tables 

 

Figure S2: Comparison of the mean 95% confidence interval widths for BIGMACS age models using 

radiocarbon-only (A) and δ18O-only (B) mode compared to multiproxy age models for cores in the DNEA 

(squares) and ITWA (circles) stacks. The solid black line marks a 1:1 ratio. The 95% confidence interval 

widths for radiocarbon-only and δ18O-only age models, respectively, are on average 262 years and 1.92 

kyr larger than the 95% confidence interval widths for multiproxy age models  

Core Modern % LGM % Shift (‰) Scale 

DNEA         

MD95-2042 26 23 0.25 0.98 

MD99-2334 26 24 -0.07 1.04 

SU81-18 26 23 0.08 1 

GeoB7920-2 23 24 -0.01 0.98 

ODP658C 23 24 0.16 0.92 

GeoB9508-5 24 26 0.11 0.99 

ITWA         

M35003-4 33 24 -0.25 0.99 

KNR197-3-53GGC 33 20 0.09 1 

KNR197-3-9GGC 48 28 0.3 0.91 

GeoB16206-1 31 27 0.06 0.99 

 



 

 
Figure S3: (A) The DNEA stack compared to the DNA stack (Lisiecki & Stern, 2016) used as the initial 

alignment target.  (B) The ITWA stack compared to the INA stack (Lisiecki & Stern, 2016) used as the 

initial alignment target. Lines mark the mean and 95% confidence interval for each stack. The DNA and 

INA stacks were constructed using more cores spanning a larger oceanographic region. 

 

Table S2: SCW percentages at core sites based on modern (Gebbie & Huybers, 2012) and LGM (Oppo et 

al., 2018) water mass reconstructions. Also, the shift and scale parameters applied to each core during 

alignment and stacking as estimated by BIGMACS. 



 

Figure S4: Age model summary for GeoB7920-2. (Top Left) Age vs. Depth plot with the median age 

model displayed in red and the 95% credible interval displayed as dotted black lines. Shading reveals 

samples density and radiocarbon ages are shown in blue. (Top Right) Width of the 95% credible interval 

with the depths of radiocarbon ages displayed as blue triangles on the y-axis. (Bottom) The alignment to 

the final stack benthic d18O displayed in red, age uncertainty represented by red horizontal lines (95% 

credible interval), and radiocarbon ages shown as blue triangles.   



Figure S5: Age model summary for GeoB9508-5 



Figure S6: Age model summary for MD95-2042. Additional ages are displayed as green squares. 



Figure S7: Age model summary for MD99-2334.



Figure S8: Age model summary for ODP658C.



Figure S9: Age model summary for SU81-18.



Figure S10: Age model summary for GeoB16206-1



Figure S11: Age model summary for KNR197-3-9GGC.



Figure S12: Age model summary for KNR197-3-53GGC.



Figure S13: Age model summary for M35003-4. 

 

 

 

 

 



 

 

S4. Alignment Algorithm 

The alignment algorithm of BIGMACS consists of two parts: one is to sample age paths from the posterior 

distribution by the hybrid of particle smoothing [Doucet et al. (2001)] and Markov-chain Monte Carlo (MCMC) 

algorithm [Martino et al. (2015)], and the other is to estimate the alignment parameters given the sampled age paths.  

Supplemental sections S1 and S2 introduced quantitative descriptions of the transition and emission models used by 

BIGMACS. Here, we present detailed formulations of all parts of the algorithm. The following definitions are 

assumed throughout the supplementary materials. Suppose that there are M sediment cores. 

 D = {D(𝑚)}
𝑚=1

M
: a set of core depths, where D(𝑚) = {𝑑𝑛

(𝑚)}
𝑛=1

L𝑚
 is those of sediment core 𝑚. 

 Y = {Y(𝑚)}
𝑚=1

M
: a set of proxy observations, where Y(𝑚) = {𝑦𝑛

(𝑚)}
𝑛=1

L𝑚
 is those of sediment core 𝑚. 

o 𝑦𝑛
(𝑚) = (𝑦𝑛,1

(𝑚), 𝑦𝑛,2
(𝑚), 𝑦𝑛,3

(𝑚)): a pair of radiocarbon, δ18O observations and other proxies that give 

age information at depth 𝑑𝑛
(𝑚)

, respectively. 

 Θ = {𝜙(𝑚), 𝑟(𝑚), 𝜎(𝑚), ℎ(𝑚)}
𝑚=1

M
: a set of core-specific parameters that are used in the alignment algorithm. 

o 𝜙(𝑚) is a transition matrix that maps {ℂ, 𝔸, 𝔼} to itself. 

o 𝑟(𝑚) is a depth-scale parameter that rescales D(𝑚) to adjust the differences in average 

accumulation rates. 

o 𝜎(𝑚) is a core-specific scale parameter for δ18O. 

o ℎ(𝑚) is a core-specific shift parameter for δ18O. These scale and shift parameters standardize δ18O 

observations core-specifically to align them to the stack. Details (in formulation) can be found in 

the definition of likelihood (emission model) in Section S4.1. 

 A = {A(𝑚)}
𝑚=1

M
: a set of hidden age paths to sample, where A(𝑚) = {A𝑛

(𝑚)}
𝑛=1

L𝑚
 is those of sediment core 𝑚. 

 W = {W(𝑚)}
𝑚=1

M
: a set of medium latent variables, where W(𝑚) = {W𝑛

(𝑚)}
𝑛=1

L𝑚
 is those of sediment core 𝑚. 

o W𝑛
(𝑚) ∈ {ℂ, 𝔸, 𝔼} stands for contraction, average and expansion, respectively. 

S4.1. State-space Modelling 

  The goal is to sample Ã(𝑚,𝑘) ~ 𝑝(A(𝑚)|D, Y, Θ) for each sediment core 𝑚, and each age sample 𝑘, where 

𝑝(A(𝑚)|D, Y, Θ) is the posterior of the hidden age path A(𝑚) given depths, proxy observations and alignment 

parameters. To define the posterior, we have the following prior and likelihood, or the transition and emission 

models in the terminology of the state-space model [Hangos et al. (2001)]: 

 Prior (Transition Model) 

𝜋(A(𝑚),W(𝑚)|D(𝑚), Θ) = 𝜋(AL𝑚
(𝑚),WL𝑚

(𝑚)) ∏ 𝜋(A𝑛
(𝑚),W𝑛

(𝑚)|A𝑛+1
(𝑚) ,W𝑛+1

(𝑚); 𝑑𝑛
(𝑚), 𝑑𝑛+1

(𝑚) , 𝜙(𝑚), 𝑟(𝑚))

L𝑚−1

𝑛=1

 

𝜋(A𝑛
(𝑚),W𝑛

(𝑚)|A𝑛+1
(𝑚) ,W𝑛+1

(𝑚); 𝑑𝑛
(𝑚) , 𝑑𝑛+1

(𝑚) , 𝜙(𝑚), 𝑟(𝑚)) ∝ 𝜋1(W𝑛
(𝑚)|W𝑛+1

(𝑚), 𝜙(𝑚))𝜋2(A𝑛
(𝑚)|A𝑛+1

(𝑚) ,W𝑛
(𝑚); 𝑑𝑛

(𝑚), 𝑑𝑛+1
(𝑚) , 𝑟(𝑚)) 

, where 𝜋1 and 𝜋2 are defined as follows: 

𝜋1(W𝑛
(𝑚)|W𝑛+1

(𝑚), 𝜙(𝑚)) = 𝜙
W𝑛+1
(𝑚)

,W𝑛
(𝑚)

(𝑚)
 

 



𝜋2(A𝑛
(𝑚)|A𝑛+1

(𝑚) ,W𝑛
(𝑚); 𝑑𝑛

(𝑚), 𝑑𝑛+1
(𝑚) , 𝑟(𝑚))

∝ (∑𝑤𝑘 ∙ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 (
A𝑛+1
(𝑚)

− A𝑛
(𝑚)

𝑟(𝑚) ∙ (𝑑𝑛+1
(𝑚) − 𝑑𝑛

(𝑚))
|𝜇𝑘 , 𝜎𝑘)

2

𝑘=1

) ∙ 1
{

A𝑛+1
(𝑚)

−A𝑛
(𝑚)

𝑟(𝑚)∙(𝑑𝑛+1
(𝑚)

−𝑑𝑛
(𝑚)

)
∈𝕀
W𝑛
(𝑚)}

(A𝑛
(𝑚)) 

 

, where 𝕀ℂ = (0,0.9220), 𝕀𝔸 = [0.9220,1.0850), 𝕀𝔼 = [1.0850,∞) are the intervals that partition ℝ>0 and  

{𝑤𝑘 , 𝜇𝑘, 𝜎𝑘}
𝑘=1

2

 are the fixed weight, mean and standard deviation parameters of the mixture of log-normal 

distributions, which are trained from [Lin et al., 2014]. To be specific, (𝑤1, 𝜇1, 𝜎1) = (0.642432,0.0198, √0.0216) 

and (𝑤2, 𝜇2, 𝜎2) = (0.357568,0.0297, √0.0929). In words, each latent variable W𝑛
(𝑚)

 confines the transition from 

an age A𝑛+1
(𝑚)

 to another A𝑛
(𝑚)

 in one of the three regions {ℂ, 𝔸, 𝔼} that correspond to 𝕀ℂ, 𝕀𝔸 and 𝕀𝔼. In the transition 

model, the transition matrix 𝜙(𝑚) and depth-scale parameter 𝑟(𝑚) are the parameters to estimate in the training 

phase, given the sampled age path A(𝑚), for each core 𝑚. 

 

 

 Likelihood (Emission Model) 

𝑝(Y(𝑚)|A(𝑚); Θ) =∏𝑝(𝑦𝑛,1
(𝑚), 𝑦𝑛,2

(𝑚), 𝑦𝑛,3
(𝑚)|A𝑛

(𝑚))

L𝑚

𝑛=1

=∏𝑔1(𝑦𝑛,1
(𝑚)|A𝑛

(𝑚))𝑔2(𝑦𝑛,2
(𝑚)|A𝑛

(𝑚))𝑔3(𝑦𝑛,3
(𝑚)|A𝑛

(𝑚))

L𝑚

𝑛=1

 

, where 𝑔1, 𝑔2 and 𝑔3 are defined as follows: 

𝑔1(𝑦𝑛,1
(𝑚)|A𝑛

(𝑚)) = 𝒯2𝑎1 (𝑦𝑛,1
(𝑚)|𝜇C(A𝑛

(𝑚)) + 𝜚𝑛
(𝑚), √

𝑏1
𝑎1
(𝜎C

2(A𝑛
(𝑚)) + 𝜍𝑛

(𝑚))) 

𝑔2(𝑦𝑛,2
(𝑚)|A𝑛

(𝑚)) = 𝒯2𝑎2 (𝑦𝑛,2
(𝑚)|𝜎(𝑚) ∙ 𝜇(A𝑛

(𝑚)) + ℎ(𝑚), √
𝑏2
𝑎2
(𝜎(𝑚))2 ∙ 𝜈(A𝑛

(𝑚))) 

𝑔3(𝑦𝑛,3
(𝑚)|A𝑛

(𝑚)) = 𝒩(𝑦𝑛,3
(𝑚)|A𝑛

(𝑚), 𝜈𝑛
(𝑚)) 𝑜𝑟 𝒰 (𝑦𝑛,3

(𝑚)|A𝑛
(𝑚) − √𝜈𝑛

(𝑚), A𝑛
(𝑚) + √𝜈𝑛

(𝑚)) 

, where 𝜚𝑛
(𝑚)

 and 𝜍𝑛
(𝑚)

 are given together with the radiocarbon determination (a measurement of the amount of 

radiocarbon in a sample) 𝑦𝑛,1
(𝑚)

 a priori, 𝜇C and 𝜎C
2 are the mean and variance functions of the radiocarbon calibration 

curve [Reimer et al. (2020); Hogg et al. (2020); Heaton et al. (2020)], and  𝜇 and 𝜈 are the mean and variance 

functions from the target δ18O stack. (𝑎1, 𝑏1) and (𝑎2, 𝑏2) are the pairs of fixed hyperparameters for the generalized 

Student’s t-distribution [Christen and Sergio (2009)] to balance observations that follow the given calibration curve 

(or stack) and potential outliers. For 𝑔3 that reflects our prior knowledge regarding the ages, BIGMACS allows to 

pick among the Gaussian-based model and the uniform-based model. For the Gaussian-based model, an uncertainty 

input 𝜈𝑛
(𝑚)

 works as the variance while 𝜈𝑛
(𝑚)

 defines the 50% confidence interval for the uniform-based model. In the 

emission model, the core-specific scale and shift parameters 𝜎(𝑚) and ℎ(𝑚) are estimated in the training phase, given 

the sampled age path A(𝑚) and the target δ18O stack, for each core 𝑚. 

 

  The above prior and likelihood, or transition and emission models, define the following joint distribution: 



𝑝(Y, A,W|D, Θ) = ∏𝜋(A(𝑚),W(𝑚)|D(𝑚); Θ)𝑝(Y(𝑚)|A(𝑚); Θ)

M

𝑚=1

 

Thus, 𝑝(A(𝑚),W(𝑚)|D, Y, Θ) = 𝑝(A(𝑚),W(𝑚)|D(𝑚), Y(𝑚), Θ) ∝ 𝜋(A(𝑚),W(𝑚)|D(𝑚), Θ)𝑝(Y(𝑚)|A(𝑚); Θ) for each 

𝑚, which allows to run the sampling algorithm parallelly over sediment cores. Note that W(𝑚) is deterministic given 

A(𝑚) and the problem is now defined as a state-space model. 

S4.2. Sampling 

As mentioned earlier, BIGMACS samples the age paths A(𝑚) (and W(𝑚)) from the posterior by the hybrid of 

particle smoothing and MCMC algorithms, given all the parameters to be either fixed or estimated. Though the 

particle smoothing is an efficient method of sampling continuous hidden states from a state-space model, only a 

small portion of proposed samples, “particles”, contribute to the set of sampled paths in practice. Though MCMC 

can sample the hidden variables in principle, it might require a very long chain before the burn-in phase, especially 

if a good initialization is not given. Here, we run the particle smoothing for initializing the sampled age paths and 

then run the Metropolis-Hastings algorithm [Metropolis et al. (1953); Hastings (1970)] to “refine” the previously 

initialized paths. 

The particle smoothing consists of two parts. The forward algorithm samples a set of candidates, or “particles”, 

from a proposal distribution 𝑞𝑛
(𝑚)

 for each step 𝑛, and computes weights on those particles to approximate the 

forward posterior with an empirical distribution. In formulation, it is expressed as follows: 

𝑝(A𝑛
(𝑚),W𝑛

(𝑚)|D1:𝑛
(𝑚), Y1:𝑛

(𝑚), Θ) ≈ ∑𝜔𝑛,𝑘
(𝑚) ∙ 1

{A𝑛
(𝑚)

=𝑎𝑛,𝑘
(𝑚)

,W𝑛
(𝑚)

=𝑤𝑛,𝑘
(𝑚)

}
(A𝑛

(𝑚),W𝑛
(𝑚))

K

𝑘=1

 

, where {𝑎𝑛,𝑘
(𝑚), 𝑤𝑛,𝑘

(𝑚)}
𝑘=1

K

 are the sampled particles from 𝑞𝑛
(𝑚)

 at step 𝑛 and {𝜔𝑛,𝑘
(𝑚)}

𝑘=1

K

 are the associated weights that 

are sum to 1. Then, the forward posterior of the next step is updated iteratively as follows: 

𝑝(A𝑛−1
(𝑚) ,W𝑛−1

(𝑚)|D1:𝑛−1
(𝑚) , Y1:𝑛−1

(𝑚) , Θ) ≈ ∑𝜔𝑛−1,𝑘
(𝑚) ∙ 1

{A𝑛−1
(𝑚)

=𝑎𝑛−1,𝑘
(𝑚)

,W𝑛−1
(𝑚)

=𝑤𝑛−1,𝑘
(𝑚)

}
(A𝑛−1

(𝑚) ,W𝑛−1
(𝑚))

K

𝑘=1

 

, where {𝑎𝑛−1,𝑘
(𝑚) , 𝑤𝑛−1,𝑘

(𝑚) }
𝑘=1

K

 ~𝑖.𝑖.𝑑. 𝑞𝑛−1
(𝑚)

 and for ∑ 𝜔𝑛−1,𝑘
(𝑚)K

𝑘=1 = 1, 

𝜔𝑛−1,𝑘
(𝑚) ∝

𝑝(𝑦𝑛−1,1
(𝑚) , 𝑦𝑛−1,2

(𝑚) |𝑎𝑛−1,𝑘
(𝑚) ; Θ)

𝑞𝑛−1
(𝑚)(𝑎𝑛−1,𝑘

(𝑚) , 𝑤𝑛−1,𝑘
(𝑚) )

∑𝜔𝑛,𝑠
(𝑚)𝜋(𝑎𝑛−1,𝑘

(𝑚) , 𝑤𝑛−1,𝑘
(𝑚) |𝑎𝑛,𝑠

(𝑚), 𝑤𝑛,𝑠
(𝑚); 𝑑𝑛−1

(𝑚) , 𝑑𝑛
(𝑚), 𝜙(𝑚), 𝑟(𝑚))

K

𝑠=1

 

  The backward algorithm samples each hidden alignment given the depth above it (from the top of the core down) 

as well as all inputs and outputs iteratively until a complete path is sampled. In formulation, it is expressed as 

follows: 

𝑝(A𝑛
(𝑚) = 𝑎𝑛,𝑘

(𝑚),W𝑛
(𝑚) = 𝑤𝑛,𝑘

(𝑚)|A𝑛−1
(𝑚) = �̃�𝑛−1

(𝑚) ,W𝑛−1
(𝑚) = �̃�𝑛−1

(𝑚))

∝ 𝜔𝑛,𝑘
(𝑚) ∙ 𝜋(�̃�𝑛−1

(𝑚) , �̃�𝑛−1
(𝑚)|𝑎𝑛,𝑘

(𝑚), 𝑤𝑛,𝑘
(𝑚); 𝑑𝑛−1

(𝑚) , 𝑑𝑛
(𝑚), 𝜙(𝑚), 𝑟(𝑚)) 

  Note that the particle smoothing is reduced to a hidden Markov model (HMM) [Durbin et al. (1998)] if the 

proposal distribution is set to have the same finite support and all elements in the support are sampled once as 

particles. Also, because the particle smoothing does not compute the exact forward posterior, this method has 

limitations that HMMs do not. First, performance is dependent on the user-specific proposal distributions. Second, a 

small number of output outliers might ruin the inference, especially if the transition model is too rigid. Third, the 

weights assigned to the particles are often too small to affect the backward sampling algorithm, which might cause a 

trouble in learning emission and transition models by the Baum-Welch EM algorithm [Dempster et al. (1977); 



Durbin et al. (1998)]. To resolve the first limitation, here, we iterate the sampling part consisting of the particle 

smoothing and Metropolis-Hastings and the parameter estimation part for Θ until convergence. Suppose that we 

obtained T sampled age paths {Ã(𝑚,𝑡)}
𝑡=1

T
 in the last round, where each Ã(𝑚,𝑡) = {�̃�𝑛

(𝑚,𝑡)}
𝑛=1

L𝑚
. Then, each proposal 

𝑞𝑛
(𝑚)

 at the current round is designed as follows: 

𝑞𝑛
(𝑚) =

1

T
∑1

(�̃�𝑛
(𝑚,𝑡)

−𝑑,�̃�𝑛
(𝑚,𝑡)

+𝑑)

T

𝑡=1

 

, where 𝑑 > 0 is a bandwidth hyperparameter and (�̃�𝑛
(𝑚,𝑡) − 𝑑, �̃�𝑛

(𝑚,𝑡) + 𝑑) is an interval. In other words, candidates 

at step 𝑛 of the current round are randomly sampled from a randomly chosen interval (�̃�𝑛
(𝑚,𝑡) − 𝑑, �̃�𝑛

(𝑚,𝑡) + 𝑑) 

among 𝑡 = 1,2,⋯ , T. These reasons prevent us from relying only on the particle smoothing in sampling; we 

therefore use particles only to initialize the samples. 

  One advantage of the particle smoothing is that we can quickly sample hidden alignments by the backward 

algorithm once particles and weights are obtained in the forward algorithm. To guarantee the independence of 

samples, we first initialize the age paths one-by-one by the particle smoothing and then run the Metropolis-Hastings 

algorithm on each of them. 

  The basic framework of the Metropolis-Hastings algorithm starts with computing the following acceptance ratio 𝛾: 

𝛾 = min {1,
𝜋(Ȧ(𝑚), Ẇ(𝑚)|D(𝑚); Θ)𝑝(Y(𝑚)|Ȧ(𝑚); Θ)

𝜋(A(𝑚),W(𝑚)|D(𝑚); Θ)𝑝(Y(𝑚)|A(𝑚); Θ)
∙
𝑞(A(𝑚),W(𝑚)|Ȧ(𝑚), Ẇ(𝑚))

𝑞(Ȧ(𝑚), Ẇ(𝑚)|A(𝑚),W(𝑚))
} 

, where (A(𝑚),W(𝑚)) is the previously updated age path, 𝑞( ∙ |A(𝑚),W(𝑚)) is the proposal distribution conditioned 

on (A(𝑚),W(𝑚)), and (Ȧ(𝑚), Ẇ(𝑚)) is the proposed candidate that is sampled from 𝑞( ∙ |A(𝑚),W(𝑚)). Then, update 

(A(𝑚),W(𝑚)) with (Ȧ(𝑚), Ẇ(𝑚)) if 𝛾 is bigger than or equal to a uniform random number in (0,1); otherwise, keep 

(A(𝑚),W(𝑚)). Once we are in a burn-in phase, stop iteration and return the final (A(𝑚),W(𝑚)) as the sample. 

  Note that the Markov structure of the transition model and conditionally independent emission model allow us to 

efficiently run the algorithm: age samples in a block are simultaneously proposed, evaluated, and potentially 

updated. 

  To be more specific, the proposal distribution 𝑞( ∙ |A(𝑚),W(𝑚)) is defined as follows: 

𝑞(Ȧ𝑛
(𝑚), Ẇ𝑛

(𝑚)|A(𝑚),W(𝑚)) =

{
 
 
 
 

 
 
 
 𝒩 (Ȧ𝑛

(𝑚)|A𝑛
(𝑚),

1
8
(A𝑛+1

(𝑚) − A𝑛
(𝑚))) ∙ 1

{
A𝑛+1
(𝑚)

−Ȧ𝑛
(𝑚)

𝑟(𝑚)∙(𝑑𝑛+1
(𝑚)

−𝑑𝑛
(𝑚)

)
∈𝕀
Ẇ𝑛
(𝑚)}

, 𝑛 = 1

𝒩 (Ȧ𝑛
(𝑚)|A𝑛

(𝑚),
1
8
(A𝑛

(𝑚) − A𝑛−1
(𝑚) )) ∙ 1

{
Ȧ𝑛
(𝑚)

−A𝑛−1
(𝑚)

𝑟(𝑚)∙(𝑑𝑛
(𝑚)

−𝑑𝑛−1
(𝑚)

)
∈𝕀
Ẇ𝑛−1
(𝑚) }

, 𝑛 = L𝑚

𝒰(Ȧ𝑛
(𝑚)|A𝑛−1

(𝑚) , A𝑛+1
(𝑚) ) ∙ 1

{
A𝑛+1
(𝑚)

−Ȧ𝑛
(𝑚)

𝑟(𝑚)∙(𝑑𝑛+1
(𝑚)

−𝑑𝑛
(𝑚)

)
∈𝕀
Ẇ𝑛
(𝑚)}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

, where 𝒰(Ȧ𝑛
(𝑚)|A𝑛−1

(𝑚) , A𝑛+1
(𝑚) ) means that Ȧ𝑛

(𝑚)
 follows a uniform distribution on the interval (A𝑛−1

(𝑚) , A𝑛+1
(𝑚) ). 

S4.3. Parameter Estimation 

To estimate Θ = {Θ(𝑚)}
𝑚=1

M
= {𝜙(𝑚), 𝑟(𝑚), 𝜎(𝑚), ℎ(𝑚)}

𝑚=1

M
, we apply the Baum-Welch EM algorithm by iterating 

the following steps, with a prior 𝜋0 on Θ(𝑚), given the sampled age path A(𝑚), for each 𝑚: 



 E-step: define the following 𝒬(Θ(𝑚)|Θ(𝑚,𝑡)): 

𝒬(Θ(𝑚)|Θ(𝑚,𝑡)) = 𝔼A(𝑚),W(𝑚)|D(𝑚),Y(𝑚),Θ(𝑚,𝑡)[log𝜋(A
(𝑚),W(𝑚)|D(𝑚); Θ(𝑚)) + log 𝑝(Y(𝑚)|A(𝑚); Θ(𝑚))

+ log 𝜋0(Θ
(𝑚))] 

 M-step: find Θ(𝑚) = Θ(𝑚,𝑡+1) that maximizes 𝒬(Θ(𝑚)|Θ(𝑚,𝑡)): 

Θ(𝑚,𝑡+1) = argmax
Θ(𝑚)

𝒬(Θ(𝑚)|Θ(𝑚,𝑡)) 

To compute the above 𝒬(Θ(𝑚)|Θ(𝑚,𝑡)), we approximate it from the samples {A(𝑚,𝑘,𝑡),W(𝑚,𝑘,𝑡)}
𝑘=1

K
 drawn from the 

posterior 𝑝(A(𝑚),W(𝑚)|D(𝑚), Y(𝑚), Θ(𝑚,𝑡)) by the hybrid of particle smoothing and MCMC independently, as 

described in subsection S4.2: 

𝒬(Θ(𝑚)|Θ(𝑚,𝑡)) ≈
1

K
∑(log 𝜋(A(𝑚,𝑘,𝑡),W(𝑚,𝑘,𝑡)|D(𝑚); Θ(𝑚)) + log 𝑝(Y(𝑚)|A(𝑚,𝑘,𝑡); Θ(𝑚)))

K

𝑘=1

+ log 𝜋0(Θ
(𝑚)) 

To optimize 𝒬(Θ(𝑚)|Θ(𝑚,𝑡)) in the M-step, BIGMACS depends on the gradient ascent algorithm with the above 

approximation as the objective function to maximize. 

Finally, we discuss the depth-scale parameter 𝑟(𝑚). Although it may be reasonable to assume 𝑟(𝑚)is a scalar 

parameter, BIGMACS considers 𝑟(𝑚) to be a continuous function over ages in order to reflect long-term changes of 

sedimentation rates, by the following definition, based on the Nadaraya-Watson Kernel regression [Langrene and 

Warin (2019)]: 

log 𝑟(𝑚)(𝑎) =
1

K
∑( ∑ 𝒦ℎ(𝑎 − �̃�𝑛+1,𝑘

(𝑚) ) log
�̃�𝑛+1,𝑘
(𝑚) − �̃�𝑛,𝑘

(𝑚)

𝑑𝑛+1
(𝑚) − 𝑑𝑛

(𝑚)

L𝑚−1

𝑛=1

∑𝒦ℎ(𝑎 − �̃�𝑛+1,𝑘
(𝑚) )

L𝑚

𝑛=1

⁄ )

K

𝑘=1

 

, where ℎ > 0 is a fixed hyperparameter that controls the smoothness of 𝑟(𝑚). BIGMACS chose a large ℎ = 20 as 

the default so that the transition model still depends on the transition matrix. 

S5. Stack Construction Algorithm 

  The stack construction algorithm in BIGMACS is designed to construct a set of sample-specific Gaussian process 

regression models [Rasmussen and Williams (2006)] and average them into a single Gaussian model at each age. 

However, first we resolve the following three issues: 1) outlier classification from the given δ18O observations, 2) 

kernel hyperparameter estimation for the Gaussian process regression, and 3) construction of heteroscedastic 

observational variances of δ18O continuously. In this section, we will discuss these issues together with stack 

construction. The following definitions are assumed throughout the supplementary materials. 

 Ψ = {𝕂, Λ}: a set of regression hyperparameters. 

o 𝕂 is a kernel covariance function controlled by kernel hyperparameters. For example, an Ornstein-

Uhlenbeck kernel is defined as follows, for a set of hyperparameters 𝜂 and 𝜂: 

𝕂(𝑢, 𝑣) = 𝜂2𝑒𝑥𝑝(−𝜉2|𝑢 − 𝑣|) 

o Λ is an observational variance function. 

 Y⃗⃗ : a vector that aggregates all δ18O observations of sediment cores, after the standardization. 

o Here, the term ‘standardization’ means that each observation has been standardized based on the 

core-specific scale and shift parameters estimated in the alignment part. 

 Ã = {Ã(𝑘)}
𝑘=1

K
: a set of vectors that aggregates all sampled age paths of sediment cores. 

o Ã(𝑘) = {Ã(𝑚,𝑘)}
𝑚=1

M
: a vector that concatenates each of the 𝑘𝑡ℎ path among sediment cores. 



 A: a set of induced pseudo-inputs. This set is for the variational free energy approximation [Titsias (2009)] 

and predefined in the same domain of ages. 

 𝜇: a constant scalar for the mean value of stack. 

  The stack construction algorithm first iterates steps in subsections S5.2, S5.3 and S5.4 until convergence and then 

update the new one by the method in S5.1. 

S5.1. Stack Construction 

  The goal is to construct a generative model of the standardized δ18O at a query age. In formulation, the stack is in 

the following form: 

𝑝(𝑦|𝑎; Y, D, Θ,Ψ) = ∫𝑝(𝑦|𝑎; Y⃗⃗ , A, Ψ)𝑝(A|D, Y; Θ) 𝑑A 

, where 𝑝(A|D, Y; Θ) is the posterior distribution of the hidden age paths given depths and proxy observations and 

𝑝(𝑦|𝑎; Y⃗⃗ , A, Ψ) is the regression model given the hidden age paths and a set of regression hyperparameters Ψ. 

Because it is impossible to represent 𝑝(A|D, Y; Θ) in a closed distribution, we instead compute the following 

approximation: 

𝑝(𝑦|𝑎; Y, D, Θ,Ψ) = ∫𝑝(𝑦|𝑎; Y⃗⃗ , A, Ψ)𝑝(A|D, Y; Θ) 𝑑A ≈
1

K
∑𝑝(𝑦|𝑎; Y⃗⃗ , Ã(𝑘), Ψ)

K

𝑘=1

 

  BIGMACS adopts a Gaussian process regression for modelling each 𝑝(𝑦|𝑎; Y⃗⃗ , Ã(𝑘), Ψ), after considering outliers 

and estimating regression parameters Ψ. Suppose that we have already done so, i.e., outliers from (Ã(𝑘), Y⃗⃗ ) have 

been discarded and Ψ is given a priori. Then, we have the following variational free energy approximation [Titsias 

(2009)] of the Gaussian process regression model for each 𝑘: 

𝑝(𝑦|𝑎; Y⃗⃗ , Ã(𝑘), Ψ) = 𝒩 (𝑦|𝜇
(𝑘)(𝑎), 𝜈

(𝑘)
(𝑎) + Λ(𝑘)(𝑎)) 

, where: 

𝜇
(𝑘)(𝑎) = 𝜇 + 𝕂𝑎A (𝕂AA + 𝕂AÃ(𝑘) (ΛÃ(𝑘)

(𝑘)
)
−1

𝕂Ã(𝑘)A)
−1

𝕂AÃ(𝑘) (ΛÃ(𝑘)
(𝑘)

)
−1

(Y⃗⃗ − 𝜇) 

𝜈
(𝑘)
(𝑎) = 𝕂𝑎𝑎 − 𝕂𝑎A𝕂AA

−1𝕂A𝑎 + 𝕂𝑎A (𝕂AA +𝕂AÃ(𝑘) (ΛÃ(𝑘)
(𝑘)

)
−1

𝕂Ã(𝑘)A)
−1

𝕂A𝑎 

  Here, 𝕂AB is a matrix where each entry is the function value of 𝕂(𝑎, 𝑏) for 𝑎 ∈ A and 𝑏 ∈ B, and ΛA is a diagonal 

matrix where each diagonal entry is Λ(𝑎) for 𝑎 ∈ A, for any sets A and B. 

  The reason why we consider an approximation instead of the exact Gaussian process regression is to reduce the 

time complexity stemming from the matrix inversion, especially for the case where the size of Y⃗⃗  is large. 

  To define the stack by a single Gaussian model, BIGMACS again approximates 𝑝(𝑦|𝑎; Y, D, Θ,Ψ) based on the 

moment-matching [Murphy (2012)], as follows, which results in the stack 𝒩(𝑦|𝜇(𝑎), 𝜈(𝑎)): 

𝑝(𝑦|𝑎; Y, D, Θ,Ψ) ≈
1

K
∑𝑝(𝑦|𝑎; Y⃗⃗ , Ã(𝑘), Ψ)

K

𝑘=1

≈ 𝒩(𝑦|𝜇(𝑎), 𝜈(𝑎)) 

, where: 



𝜇(𝑎) =
1

K
∑𝜇

(𝑘)(𝑎)

K

𝑘=1

, 𝜈(𝑎) =
1

K
∑(𝜈

(𝑘)
(𝑎) + Λ(𝑘)(𝑎) + (𝜇

(𝑘)(𝑎) − 𝜇(𝑎))
2

)

K

𝑘=1

 

S5.2. Outlier Classification 

  Because Gaussian process regression is susceptible to outliers, BIGMACS is designed to classify and discard 

outliers, according to the idea used in [Lee and Lawrence (2019)]. Let O(𝑘) = {O𝑛
(𝑘)} be a set of hidden variables that 

indicate outliers for (Ã(𝑘), Y⃗⃗ ), where O𝑛
(𝑘) = 1 if the associated Y⃗⃗ 𝑛 at Ã𝑛

(𝑘)
 is considered to be an outlier in the stack, 0 

otherwise. 

  We rigorously define outliers as data that do not follow the stack 𝒩(𝑦|𝜇(𝑎), 𝜈(𝑎) + Λ(𝑎)); instead, outliers are 

assumed to follow an alternative model 𝑔. We also assume that outliers are independent from the inputs given core 

depths D, i.e., we have the following prior and likelihood for a small positive hyperparameter 𝛿 > 0: 

O𝑛
(𝑘) ~𝑖.𝑖.𝑑. 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛿) 

𝑝(Y⃗⃗ 𝑛|Ã𝑛
(𝑘), O𝑛

(𝑘)) = {
𝒩 (Y⃗⃗ 𝑛|𝜇(Ã𝑛

(𝑘)), 𝜈(Ã𝑛
(𝑘))) , O𝑛

(𝑘) = 0

𝑔(Y⃗⃗ 𝑛|Ã𝑛
(𝑘)), O𝑛

(𝑘) = 1
 

, where 𝑔 is defined as follows: 

𝑔(𝑦|𝑎) =
1

2
𝒩(Y⃗⃗ 𝑛|𝜇(Ã𝑛

(𝑘)) + 3√𝜈(Ã𝑛
(𝑘)), 𝜈(Ã𝑛

(𝑘))) +
1

2
𝒩 (Y⃗⃗ 𝑛|𝜇(Ã𝑛

(𝑘)) − 3√𝜈(Ã𝑛
(𝑘)), 𝜈(Ã𝑛

(𝑘))) 

  Then, one can easily get the posterior distribution of O𝑛
(𝑘)

 as follows: 

𝑝(O𝑛
(𝑘) = 1|Ã𝑛

(𝑘), Y⃗⃗ ) =
𝛿 ∙ 𝑔(Y⃗⃗ 𝑛|Ã𝑛

(𝑘))

𝛿 ∙ 𝑔(Y⃗⃗ 𝑛|Ã𝑛
(𝑘)) + (1 − 𝛿)𝒩 (Y⃗⃗ 𝑛|𝜇(Ã𝑛

(𝑘)), 𝜈(Ã𝑛
(𝑘)))

 

  To reflect the ambiguity of outliers, BIGMACS samples outlier indicators from the above posterior for each 𝑘, 

instead of classifying them as outliers if 𝑝(O𝑛
(𝑘) = 1|Ã𝑛

(𝑘), Y⃗⃗ ) > 0.5. 

S5.3. Kernel Hyperparameter Estimation 

  From now on, we assume that each (Ã𝑛
(𝑘), Y⃗⃗ ) excludes sampled outliers. To estimate the kernel covariance function 

𝕂, we first fix the type of function to the OU kernel and just estimate its hyperparameters. The estimated kernel 

hyperparameters are supposed to be shared throughout the samples and to maximize the following objective function 

for the variational free energy approximation: 

ℒ = log𝒩 (Y⃗⃗ |𝜇, ΛA + 𝕂AA𝕂AA
−1𝕂AA) −

1

2
∙ 𝑡𝑟𝑎𝑐𝑒 (ΛA

−1(𝕂AA − 𝕂AA𝕂AA
−1𝕂AA)) 

  Because A is a hidden variable (age paths) and Λ is defined by 𝑘, BIGMACS uses a stochastic gradient ascent 

algorithm that feeds Ã(𝑘) and Λ(𝑘) to A and Λ above, respectively, for a randomly chosen 𝑘 at each iteration. To deal 

with the matrix inversion of ΛA + 𝕂AA𝕂AA
−1𝕂AA, we use the following Woodbury matrix identity [Max (1950)] to 

convert it more practically: 

(ΛA + 𝕂AA𝕂AA
−1𝕂AA)

−1
= ΛA

−1 − ΛA
−1𝕂AA(𝕂AA + 𝕂AAΛA

−1𝕂AA)
−1
𝕂AAΛA

−1 

S5.4. Heteroscedastic Variance Construction 



  BIGMACS models observational variance as a continuous function over ages (heterscedastic Gaussian process 

regression). BIGMACS adopts the following close-form update [Lee and Lawrence (2019)]: 

Λ(𝑘)(𝑎) =∑((Y⃗⃗ 𝑛 − 𝜇
(𝑘)
(Ã𝑛

(𝑘)))
2

+ 𝜈
(𝑘)
(Ã𝑛

(𝑘)))𝒦ℎ(𝑎 − Ã𝑛
(𝑘)) ∑𝒦ℎ(𝑎 − Ã𝑛

(𝑘))⁄  

, where 𝒦 and ℎ > 0 are a density kernel and a bandwidth hyperparameter that can be tuned as a K-nearest 

neighborhood bandwidth [Langrene and Warin (2019)], respectively. 

 

 

6. Time Complexity 

All age models and stacks presented here were constructed on a standard desktop machine. However, 

longer stacks constructed from a large number of high resolution cores may have run times that require a computing 

cluster. Here we provide time complexity equations to estimate time complexities of future runs. 

 Age models are constructed in parallel and the time complexity depends on the number of input cores (L) 

and the number of available CPU processors (C).  During age model construction, parameter values are estimated 

first and then ages are sampled. Parameter estimation requires the particle smoothing algorithm, the Metropolis 

Hastings algorithm, and the Baum-Welch Expectation Maximization algorithm. Once parameters are estimated, ages 

are sampled with the particle smoothing algorithm and Metropolis-Hastings algorithms. Particle smoothing requires 

two steps: a forward step and a backward step. During the forward step the time complexity is quadratic to the 

number of particles (P, default is 100) and linear to the number of proxy observations (N). The backward step is 

linear to the number of particles, proxy observations, and age model samples (M0, default is 100). The Metropolis 

Hastings algorithm has a time complexity linear to the number of proxy observations, steps until the burn-in phase 

(B, default is 500) and age model samples (M0). The total time complexity for a single iteration to learn parameter 

values is equal to 𝒪 (
L

C
(P2N + PNM0 + BNM0)). Once the parameters are estimated, ages are sampled. If the 

number of age model samples is set to M (the default is 1000) and the maximum number of iterations in parameter 

estimation is equal to R (default is 10), the total time complexity for age model construction is equal to 

𝒪 (
L

C
𝑅(P2N + PNM0 + BNM0) +

L

C
(P2N + PNM + BNM)). The multiproxy age model for GIK13289-2 (which has 

30 δ18O data points and 12 radiocarbon ages) took approximately 86 seconds to run on a standard desktop machine.  

 Stack construction iterates between an age model construction step and a stack updating step. The latter 

consists of kernel parameter estimation, δ18O outlier classification, heteroscedastic variance estimation and the 

Gaussian process regression. Kernel parameter estimation requires a fixed number of iterations (S, default is 3000), 

with each iteration having a time complexity quadratic to the number of induced pseudo-inputs  (fixed to  N0, 

sampled every 0.5 kyr, see S5 for details) and linear to the number of proxy observations. Time complexity for 

outlier classification is linear to the number of age model samples and proxy observations. Heteroscedastic variance 

estimation requires computations proportional to the number of age model samples and quadratic to the number of 

total proxy observations. Finally, the Gaussian process regression has a time complexity linear to the number of 

sampled age paths, total proxy observations and the length of the stack (K), and quadratic to the number of induced 

pseudo-inputs. Therefore, the total time complexity for one stack updating step is 𝒪(T(SN0
2LN + LNM0 +

L2N2M0 + N0
2LNM0K)).  

 The stack construction algorithm includes A (default is 5) stack updating steps, and each update includes a 

new set of age models (i.e., an age model construction step). Thus the total time complexity to construct a stack is 

equal to 𝒪 (A(
L

C
𝑅(P2N + PNM0 + BNM0) + T(SN0

2LN + LNM0 + L
2N2M0 + N0

2LNM0K))). The DNEA stack 



(which contains 6 cores, 2,112 δ18O data points, 150 radiocarbon ages, and extends to 150 kyr) has a total run time 

of 1.8 hours.  
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