Supplement of

No changes in overall AMOC strength in interglacial PMIP4 time slices

Zhiyi Jiang et al.

Correspondence to: Zhiyi Jiang (z.jiang.17@ucl.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.
Supplement

Fig. 5 in the main text shows the estimated maximum contribution of AMOC-related temperature changes to the mid-Holocene annual mean temperature anomalies. Equivalents for the AMOC-induced precipitation contributions in each model end up looking rather messy, mainly because both the AMOC fingerprint and the midHolocene changes are spatially heterogeneous with several location of no changes in precipitation. To increase the clarity of the precipitation contributions, we choose instead to present the ensemble mean of the percentage of precipitation changes that could be explained by AMOC changes.

All the models are first regridded onto a common $1^\circ \times 1^\circ$ grid, then the ensemble mean AMOC-induced precipitation changes (ΔP_{Ψ}) are computed, as are the ensemble mean simulated precipitation changes (ΔP). The ratio of these to ensemble mean fields ($\Delta P_{\Psi} / \Delta P$) is shown in the Figure below.

Figure 1. Ensemble mean plot of the precipitation changes caused by AMOC changes (ΔP_{Ψ}) at the midHolocene (left) and lig127k (right). Overlaid markers provide, the percentage of those changes that could potentially be explained by AMOC changes ($100 \times \Delta P_{\Psi} / \Delta P$): no shading indicates that AMOC contributes half or more of the changes (>50%) seen in the experiment, whilst the dotted symbol indicates a small contribution (10-50%). Areas where there this no AMOC contribution (<10%) are covered by crosshatching.