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Abstract. Three different climate field reconstruction (CFR)
methods are employed to reconstruct spatially resolved
North Atlantic–European (NAE) and Northern Hemisphere
(NH) summer temperatures over the past millennium from
proxy records. These are tested in the framework of pseu-
doproxy experiments derived from two climate simulations
with comprehensive Earth system models. Two of these
methods are traditional multivariate linear methods (princi-
pal component regression, PCR, and canonical correlation
analysis, CCA), whereas the third method (bidirectional long
short-term memory neural network, Bi-LSTM) belongs to
the category of machine-learning methods. In contrast to
PCR and CCA, Bi-LSTM does not need to assume a lin-
ear and temporally stable relationship between the underly-
ing proxy network and the target climate field. In addition,
Bi-LSTM naturally incorporates information about the se-
rial correlation of the time series. Our working hypothesis
is that the Bi-LSTM method will achieve a better reconstruc-
tion of the amplitude of past temperature variability. In all
tests, the calibration period was set to the observational pe-
riod, while the validation period was set to the pre-industrial
centuries. All three methods tested herein achieve reason-
able reconstruction performance on both spatial and temporal
scales, with the exception of an overestimation of the inter-
annual variance by PCR, which may be due to overfitting
resulting from the rather short length of the calibration pe-
riod and the large number of predictors. Generally, the re-
construction skill is higher in regions with denser proxy cov-
erage, but it is also reasonably high in proxy-free areas due to
climate teleconnections. All three CFR methodologies gen-
erally tend to more strongly underestimate the variability of
spatially averaged temperature indices as more noise is intro-

duced into the pseudoproxies. The Bi-LSTM method tested
in our experiments using a limited calibration dataset shows
relatively worse reconstruction skills compared to PCR and
CCA, and therefore our working hypothesis that a more com-
plex machine-learning method would provide better recon-
structions for temperature fields was not confirmed. In this
particular application with pseudoproxies, the implied link
between proxies and climate fields is probably close to lin-
ear. However, a certain degree of reconstruction performance
achieved by the nonlinear LSTM method shows that skill
can be achieved even when using small samples with limited
datasets, which indicates that Bi-LSTM can be a tool for ex-
ploring the suitability of nonlinear CFRs, especially in small
data regimes.

1 Introduction

The reconstruction of past climates helps to better understand
past climate variability and pose the projected future climate
evolution against the backdrop of natural climate variabil-
ity (Mann and Jones, 2003; Jones and Mann, 2004; Jones
et al., 2009; Frank et al., 2010; Schmidt, 2010; Christiansen
and Ljungqvist, 2012, 2017; Evans et al., 2014; Smerdon
and Pollack, 2016). Paleoclimate reconstructions also pro-
vide us with a deeper perspective to better understand the
effect of external forcing on climate (Hegerl et al., 2006,
2007; Schurer et al., 2013, 2014; Anchukaitis et al., 2012,
2017; Tejedor et al., 2021a, b). However, systematic obser-
vational and instrumental climate records are only available
starting from the middle of the 19th century, which fails to
capture the full spectrum of past climate variations. Conse-
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quently, our understanding of climate variations prior to 1850
is mainly based on indirect proxy records (such as tree rings
and ice cores; Jones and Mann, 2004). The reconstruction of
past climates based on proxy data requires the application of
statistical methods to translate the information contained in
the proxy records into climate variables such as temperature.
These methods add an additional layer of statistical uncer-
tainty and bias to the final reconstruction, in addition to the
uncertainties originating in the sparse data coverage and in
the presence of non-climatic variability in the proxy records.
All these sources of error impact the quality of climate re-
constructions. One way to estimate this impact is to test us-
ing reconstruction methods in the controlled conditions pro-
vided by climate simulations with state-of-the-art Earth sys-
tem models. These models provide virtual climate trajecto-
ries, which are from the model’s perspective physically con-
sistent, despite possibly not being completely realistic. The
skill of the statistical method and the impact of proxy net-
work coverage and of the amount of climate signal present in
the proxy records can thus be evaluated in that virtual real-
ity of climate models once adequate synthetic proxy records
are constructed. These tests are generally denoted as pseudo-
proxy experiments (PPEs; Smerdon, 2012; Gómez-Navarro
et al., 2017).

Many scientific studies that employ pseudoproxies and
real proxies have focused on global, hemispheric climate
field, or climate index reconstructions (Mann and Ruther-
ford, 2002; Mann et al., 2005; von Storch et al., 2004; Smer-
don, 2012; Michel et al., 2020; Hernández et al., 2020).
These studies have identified several deficiencies that are
common to most climate reconstruction methods, such as a
general tendency to “regress to the mean”, which results in an
underestimation of the reconstructed climate variability. This
underestimation becomes more evident when the available
proxy information becomes of lower quality, diminishing the
climate signal contained in the proxy records. In addition,
sparser networks, and thus shrinking proxy network cover-
age, may lead to biased reconstructions (Wang et al., 2014;
Evans et al., 2014; Amrhein et al., 2020; Po-Chedley et al.,
2020). Thus, significant scope still remains for further de-
veloping and evaluating climate field reconstruction (CFR)
methodologies and designing methods that are less prone
to those common deficiencies (Christiansen and Ljungqvist,
2017).

In the present study, we test a nonlinear CFR method that
belongs to the machine-learning family, a bidirectional long
short-term neural network (Bi-LSTM), which has not, to our
knowledge, been applied to CFR yet. We compare the per-
formance of this method to two well-established classical
multi-variate linear regression methods, principal component
regression (PCR), and canonical correlation analysis (CCA).
Traditional CFRs usually assume linear and temporally sta-
ble relationships between the local variables captured by the
proxy network and the target climate field. Likewise, the spa-
tial patterns of climate variability are considered stationary

(Coats et al., 2013; Pyrina et al., 2017; Wang et al., 2014;
Smerdon et al., 2016; Yun et al., 2021). However, links be-
tween climate fields can be nonlinear (Schneider et al., 2018;
Dueben and Bauer, 2018; Huntingford et al., 2019; Nadiga,
2020). Nonlinear machine-learning-based CFR methods (for
instance, artificial neural networks, ANN) could help capture
underlying linear and nonlinear relationships between proxy
records and the large-scale climate (Rasp and Lerch, 2018;
Schneider et al., 2018; Rolnick et al., 2019; Huang et al.,
2020; Nadiga, 2020; Chattopadhyay et al., 2020; Lindgren et
al., 2021). Moreover, machine-learning methods do not nec-
essarily rely on statistical methods to first obtain the principal
spatial climate patterns, such as principal component analy-
sis (PCA). The full inherent variability in the original dataset
is sequentially and dynamically adjusted and captured with
optimized hyper-parameters during the model training pro-
cess (Goodfellow et al., 2016).

Within the family of machine-learning methods, recurrent
neural networks (RNNs) and long short-term memory net-
works (LSTMs) are characterized by specifically incorpo-
rating the sequential structure of the predictors to estimate
the predictand (Bengio et al., 1994). This property makes
them promising methods to ameliorate the underestimation
of variability that affects many other methods. Our assump-
tion here is that the methods would be able to better cap-
ture episodes of larger deviations from the mean, especially
those that stretch over several time steps. However, this as-
sumption is not guaranteed to be realistic in practical situa-
tions and needs to be tested. The classical recurrent neural
network and long short-term memory network can usually
only receive and process information from prior forward in-
ference steps. A variant of the LSTM network is the bidirec-
tional (Bi)-LSTM. It handles information from both forward
and backward temporal directions (Graves and Schmidhuber,
2005). It has been demonstrated that the Bi-LSTM model
is capable of learning and capturing long-term dependen-
cies from a sequential dataset (Hochreiter and Schmidhuber,
1997) and that it achieves better performance for some clas-
sification and prediction tasks (Su et al., 2021; Biswas and
Sinha, 2021; Biswas et al., 2021). Since climate dynamics
usually exhibit temporal dependencies, the Bi-LSTM method
might learn these dependencies better, which could provide
another advantage when capturing the time evolution of the
reconstructed climate field.

Bi-LSTM combines two independent LSTMs, which al-
lows the network to incorporate both backward and forward
information for the sequential time series at every time step.
Our working hypothesis is that a more sophisticated type
of RNN could better replicate the past variability, perhaps
even more so for extreme values. Thus, we would like to test
whether this property of Bi-LSTM is useful for paleoclimate
research in the future based on our experiments, especially
by employing only a limited calibration and training dataset
that could also be a challenge for training deep neural net-
works (Najafabadi et al., 2015).
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This calibration period, which is usually chosen in the real
reconstructions as the observational period (or the overlap
period between observations and proxy records), can repre-
sent a challenge not only for a parameter-rich method such as
Bi-LSTM but also for the usual linear methods. For instance,
a global or hemispheric proxy network may span of the or-
der of 100 sites, and a regional proxy network may span a
few dozen sites. If the calibration period spans at most 150
independent time steps, a method like principal component
regression, in which one principal component is predicted by
the whole proxy network, is rather close to overfitting condi-
tions, especially in a global or hemispheric cases. Canonical
correlation analysis with a PCA pre-filtering would be much
more robust to the potential overfitting if only a few lead-
ing PCs are retained in the pre-filtering step (see Sect. 2.2.).
Here, we test the methods in our pseudoproxy experiments
in the conditions that they are usually applied in real recon-
structions, in which overfitting may be a real risk.

For the sake of completeness, we briefly mention here
the relevance for our study of the reconstruction methods
that combine the assimilation of information from proxy and
from climate simulations (Steiger et al., 2014; Carrassi et
al., 2018). The family of data-assimilation methods constrain
or modify the spatially complete output of climate simula-
tions conditional on the sparse locally available information
provided by proxy records. Therefore, they are in principle
not so strongly constrained by the assumption that the spa-
tial covariance is stationary over time. Another advantage is
that they provide an estimation of reconstruction uncertain-
ties in a more straightforward way, especially those meth-
ods formally based on a Bayesian framework. On the other
hand, the underlying data-assimilation equations do require
the estimation of large cross-covariance matrices, e.g., based
on Kalman filters, and this usually makes the application of
some sort of subjective regularization of the error-covariance
matrices necessary (Harlim, 2017; Janjić et al., 2018). They
also might be computationally much more demanding than
purely data-driven methods. Considering the replication of
the amplitude of past variations, it depends on factors that
are independent of the method itself, such as the variance
generated by the climate model and also on the inherent un-
certainties of the proxy data. Therefore, an underestimation
or overestimation of reconstructed variance cannot be char-
acterized as a systemic property of these methods. They have
the very important advantage in that they combine all of the
available information about past climate (simulations, forc-
ings, proxy data) into a powerful tool.

These special characteristics make the comparison with
purely data-driven methods more difficult and probably un-
fair, since data assimilation uses a much larger amount of
information from climate simulations. In addition, this use
of information from climate simulations compromises one
of the main objectives of climate reconstructions, namely the
validation of climate models in climate regimes outside the
variations of the observational period. Therefore, the testing

of purely data-driven reconstruction methods retains its rel-
evance, despite the availability of more sophisticated data-
assimilation methods.

In this evaluation of three climate reconstruction meth-
ods, we focus on the whole Northern Hemisphere tempera-
ture field and on the temperature field of the North Atlantic–
European region. In the North Atlantic region, the most im-
portant mode of temperature variations at longer time se-
ries is the Atlantic multidecadal variability (AMV). The
AMV is sometimes defined as the decadal variability of the
North Atlantic sea-surface temperature (SST), whereas the
term Atlantic multidecadal oscillation (AMO) is reserved
for the decadal internal variations (excluding the externally
forced variability). Here we focus on the total variability of
the North Atlantic SST and define the index of the AMV
as the decadal filtered surface temperature anomaly over
the North Atlantic region (0–70◦ N, 95◦W–30◦ E), exclud-
ing the Mediterranean and Hudson Bay, following Knight
et al. (2006). It has been shown that AMV is related to
many prominent features of regional or even hemispheric
multidecadal climate variability, for example European and
North American summer climate variability (Knight et al.,
2006; Qasmi et al., 2017). In this context, we test the re-
construction skill for the spatially resolved summer tempera-
ture anomalies over the Northern Hemisphere (NH; 0–90◦ N,
180◦W–180◦ E) and North Atlantic–European region (NAE;
0–88◦ N, 60◦W–30◦ E), as well as for the spatially averaged
AMV and NH summer temperature anomalies, calculated
from the spatially resolved reconstructed fields. The recon-
struction of mean temperature series could provide a general
assessment of the skill for reconstructing extreme tempera-
ture phases (e.g., related to volcanic eruptions or changes in
solar activity), which can serve as benchmarks to test the po-
tential capability of different CFR methods regarding those
anomalies.

2 Data and methods

2.1 Data

2.1.1 Proxy data locations

Regarding the networks of real proxies used so far, St.
George and Esper (2019) reviewed contemporary studies
of previous NH temperature reconstructions based on tree
ring proxies (Mann et al., 1998, 2008, 2007, 2009a, b;
Emile-Geay et al., 2017). St. George and Esper (2019) con-
cluded that the present-day generation of tree-ring-proxy-
based reconstructions exhibit high correlations with sea-
sonal hemispheric summer temperatures and display rela-
tively good skill in tracking year-to-year climatic variabili-
ties and decadal fluctuations compared to former proxy net-
works, as found by Wilson et al. (2016) and Anchukaitis
et al. (2017). Thus, we test NH summer temperature CFRs
employing a pseudoproxy continental network that is the
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result of blending two networks: the PAGES 2k Consor-
tium (Emile-Geay et al., 2017) multiproxy network and the
climate–tree ring network of St. George (2014).

In the oceanic realm in the North Atlantic, additional ma-
rine proxy records based on mollusk shell bands (Pyrina et
al., 2017) have also been used for climate reconstructions.
These records, similar to the dendroclimatological records,
are based on annual growth bands, are annually resolved, and
usually represent surface or subsurface water temperature.
Therefore, they are technically rather similar to dendrocli-
matological records. Compelling evidence has already been
provided by earlier studies that Atlantic Ocean variability is
an important driver of European summer climate variability
(Jacobeit et al., 2003; Sutton and Hodson, 2005; Folland et
al., 2009). Thus, we also employ an updated proxy network
by combining the locations of marine proxies and tree ring
proxies (Pyrina et al., 2017; Emile-Geay et al., 2017; Luter-
bacher et al., 2016) to test the NAE summer temperature re-
constructions.

The pseudoproxies are constructed from the simulated grid
cell summer mean temperature sampled from two climate
model simulations over the past millennium (see following
subsections). In this context, 11 real proxy locations in the
North Atlantic–European region (Pyrina et al., 2017; Emile-
Geay et al., 2017; Luterbacher et al., 2016) are selected for
regional NAE (0–88◦ N, 60◦W–30◦ E) PPEs, while 48 proxy
locations across the Northern Hemisphere are chosen from
the PAGES 2k network. The original Northern Hemisphere
PAGES network was trimmed down by removing proxies
that may show a combined temperature–moisture response
and by selecting only one proxy among those deemed to
be too closely located (and thus redundant from the cli-
mate model perspective). Specifically, the 48 dendrochronol-
ogy locations are selected according to Fig. 4 of St. George
(2014), which shows the correlation coefficient between the
dendroclimatological proxy records and summer tempera-
ture. At most of the retained locations, the correlation be-
tween the dendroclimatological record and regional temper-
ature is higher than 0.5.

2.1.2 Climate models

The choice of climate models to run pseudo-experiments will
have an impact on the estimation of method skills (Smer-
don et al., 2011, 2015; Parsons et al., 2021), since the spa-
tial and temporal cross-correlations between climate vari-
ables are usually model dependent. Thus, it is advisable
to use several “numerical laboratories” and employ several
comprehensive Earth system models (ESMs) to evaluate re-
constructions methods. Constructing PPEs based on differ-
ent ESMs will highlight model-based impacts on the re-
constructed magnitude and spatial patterns (Smerdon et al.,
2011; Smerdon, 2012; Amrhein et al., 2020). Accordingly,
in this study two different comprehensive ESMs are em-
ployed as a “surrogate” climate database for setting up PPEs:

the Max-Planck-Institute Earth System Model model (MPI-
ESM-P) and the Community Earth System Model (CESM).

One of the climate models utilized in our study is the Max-
Planck-Institute Earth System Model (MPI-ESM-P) with
a spatial horizontal resolution of about 1.9◦ in longitude
and 1.9◦ in latitude. The simulation covers the period from
100 BCE to 2000 CE. The model MPI-ESM-P consists of
the spectral atmospheric model ECHAM6 (Stevens et al.,
2013), the ocean model MPI-OM (Jungclaus et al., 2013),
the land model JSBACH (Reick et al., 2013), and the bio-
geophysical model HAMOCC (Ilyina et al., 2013). The setup
of our simulations corresponds to the MPI-ESM-P LR setup
in the CMIP5 simulations suite. However, since the present
simulation does not belong to the CMIP5 project, the forc-
ings used in this simulation and additional technical details
are shown in Appendix A.

The second climate model is the Community Earth Sys-
tem Model (CESM) Paleoclimate model from the National
Center for Atmospheric Research (NCAR) (Otto-Bliesner
et al., 2016) with a spatial resolution of 2.5◦ in longitude
and 1.9◦ in latitude (https://www.cesm.ucar.edu/projects/
community-projects/LME/, last access: 15 January 2022).
The CESM simulation extends from 850 CE to 2006 CE us-
ing CMIP5 climate forcing reconstructions (Schmidt et al.,
2011) and reconstructed forcing for the transient evolution
of aerosols, solar irradiance, land use conditions, greenhouse
gases, orbital parameters, and volcanic emissions. The atmo-
sphere model employed in CESM is CAM5 (Hurrell et al.,
2013), which is a significant advancement of CAM4 (Neale
et al., 2013), whereas CCSM4 uses CAM4 as its atmospheric
component. The CESM uses the same ocean, land, and sea
ice models as CCSM4 (Hurrell et al., 2013). We use the last
single-ensemble simulation (member 13) from the Last Mil-
lennium Ensemble (LME).

2.2 Methods

2.2.1 Construction of pseudoproxies

To test the statistical reconstruction methods in the virtual
laboratories of climate model simulations, we need records
that mimic the statistical properties of real proxy records.
The most important properties are their correlation to the
local temperature and their location in a proxy network. A
third important characteristic is the network size and tempo-
ral coverage.

The usual method to produce pseudoproxy records in cli-
mate simulations is to sample the simulated temperature
at the grid cell that contains the proxy location and con-
taminate the simulated temperature with added statistical
noise so that the correlations between the original tempera-
ture and the contaminated temperature resembles the typical
temperature–proxy correlations. The real correlation is on the
order of 0.5 or above for good proxy records. This parameter
can be modulated in the pseudoproxy record by the amount
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of noise added to the simulated temperature, and different
proxy networks will help us to reveal how and to what extent
degradations of reconstruction skill caused by the amount of
non-climatic signals present in the pseudoproxies.

Ideal pseudoproxies contain only the temperature signal
subsampled from the climate model. We then perturb the
ideal pseudoproxies with Gaussian white noise and also with
red noise for a more realistic noise contamination experi-
ment. We generate two types of pseudoproxies by adding
Gaussian white noise and red noise (refer to Pyrina et al.,
2017) to the subsampled summer temperature time series at
the tree-ring-proxy-based locations.

The noise level can be defined using various criteria
including signal to noise ratio (SNR), variance of noise
(NVAR), and percent of noise by variance (PNV) (Smerdon,
2012; Wang et al., 2014). We employ the PNV here to de-
fine the noise level convention. The PNV expresses the ratio
between the added noise variance and the total variance of
resulting the pseudoproxy time series. Without loss of gen-
eralization we assume that the ideal proxy has unit variance,
and thus

PNV=
NVAR

1+NVAR
. (1)

Red noise for a specific PNV could be defined by

Redt = α1Redt−1+Whitet , (2)

where Redt represents the red noise time series, α1 indicates
the damping coefficient, here in our study it is equal to 0.4
(Larsen and MacDonald, 1995; Büntgen et al., 2010; Pyrina
et al., 2017), and Whitet is a random white noise time series.

Although individual real proxies contain different amounts
of noise (non-climatic variability), here we assume a uniform
level of noise throughout the whole pseudoproxy network. In
addition, real proxy records contain temporal gaps, and not
all records span the same period. For the sake of simplicity,
we assume in our pseudoproxies network that the data have
no temporal gaps and that all records cover the whole period
of the simulations.

The dataset employed here for constructing the accord-
ing PPEs database is split into a calibration period that
spans 1900–1999 CE, and a validation period that spans 850–
1899 CE. This calibration period would represent the typical
period of calibration of real proxy records. All the validation
statistics of the CFR results are derived against the recon-
struction period of 850–1899 CE.

2.2.2 Principal component regression

Principal component analysis is employed to construct a few
new variables that are a linear combination of the compo-
nents of the original climate field and that ideally describe
a large part of the total variability. The linear combinations
that define the new variables are the eigenvectors of the cross-
covariance matrix of the field. Associated with each variable

(eigenvector), a principal component time series (scores) de-
scribes its temporal variation. In the PCR, the predictands are
those scores identified by PCA of the climate field (Hotelling,
1957; Luterbacher et al., 2004; Pyrina et al., 2017). This
results in a reduction of dimensionality without losing too
much information and reduces the risk of over-fitting. In the
present study, the retained PCs capture at least 90 % of the
cumulative temporal variance of climate field. After select-
ing the empirical orthogonal functions (EOFs) and principal
components (PCs) based on the calibration dataset and es-
tablishing the desired linear regression relationships between
the PCs and the proxy dataset (predictors), the PCs in the val-
idation period are reconstructed using the estimated regres-
sion coefficients. The full climate field is then reconstructed
by the linear combination of the reconstructed PCs and their
corresponding EOFs. A given climate field xt at time step t
can be decomposed as follows:

xm,t =
∑k

n=1
PCn,tEOFm,n, (3)

wherem is the grid index of the field, t is the time index, and
k denotes the total numbers of retained PCs.

The linear relationship between proxies and targeted cli-
mate field is established by the regression equation:

PCn,t =
∑j

m=1
ωn,mProxym,t + ε, (4)

where the index m runs over the proxies, j denotes the total
numbers of proxies, ω is the linear function coefficient, and
ε denotes a residual term. The residual could be an unob-
served random variable that adds noise to the linear relation-
ship between the dependent variable (PC) and the targeted
regressors (proxy or pseudoproxy) and includes all effects on
the targeted regressors not related to the dependent variable
(Christiansen, 2011).

The ω parameters are estimated by ordinary least squares.
Here, it is assumed that climate-sensitive proxies are linearly
related with the climate PCs. Based on Eq. (5) using the PCR
method, the PCs during the validation interval will be re-
constructed assuming that the linear coefficients derived in
Eq. (5) are constant in time:

P̂Cn,t =
∑j

m=1
ωn,mProxym,t . (5)

The final reconstructed field x̂ will be derived by the lin-
ear combination of the reconstructed P̂C with the EOFs de-
rived from the calibration dataset, thereby assuming that the
EOF patterns remain constant in time (Gómez-Navarro et al.,
2017; Pyrina et al., 2017).

2.2.3 Canonical correlation analysis

Canonical correlation analysis (CCA) is also an eigenvec-
tor method. Similarly to PCA, CCA decomposes the vari-
ance of the fields as a linear combination of spatial patterns
and their corresponding amplitude time series. In contrast to
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PCA, where the target is to maximize the explained variance
with a few new variables, CCA constructs pairs of predictor–
predictand variables that maximize the temporal correlation
of the corresponding amplitude time series. The pairs of vari-
ables are identified by solving an eigenvalue problem that re-
quires the calculation of the inverse of the covariance matri-
ces of each field. These matrices can be pseudo-degenerate
(one eigenvalue much smaller than the largest eigenvalue),
and therefore the calculation of their inverse is, without reg-
ularization, numerically unstable. This regularization can be
introduced by first projecting the original fields onto their
leading EOFs (Widmann, 2005; Pyrina et al., 2017). This
also reduces the number of degrees of freedom – thus hinder-
ing overfitting – and eliminate potential noise variance. Af-
ter the dimensional transformation, a small number of pairs
of patterns with high temporal correlation will be retained.
In the present study, the number of retained PCs capture at
least 90 % cumulative variance of predictand climate field.
Then these retained PC time series will be used as input vari-
ables of CCA to calculate the canonical correlation patterns
(CCPs) and canonical coefficients (CCs) time series for both
the proxy and temperature field. The reconstructed climate
field can be calculated by a linear combination of the CCPs
with CCs for each time step t .

xm,t =
∑l

n=1
CCfield

n,t CCPfield
m,n (6)

Proxym,t =
∑l

n=1
CCproxy

n,t CCPproxy
m,n (7)

Proxy denotes the reconstructed proxy field, and l is the
number of CCA pairs. The correlation between each pair
CC (proxy, field) is the canonical correlation, which is the
square root of the CCA eigenvalues. Therefore, once each
CCproxy(t) is calculated from the proxy data through the val-
idation period, the corresponding CCfield(t) can be easily es-
timated as proportional to CCproxy(t), since the correlation
between the different CCproxy

n (t) is zero. The final reconstruc-
tion of the target climate field will be derived by a linear com-
bination of CCPfield(t) and CCfield(t), assuming again that the
dominant canonical correlation patterns of climate variability
are stationary in time.

The CCA method maximizes the correlation that can be
attained with a linear change of variables, i.e., with a linear
combination of the grid cell series in each of the two fields.
In the following, admittedly artificial, example, the resulting
canonical correlation can be very high, and yet the recon-
struction skill in general can remain low. If pair of grid cells,
one each from the two fields, are very highly correlated to
each other (and assuming here no PCA pre-filtering), CCA
will pick those two cells as the first CCA pair (i.e., a pattern
in each field with very high loadings only on those cells). The
rest of the cells will not contribute to the CCA pattern. The
reconstruction skill will therefore generally be very low in all
those cells despite the canonical correlation being very high.
In general, the reconstruction skill will be a monotonic func-
tion of the canonical correlation coefficient and the variance

explained by the canonical predictand pattern. If the latter
is low, the reconstruction skill will be low in large areas of
the predictand field, even when the canonical correlation is
possibly high.

2.2.4 Bidirectional long short-term memory neural
network

As a nonlinear machine-learning method, here we test a
bidirectional long short-term memory neural network (Bi-
LSTM). The LSTM networks, in contrast to the more tra-
ditional neural networks, also capture the information of the
serial co-variability present in the data, and therefore they
are suitable to tackle data with a temporal structure. These
methods are usually applied to the analysis of sequential data,
such as speech and time series. The rationale of using these
types of networks for climate reconstructions is the hypothe-
sis that a better representation of the serial correlation could
ameliorate the aforementioned underestimation of the past
climate variations by most data-driven methods (“regression
to the mean”, Smerdon, 2012).

The structure of LSTM network is more complex than the
structure of a traditional neural network. The LSTM esti-
mates a hidden variable h(t) that encapsulates the state of the
system at time t . The computation of the new system state at
time t+1, h(t+1), depends on the value of the predictors at
t + 1 but also on the value of the hidden state at time t , h(t).
The training of the LSTM can be accomplished sequentially
by assimilating the information present in the training data
from time steps in the past of the present time step. In some
loose sense, a LSTM network would be the machine-learning
equivalent of a linear auto-regressive process.

A Bi-LSTM network, the training of the network is ac-
complished by feeding it with sequential data iteratively, both
forwards towards the future and backwards towards the past.
Both forward and backward assimilations are processed by
two separated LSTM neural layers, which are connected to
the same output layer. Figure 1 illustrates the bidirectional
structure of the Bi-LSTM network. Given a set of predictor–
predictand variables (Xt , Y t ), our goal is to train a nonlinear
function:

Ỹt = F (X), (8)

where Ỹ t = F (Xt ) is as close as possible to Y t . The simi-
larity between Ỹ t and Y t is defined by a cost function. The
structure of this complex nonlinear function F is defined as
follows:

ft = σ (Wf [ht−1,xt ] +Bf ), (9)
it = σ (Wi[ht−1,xt ] +Bi), (10)
At = tanh(WA[ht−1,xt ] +BA), (11)
Ct = ftCt−1+ itAt , (12)
ot = σ (Wo[ht−1,xt ] +Bo), (13)
ht = ot tanh(Ct ), (14)
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where Wf , Wi , WA, and Wo represent several weight matri-
ces and Bf , Bi , BA, and Bo represent different bias matrices.
σ is the gate activation function. Here we utilize the rectified
linear unit function (ReLU; Ramachandran et al., 2017).

At time step t − 1, the hidden state of LSTM cell’s hidden
layer is preserved as ht−1, and this vector is combined with
the vector of current input variables Xt to obtain the state of
the forget gate, ft (Eq. 9) and the input gate it (Eq. 10) and
the state of memory cell At (Eq. 11). This memory cell state
At is linearly combined with the previous state of the cell
output Ct−1 to update the value of its state. The weights of
these linear combinations are the states of the forget gate ft
and of the input gate it (Eq. 12). The state of the output gate
ot is calculated from the previous hidden state and the current
input variables (Eq. 13). This output is used to compute the
updated hidden state ht using the state of the cell output Ct
(Eq. 14) (Huang et al., 2020; Chattopadhyay et al., 2020).

In the present application to climate reconstructions, we
have a set of input pseudoproxy data Xnt = [xt−i, . . .,xt−1]

and an output target temperature time series Ymt = [yt−i ,. . . ,
yt−1]. The forward LSTM hidden state sequence

−→
ht (note the

arrow direction) is calculated employing input information in
a positive direction from time t − n to time t − 1 iteratively,

and for backward LSTM cell the hidden state sequence
′

ht
is computed using the input within a reverse direction from
time t − 1 to time t − n iteratively. The final outputs from
the forward and backward LSTM cells are calculated utiliz-
ing the calculation equation (Cui et al., 2018; Jahangir et al.,
2020):

Ỹt = concat(
−→
ht ,

′

ht ), (15)

where concat is the function used to concatenate the two out-

put sequences
−→
ht and

′

ht (Cui et al., 2018; Jahangir et al.,
2020).

During the training process, the calibration dataset is fed
into the LSTM cell, and it will map the potential latent rela-
tionships (both linear and nonlinear) between input and out-
put variables by updating its weight and threshold matrices.
The objective cost function for Bi-LSTM to be minimized
during training is the Huber loss that expresses the mismatch
between the reconstructed climate field and the “real” climate
field from model simulations. We minimize the loss with gra-
dient descent (Goodfellow et al., 2016). Huber loss has a key
advantage of being less sensitive to outlier values:

Lδ(Y,f (X))=


1
2

(Y − f (X))2

δ|Y − f (X)| −
1
2
δ2

, (16)

where f denotes the neural network and the brackets denote
the Euclidean norm. The Huber loss function changes from
a quadratic to linear when δ (a positive real number) varies
from small to big (Meyer, 2020). Huber loss will approach

L2 loss when δ tends to be 0 and approach L1 when δ tends
to be positive infinity; here we test its value and finally set δ
1.35. L2 is the square root of the sum of squared deviations,
and L1 is the sum of absolute deviations.

The main mechanism of LSTM is that the LSTM block
manages to develop a regulated information flow by control-
ling which proportion of information from the past should
be “remembered” or should be “forgotten” as time advances.
By controlling the regulation of the information flow, LSTM
will manage to learn and preserve temporal characteristics
and dependencies of the specific time series.

A neural network is generally composed of one input layer,
several hidden layers, and one output layer. Many hyper-
parameters in the neural network usually need to be initial-
ized and tuned for obtaining reasonable results within spe-
cific tasks, for instance, activation functions in each layer,
objective functions for minimizing the loss of the network
model, and learning rates for controlling the convergence
speed of the network model (Goodfellow et al., 2016). In our
specific CFR experiments, we have explored a range of Bi-
LSTM architectures, including different network depths, in-
troducing dropout layers, using different learning rates, and
employing different loss functions to provide a more com-
prehensive evaluation of the Bi-LSTM performance and ef-
fectiveness (these tests are shown in Appendix B). These
hyper-parameters within Bi-LSTM are finally selected and
employed based on our experimental tests (Knerr et al., 1990;
Kingma and Ba, 2014; Yu et al., 2019).

3 Results

We evaluate the reconstruction skill of the different meth-
ods based on the Pearson correlation coefficient (cc) between
each target series and the corresponding reconstructed se-
ries and their standard deviation ratio (SD ratio, SD ratio=
SDreconstruction/SDmodel). All of the evaluation metrics are
calculated in the validation period from 850 to 1899 CE.
High values of derived cc indicate better temporal covari-
ance between the target and reconstructed results, while a
high SD ratio denotes that more variance is preserved in the
reconstructions.

3.1 North Atlantic–European CFRs

Figure 2 illustrates the CFR results for the North Atlantic–
European region employing the 11 ideal noise-free pseudo-
proxies based on the three CFR methodologies and the two
climate model simulations. When comparing the reconstruc-
tion skills across these three CFR methods derived with the
same climate model (for example, MPI and CESM), the spa-
tial cc patterns calculated between targets and derived re-
constructions among three CFR methods generally exhibit
similarities. This indicates that all three CFR methods show
generally reasonable spatial reconstruction skills (mean cc
values over the entire NAE are bigger than 0.4). In addi-
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Figure 1. The bidirectional structure of the Bi-LSTM network.

tion, cc maps in Fig. 2 show higher values over regions
with a denser pseudoproxy network. This confirms the well-
documented tendency among different multivariate linear-
based regression methods for better reconstruction skill in
the sub-regions with denser pseudoproxy sampling than in
regions with sparser networks (Smerdon et al., 2010, 2011;
Steiger et al., 2014; Evans et al., 2014; Wang et al., 2014).
The cc pattern of the nonlinear method Bi-LSTM is very sim-
ilar to that of the linear methods, even though the structure of
the statistical models is very different. This shows that the
nonlinear method employed herein has as similar tendency
to linear models for obtaining better reconstruction skill over
regions with denser proxy sampling.

The picture that emerges from the SD ratio is also very
similar for the three methods (Fig. 2). In the regions with a
high pseudoproxy density, the SD ratio is high, but outside
of the densely sampled areas, all three CFR methods expe-
rience a similar degree of interannual variance underestima-
tion. Appendix C displays the ratio of SD after applying a
30-year filter to the reconstructions and the target fields. The
underestimation of variance is larger at these timescales, but
the overall conclusion for all three methods remains.

Gaussian white and red noise is constructed and added to
the ideal temperature signal of the 11 pseudoproxies subsam-
pled from the MPI and CESM models. The corresponding
spatial cc and SD ratio patterns are displayed in Figs. 3 and 4,
respectively. Compared to reconstructions with ideal pseudo-
proxies (Fig. 2), a strong degradation of reconstruction skill
among all CFR methods occurs over the entire NAE. The
reduction in skill is especially profound in the regions where
the pseudoproxy network is denser. Weak reconstruction skill
exists over regions where proxies are available and within
their proximity. These noise contamination results (shown in
Figs. 3 and 4) again demonstrate that the nonlinear method
exhibits CFR similarities to the linear methods, whereas Bi-
LSTM shows relatively worse reconstruction skill, showing a
variance underestimation compared to the other two methods
using CESM-based PPEs (referring to the spatial SD ratio in
Fig. 4).

The ratio of reconstructed to target variance after 30-year
low-pass filtering is also larger than for the interannual vari-
ance, but otherwise the patterns share the same properties
with the ratios of interannual SD (not shown for the sake of
brevity).

In general, all three CFR methods exhibit similar recon-
struction performance. Specifically, better skills over regions
where denser pseudoproxies exist indicate that the spatial co-
variance patterns learned from the training data (in the 20th
century) are stationary enough to represent the covariance
during the reconstruction period over the NAE domain. It
also shows that teleconnection patterns are to some degree
localized and do not share a considerable amount of covari-
ance outside of the sampled regions.

3.2 Northern Hemisphere CFRs

NH summer temperature anomaly reconstructions based on
PPEs using three CFR methodologies and the three climate
models are displayed in Figs. 5–7.

The spatial cc maps for the ideal PPEs in NH are shown
in Fig. 5. Again, all three CFR methodologies yield rel-
atively similar spatial cc patterns of skill for each of the
climate models employed here. Skillful reconstructions are
again achieved over regions with a denser pseudoproxy net-
work (over the North American and Eurasian regions). In ad-
dition, relatively high cc values also occur in tropical regions.
A relatively high reconstructed skill is achieved over regions
with fewer (or without) pseudoproxies, indicating that cli-
mate teleconnections between tropics and mid-latitude re-
gions could be responsible for the reconstruction skill in trop-
ical regions.

All derived CFRs suffer from underestimation of interan-
nual variance, as shown in Fig. 5 and in Table 1, except that
the PCR method presents a clearly interannual variance over-
estimation referring to the specific spatial SD ratio map in
Fig. 5. This overestimation may be impacted by overfitting,
since the number of predictors is 47 pseudoproxies and the
calibration period spans 100 time steps. The spatial distri-
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Figure 2. NAE reconstruction results of CFR methods (including PCR, CCA, and Bi-LTSM) using MPI and CESM numerical simulations
as the target temperature field. All of the CFR methods employ the same proxy network with a full set of 11 ideal pseudoproxies that span
the same reconstruction period from 850 to 1899 CE. The employed pseudoproxy geolocations are shown as white circles in all panels. CC
is correlation coefficient, and SD represents standard deviation.

Figure 3. The same as Fig. 2 but for employing the full 11-pseudoproxy network with white noise contamination.

butions of the SD ratio also vary between climate models
and CFR methodologies. They are also spatially heteroge-
neous. The CCA method and Bi-LSTM generally preserve
more variance over regions with denser pseudoproxies in
both CESM and MPI model, and a relatively higher SD ra-
tio appeared in tropical regions within Bi-LSTM-based PPEs
shown in Fig. 5.

The CCA methodology seems to suffer more strongly
from variance losses (see Table 1) over the entire NH com-
pared to PCR and Bi-LSTM.

Considering the general methodological skill, as indicated
by the derived spatial mean cc and SD ratio values in Table 1,
the Bi-LSTM method presents relatively worse performance
with lower mean cc. The methods PCR and Bi-LSTM gen-

erally outperform the CCA methodology, showing a higher
mean SD ratio within ideal PPEs.

3.3 Spatially variability patterns of the reconstructed
fields

In this section, we test the skill of the CFR in replicating
the leading spatial patterns of variability, conducting an EOF
analysis of the reconstructed temperature fields and com-
pare them with the patterns derived from the target climate
simulations. In our PPEs, the dominant patterns of tempera-
ture variability are assumed to be stationary. This assump-
tion is also required in real climate reconstructions. Any
non-stationarity would be reflected in a loss of reconstruc-
tion skill. This type of comparison is related to the tests per-
formed by Yun et al. (2021). In this comparison, the PCA and
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Figure 4. The same as Fig. 2 but for employing the full 11-pseudoproxy network with red noise contamination.

Figure 5. NH reconstruction results of CFR methods (including PCR, CCA, and Bi-LSTM) using MPI and CESM numerical simulation as
target temperature field. All of the CFR methods employ the same proxy network with the full set of 48 ideal pseudoproxies that span the
same reconstruction period from 850 to 1899 CE. The employed pseudoproxies geolocations based on tree ring width (TRW) are shown as
white circles in all panels. CC is correlation coefficient, and SD represents standard deviation.

CCA methods have a clear built-in advantage relative to the
Bi-LSTM network, since these two methods operate by de-
sign in the space spanned by the leading EOFs of the temper-
ature field. In the case of PCR, these reconstructed fields are
a linear combination of the EOF patterns themselves. There-
fore, so long as the reconstructed PC series remain uncor-
related, the EOFs of the reconstructed field will be exactly
equal to the EOFs of the target climate simulations. Devia-
tions from this behavior may be caused by the lack of strict
orthogonality between the reconstructed PC series caused by
the relationship between the proxies (predictors) and the PC
series (predictands). However, it is reasonable to think that it
would not be a priori surprising that the EOFs of the PCR-
reconstructed fields would be similar to the original EOFs.
The case for CCA is theoretically similar, but there are some
potentially important points to bear in mind. The CCA pat-
terns, which serve as a basis for the reconstructed field, are
linear combinations of the original EOFs. These linear com-
binations may, for instance, not include the leading EOF of

the original field, and thus the EOFs of the reconstructed field
will not replicate the original leading EOF, even if the CCA
series can be perfectly reconstructed by the proxy series. The
third method (Bi-LSTM) is in this sense at a disadvantage
relative to PCR and CCA, since the spatial covariance of the
original field is not technically incorporated in its machinery.
If the EOF patterns of the reconstructed field resemble the
original EOF patterns, this would be an indication that the
method itself is able to capture the main covariance patterns
of the original field.

In order to have a deeper insight into the reconstruction
performance of the three CFR methods, we calculated the
four leading EOF patterns based on the results from the re-
construction interval and their proportion of explained vari-
ance of the reconstructed field derived from the three recon-
struction method using the CESM pseudoproxies. The EOF
patterns represented in Fig. 8 confirm the suggestion that
the temperature reconstructed by the PCR and CCA meth-
ods (two lower rows in Fig. 8) very closely replicates the
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Figure 6. The same as Fig. 5 but for employing the full 48-pseudoproxy network with white noise contamination.

Figure 7. The same as Fig. 5 but for employing the full 48-pseudoproxy network with red noise contamination.

three leading patterns. The fourth EOF pattern displays some
divergences from the original fourth pattern, but as we will
show later, the variance explained by this fourth EOF is al-
ready rather low, meaning that the spatial pattern may be
subject to statistical noise. More importantly, the Bi-LSTM
method (second row) does produce EOF patterns that closely
resemble the ones derived from the original field. This sup-
ports the idea that the method is able to replicate the spatial
cross-covariance of the temperature field.

The corresponding spectrum of explained variance is dis-
played in Fig. 9. Here, the percentage of explained variance
of each model is calculated as the ratio of the eigenvalue
to the total variance of the original field. This is definition
is in principle similar to the definition adopted by Yun et
al. (2021), but there is one important difference. Yun et al.
(2021), according to their methodological description, calcu-
late the portion of explained variance of each mode as the
ratio between the eigenvalue and the total variance of the re-
spective field (either original or reconstructed). This choice
could, however, cause a statistical artifact. For instance, when
using the PCR regression method, we could choose to re-
construct only the leading EOF pattern. This pattern alone
will explain 100 % of the reconstructed variance by defini-
tion, but this result would obviously be not informative. The
choice of the total variance of the original field as reference

thus leads to more informative results in general. The spectra
for model simulation and three method-based ideal PPEs in
this text are computed as the ratio between each of the first
four reconstructed eigenvalues and the cumulative sum of all
eigenvalues from the target variable.

3.4 An alternative pseudoproxy network

In this section, we summarize a few additional experiments
using the original locations of the PAGES network (Emile-
Geay et al., 2017) instead of the filtered network used in pre-
vious experiments. In this section, we show only one model
test bed for ideal, white noise, and red noise pseudoproxies.
The results obtained with the MPI-ESM-M model are similar
and are omitted here for the sake of brevity.

The reconstruction skill measured by cc and the SD ra-
tio display similar spatial patterns to those obtained with
network pre-selected according to the criteria of St. George
(2014). As shown in Fig. 10, the derived correlations are gen-
erally higher over regions where denser pseudoproxy exists
across both ideal and noisy PPEs, and weakly reconstructed
correlations appeared over pseudoproxy-free regions. The
PCR method presents a distinct interannual variance over-
estimation as shown in the specific spatial SD ratio map in
Fig. 10 among ideal and noisy PPEs, while a clearly inter-
annual variance overestimation also occurs in CCA-based
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Table 1. Skill reconstruction statistics for the Northern Hemisphere mean temperature in the verification period for ideal PPEs. The table
shows the result for three CFR methods (PCR, CCA, and Bi-LSTM) and two climate models (MPI and CESM). The numbers in parentheses
indicate the skill statistics of white-noise-contaminated and red-noise-contaminated (italics) PPEs.

Method SD ratio cc

MPI CESM MPI CESM

PCR 0.878 (0.904 / 0.977) 0.874 (0.897 / 0.913) 0.401 (0.169 / 0.135) 0.490 (0.216 / 0.206)
CCA 0.603 (0.706 / 0.694) 0.651 (0.750 / 0.778) 0.406 (0.165 / 0.131) 0.507 (0.229 / 0.218)
Bi-LSTM 0.710 (0.689 / 0.669) 0.770 (0.714 / 0.732) 0.347 (0.145 / 0.125) 0.462 (0.210 / 0.191)

Figure 8. The first four EOF patterns of the temperature field derived from CESM target, and from the temperature field reconstructed by
the three methods-based ideal PPEs.

CFRs in the noisy PPEs. A relatively reasonable SD ratio
is revealed in tropical regions within Bi-LSTM-based PPEs
shown in Fig. 10. In general, high reconstruction skills re-
main over regions where denser pseudoproxies exists based
on this additional PAGES 2k pseudoproxy network.

3.5 Northern Hemisphere and AMV indices

The evolution of the decadal NH mean temperature anoma-
lies reconstructed by the three CFR methodologies and using
pseudoproxies from two models is illustrated in Fig. 11. All
indices have been smoothed using a Butterworth low-pass
filter to remove temporal fluctuations shorter than 10 years.
The reconstruction performance varies among different the
CFR methodologies. We will employ the correlation coeffi-

cient (cc), standard deviation (SD), and root-mean-square er-
ror (RMSE) as evaluation metrics for NH and AMV indices.

The temporal evolution of the original AMV indices
(Fig. 12) differs among the simulations, reflecting the differ-
ent forcings used in each simulation and the model-specific
contribution of internal variability to the index variations
(Wagner and Zorita, 2005; Schmidt et al., 2011). Considering
the methodological performance, all three methods generally
achieve good AMV index reconstructions when using per-
fect pseudoproxies, as shown in each panel of Fig. 12 and in
Table 3.

The NH and AMV indices derived from more realistic
noise-contaminated CFRs are shown in Figs. 11 and 12, re-
spectively. The larger noise contamination results in substan-
tial skill deterioration (cc, SD, and RMSE displayed within
brackets in Tables 2 and 3). All three methods generally fail
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Figure 9. Eigenvalue spectra for the CESM simulation and three
method reconstructions: the spectra for the CESM simulation and
three method-based ideal PPEs are computed as the ratio between
each of the first four reconstructed eigenvalues and the cumulative
sum of all eigenvalues from the target CESM model.

to capture the complete variance of the target indices, and
the magnitude of strong cooling phases is strongly underes-
timated.

Figure 13 illustrates the comparison between reconstruc-
tions and target models of power spectral densities for
Northern Hemisphere indices using both ideal and noise-
contaminated PPEs. As indicated in Fig. 13, all three meth-
ods generally underestimate the power density, whereas this
underestimation is more significant for the derived noise-
contaminated PPE.

3.6 Probability distributions of reconstructed variables

Even though the three reconstruction methods tend to un-
derestimate the overall variability when using noisy pseu-
doproxies, an interesting question is their skill when repro-
ducing the probability distributions of the climate indices. A
particularly relevant question is whether the methods are able
to capture extreme phases of those indices.

Figures 14 and 15 display the histogram for the decadal
NH mean and AMV indices, respectively. Each panel rep-
resents the histograms of reconstructed temperature indices
across the three methods compared with the histograms of
the target temperature index.

We quantify the distribution similarity between the re-
constructed and target distributions for both NH and AMV
indices using the two-sample Kolmogorov–Smirnov test as
a metric (Hodges, 1958) (see Tables 4 and 5). A smaller
value of the KS statistic indicates a stronger overall simi-
larity between the two probability distributions. The smallest
KS statistic is achieved by the PCR method (see Tables 4
and 5), confirming the impression that the PCR outperforms
the other two methods for index reconstructions in both the
ideal and noise-contaminated PPEs.

For perfect pseudoproxies, the PCR reconstruction seems
to capture the overall target distribution best. It captures the
lower tail better than CCA and the upper tail better than CCA
and Bi-LSTM. The differences between the methods become

smaller for the reconstructions with noisy pseudoproxies,
with the PCR still being better than the other two methods
(contaminated PPEs in Figs. 14 and 15). The Bi-LSTM per-
forms worst for capturing the lower and upper tails of distri-
bution among the three methods for both the NH mean and
the AMV index.

3.7 Alternative architectures of the Bi-LSTM method

Although the design of machine-learning methods may be
guided by physical considerations, machine-learning meth-
ods are still to a large extent a matter of trial and error.
The complexity of the method hinders the disentangling of
the causes as to why the methods behave in a certain way.
Here, we explore the alternative architectures of the Bi-
LSTM method to assess the resoluteness of the conclusions
drawn from the basic design. We have explored varying net-
work depths (number of layers), different learning rates, and
different cost functions to optimize the network parameters,
among other approaches. A summary of the results is in-
cluded in Appendix B.

We could not recognize systematic effects in the skill in
this set of different network designs. The skill varies rather
randomly, and it is probable that the identification of optimal
network architectures for this specific reconstruction ques-
tion may not be something that can be extrapolated to other
applications in paleoclimate. We settled for this application,
on a heuristic basis, on an architecture with two hidden lay-
ers, 4000 hidden nodes, and a learning rate of 10−3, using
the activation function Leaky ReLu, a batch size of 20, and
the Huber loss function.

4 Discussion

4.1 Nonlinear method performance

Our initial hypothesis was that a more sophisticated model
might be able to better capture relationships that are more
complex. For instance, a linear model cannot capture nonlin-
ear links outside a narrow range of variations. An artificial
neural network is a subset of a machine-learning method that
can be understood as a universal approximator that can map
and approximate any kind of function by selecting a suit-
able set of connecting weights and transfer functions (Hornik
et al., 1989). Thus, it is reasonable to assume that a better
representation of the links between proxy series and climate
fields, and thus a better reconstruction performance, might be
achieved.

The Bi-LSTM method is the most complex of the three
tested in this study. Among these methods, it is also the only
one that aims to capture serial dependencies. Our hypothesis
was that better reconstruction skill could be achieved by the
Bi-LSTM method. However, this is not the case in our pseu-
doproxy experiments. For the spatially resolved NAE fields,
the nonlinear Bi-LSTM method achieves a similar skill to
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Figure 10. Summary of the pseudo-reconstructions derived from the CESM model-based pseudoproxies using the original PAGES proxy
network. The panels display the maps of the temporal correlation coefficients at the grid cell level (cc) and the ratio of standard deviations
(SD ratio) between the reconstructed and target temperature fields.

Figure 11. Mean time series evolution of the validated reconstructions for the NH summer temperature anomaly using the full set of
48 pseudoproxies based on PCR, CCA, and Bi-LSTM CFR methods. All time series have been smoothed using a Butterworth low-pass
filter to remove temporal fluctuations shorter than 10 years. MPI and CESM represent MPI/CESM model-simulated “true” climatology.
We selected several reconstructed extreme cooling periods with a shorter interval (10-year periods are selected before and after the specific
extreme cooling year) and plotted them above the indices subfigure of the entire reconstruction.
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Figure 12. The same as Fig. 11 but for the Atlantic multidecadal variability (AMV) index.

Table 2. The cc, SD, and RMSE (K) values during the verification interval for decadal NH mean temperature derived from ideal PPEs. The
numbers in parentheses indicate skill statistics of white-noise-contaminated and red-noise-contaminated (italics) PPEs.

Method cc SD RMSE

MPI CESM MPI CESM MPI CESM

PCR 0.880 0.871 0.821 0.763 0.086 0.072
(0.632 / 0.302) (0.532 / 0.435) (0.806 / 0.883) (0.502 / 0.688) (0.143 / 0.202) (0.122 / 0.135)

CCA 0.882 0.853 0.704 0.560 0.091 0.086
(0.664 / 0.203) (0.536 / 0.262) (0.647 / 0.711) (0.464 / 0.660) (0.135 / 0.187) (0.122 / 0.141)

Bi-LSTM 0.873 0.901 0.561 0.597 0.104 0.076
(0.593 / 0.351) (0.559 / 0.394) (0.513 / 0.540) (0.398 / 0.470) (0.146 / 0.173) (0.122 / 0.133)

the linear PCR and CCA methods, both with ideal and noisy
PPEs (see Figs. 2–4).

For the spatially resolved NH field, the PCR overestimates
the variabilities both in ideal and noisy PPEs (see spatial
SD ratio maps in Figs. 5–7 and mean statistics skills Ta-
ble 1), and the CCA method shows relatively low overesti-
mated variance in noisy PPEs, while Bi-LSTM presents rel-
atively reasonable reconstructions without clear overestima-
tion in both ideal and noisy PPEs (see Figs. 5–7 and Table 1).
Among ideal PPEs across two models, the PCR is generally
the best method among the three methods, and the nonlin-
ear Bi-LSTM is second-best method, with a higher SD ratio

and worse cc than the CCA method (see Figs. 5–7 and the
mean skill statistics in Table 1). Both PCR and CCA exhibit
overestimated reconstructions in the amplitude of climatic
variability within noisy PPEs. Bi-LSTM presents relatively
robust reconstructions (especially without variance overes-
timations) in noisy PPEs (see Figs. 5–7 and the mean skill
statistics in Table 1), which may indicate that the LSTM
method shows some degree of advantage when reproduc-
ing and keeping the general variance within noisy PPEs. The
presence of larger noise amplitude causes a deterioration of
the Bi-LSTM reconstructions. This may be due to the known
sensitivity of this method to the presence of noise. In con-
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Table 3. The same as Table 2 but for the decadal AMV index.

Method cc SD RMSE

MPI CESM MPI CESM MPI CESM

PCR 0.819 0.758 0.831 0.753 0.108 0.091
(0.577 / 0.336) (0.354 / 0.429) (0.826 / 0.961) (0.602 / 0.837) (0.161 / 0.213) (0.135 / 0.139)

CCA 0.822 0.777 0.689 0.591 0.110 0.092
(0.631 / 0.288) (0.457 / 0.424) (0.669 / 0.744) (0.541 / 0.766) (0.146 / 0.200) (0.125 / 0.136)

Bi-LSTM 0.846 0.829 0.623 0.600 0.108 0.084
(0.573 / 0.344) (0.435 / 0.450) (0.539 / 0.576) (0.440 / 0.536) (0.154 / 0.182) (0.126 / 0.125)

Figure 13. Power spectral densities of Northern Hemisphere indices.

trast, the PCR and CCA are less sensitive to the presence of
unknowns and the skill may even improve in these settings.
A possible reason is the aforementioned overfitting for these
two linear methods. The presence of noise ameliorates the
collinearity of the proxies given the limited sample size used
for training.

For the area-mean indices, all three methods again exhibit
generally similar skill. Nevertheless, the Bi-LSTM more
strongly underestimates the amplitude of variabilities than
PCR and CCA, especially over some extreme cooling phases.
This underestimation is also generally model dependent (see

the different reconstructed performances in Figs. 11 and 12).
In general, the PCR methods achieved the best performance
for both extreme cooling signal capture and indices recon-
struction across the two models and among the three meth-
ods. The power spectral density plots in Fig. 13 provide a
deep insight into these different reconstruction performances
for NH temperature indices.

The general inability to capture the cooling extreme sig-
nals prior to the 20th century indicates that Bi-LSTM is not
good at extrapolating to temperature ranges beyond the train-
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Figure 14. Histogram for the decadal filtered NH mean index. The x axis denotes temperature anomaly values, and the y axis is the number
of data points in each bin. A total of 30 bins are selected to plot each of the histograms.

Table 4. Kolmogorov–Smirnov test statistic and p value for quantifying the histogram distributions between model and reconstructed NH
decadal means. Low values of the KS statistic indicate a larger similarity between the two distributions. The numbers in parentheses indicate
the KS statistic and p value of white-noise-contaminated and red-noise-contaminated (italics) PPEs.

Method KS statistic p value

MPI CESM MPI CESM

PCR 0.043 (0.074 / 0.093) 0.009 (0.193 / 0.111) 2× 10−1 (6× 10−3 / 2× 10−4) 3× 10−4 (1× 10−17 / 4× 10−6)
CCA 0.068 (0.081 / 0.073) 0.171 (0.197 / 0.130) 1× 10−2 (1× 10−3 / 7× 10−3) 6× 10−14 (2× 10−18 / 3× 10−8)
Bi-LSTM 0.120 (0.142 / 0.112) 0.178 (0.241 / 0.200) 5× 10−7 (9× 10−10 / 3× 10−6) 5× 10−15 (2× 10−27 / 5× 10−19)

ing set – a phenomenon that is intrinsic to most machine-
learning-based methods.

Therefore, compared with the linear methods of PCR and
CCA, the neural network model did not show clear advan-
tages. The performance of Bi-LSTM might be further im-
proved by optimizing the architecture and parameters of the
network, including the type of objective function, type of
neural activation function, network optimization function,
number of hidden layers, and model learning rate. At this
point, it would be quite natural to consider whether the se-

lection or settings of these hyper-parameters in our study is
optimal and to what extent the reconstruction skill is sen-
sitive to changes in the hyper-parameters. Nadiga (2020)
pointed out that the skill of some machine-learning methods
is strongly dependent on these hyper-parameters. Machine-
learning methods include an extensive range of complexity,
and therefore it remains an open issue as to which machine-
learning techniques are most suitable (or relatively suitable)
for paleoclimate. It is not clear how the structure of the
machine-learning methods can be systematically optimized.
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Figure 15. The same as Fig. 14 but for the decadal filtered AMV index.

Table 5. The same as Table 4 but for the AMV index.

Method KS statistic p value

MPI CESM MPI CESM

PCR 0.052 (0.050 / 0.086) 0.101 (0.143 / 0.085) 1× 10−2 (1× 10−1 / 7× 10−4) 3× 10−5 (6× 10−10 / 8× 10−4)
CCA 0.082 (0.088 / 0.083) 0.159 (0.163 / 0.103) 1× 10−3 (5× 10−4 / 1× 10−3) 5× 10−12 (1× 10−12 / 2× 10−5)
Bi-LSTM 0.117 (0.154 / 0.129) 0.172 (0.224 / 0.191) 1× 10−6 (2× 10−11 / 4× 10−8) 4× 10−14 (1× 10−23 / 3× 10−17)

At the moment, there is still a considerable amount of “trial
and error” in the design and connection of the neural layers.
Here, we have tested the Bi-LSTM network with several dif-
ferent architecture settings, and we finally decided on a rel-
atively optimal architecture with two separated hidden lay-
ers and evaluated its performance using CFR experiments,
which could be seen as a preliminary trial. Our first imple-
mentation of the more complex Bi-LSTM method does not
show superiority over CFRs, at least in our specific exper-
iments, so we would like to draw an assumption that more
complicated architecture might not be helpful for CFRs. In
addition, a degradation of out-of-sample performance may
well be expected when a limited dataset is used to train a

neural network model (Najafabadi et al., 2015). Neverthe-
less, we would like to point out other methods, such as an
Echo state network (ESN, Lukosevicius and Jaeger, 2009;
Nadiga, 2020), for paleo-climate research. Both ESN and
LSTM belong to the family of RNNs, but ESN is much sim-
pler than LSTM (Lukosevicius and Jaeger, 2009) and has
outperformed the RNN methods in other applications (Chat-
topadhyay et al., 2019; Nadiga, 2020). Preliminary pseudo-
proxy tests also indicate that this method may improve the
deficiencies of the Bi-LSTM. It will be more thoroughly ex-
plored in a follow-up study.

Another reason to consider machine-learning methods is
the nonlinearity of the link between proxies and climate
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fields. In this particular application with pseudoproxies, the
implied link is probably close to linear. However, these can
be different on other cases and might be the case for more
complex problems (i.e., the reconstruction of proxy precipi-
tation fields or other modes of natural variability such as the
North Atlantic Oscillation or El Niño–Southern Oscillation).
As such, machine-learning methods should not be excluded
a priori from the portfolio of CFR methods because they can
lead to more skillful reconstructions of climate.

4.2 Model and pseudoproxy network dependency

The evaluation of the reconstruction skill seems to depend as
much on the reconstruction method as on the underlying cli-
mate model simulation from which the pseudoproxies were
generated. The differences in skill for the same method with
different climate model data is of the same order as the dif-
ferences in skill for the different methods with the same cli-
mate model data. The performance of the method does not
seem to depend on the domain of the reconstruction. The
reconstructions generally behave similar for the NAE; nev-
ertheless, they show some differences in the NH test cases,
especially in the derived SD ratio patterns.

Considering the effects of noise contamination on the
methodological performance, both the PCR and CCA meth-
ods exhibit overestimation in the amplitude of recon-
structed variability (see the SD ratio patterns in Figs. 9
and 10 and the mean skills in Table 1). However, all
methods suffer from lower correlation coefficients in the
more realistic PPEs (white-noise-contaminated and red-
noise-contaminated PPEs). The nonlinear Bi-LSTM method
is more strongly impacted by noise contamination (Table 1).

We conclude that noise-contaminated datasets may cause
obvious overestimations in the amplitude of reconstructed
variability for the linear PCR and CCA methods. Some noise
signals may deteriorate the reconstructions, but noise sig-
nals may also lead to good reconstructions. The performance
of CFR reconstructions is affected by many factors, such
as the proxy numbers and their spatial distributions, ran-
dom noise signals introduced and added to certain impor-
tant spatial proxy locations could have a significant effect on
the overall spatial reconstruction. For the nonlinear machine-
learning methods, most are very sensitive to external noise.
Kalapanidas et al. (2003) and Atla et al. (2011) demon-
strated that linear regression can achieve better results than
nonlinear methods when considering noise sensitivity stud-
ies. Moreover, some studies indicated that external interfer-
ence or noise could damage the ability of neural networks
(Heaven, 2019), which may indicate that different or higher
noise levels can lead to worse performance for the nonlinear
machine-learning method LSTM.

From the perspective of the spatial coverage of the proxy
network, the spatial cc and SD ratio patterns (except the PCR
method) reveal the reconstruction skill over the entire NH
region, although this skill is weaker in areas that are more

poorly sampled by the pseudoproxy network (spatial cc pat-
terns in Figs. 5–7). Interestingly, the tropical regions do show
some reconstruction skill, especially in the derived recon-
structions based on Bi-LSTM (spatial SD ratio patterns in
Figs. 5–7) despite almost no pseudoproxies being located in
the tropics. This result indicates the climate teleconnections
between tropics and mid-latitude regions could lead to some
indirect skill. However, the proxy networks and noise scenar-
ios constructed in this context are certainly not able to com-
pletely mimic or simulate the full range of characteristics for
climatic proxies in the real world.

5 Conclusions

A nonlinear Bi-LSTM neural network method to reconstruct
North Atlantic—European and Northern Hemisphere tem-
perature fields was tested with climate surrogate data gen-
erated by simulations with two different climate models.
Compared to the more classical methods of linear principal
component regression and canonical correlation analysis, the
NAE and NH summer temperature field could be reasonably
reconstructed using both linear and nonlinear methodologies
referring to the spatial cc metric. In the relatively large spatial
region of the NH temperature field, more discrepancies ap-
peared in the reconstructions among different climate mod-
els and methods based on the derived spatial SD ratio metric.
The conclusions drawn from this study can be summarized
as follows.

1. In general, all three methods display similar skills when
using ideal (noise-free) pseudoproxies, while in the
more realistic PPEs (noise-contaminated PPEs) both the
PCR and CCA method exhibit an overestimation of
temperature variance preservation in contrast to the non-
linear Bi-LSTM method.

2. The pseudoproxy networks used in this study were
mostly located in the extratropical regions, with only
three proxies being located in the tropical area. All CFR
methodologies produce generally good reconstructions
in regions where dense pseudoproxy networks are avail-
able. Moreover, teleconnections are explored by these
CFR methodologies, leading to some weak spatial re-
construction skills outside of the proxy-sampled regions
(e.g., in the tropical region).

The classical linear-based PCR method generally out-
performs the Bi-LSTM and CCA methods in both spa-
tial and index reconstructions.

3. Here, we could draw a general conclusion that the non-
linear artificial neural network method (Bi-LSTM) em-
ployed herein is not superior for CFR reconstructions (at
least in our PPEs). In general, Bi-LSTM shows worse
skill in spatial and temporal CFRs than PCR and CCA
and in capturing extremes. However, it is advisable to
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employ a larger set of nonlinear CFR methods to eval-
uate different model structures and to further test their
performance on CFRs.

Appendix A

The simulation with the model MPI-ESM-P is not part of
the standard CMIP5 simulation suite. In the following, we
include additional technical details on this simulation. The
MPI simulation was started from the year 100 BCE with
restart files from 500-year spin-down simulation experiments
forced with constant external conditions representing the
year 100 BCE. After 100 BCE, variation in volcanic, solar,
orbital, and greenhouse gas concentrations are implemented.
Land usage was held constant until 850 CE, with condi-
tions representing those for the year 850 CE. The variation
in orbital parameters is calculated after the PMIP3 proto-
col (Schmidt et al., 2011). The solar activity has been re-
built on the basis of the reconstruction of Vieira et al. (2011),
employing the algorithm and scaling outlined in Schmidt et
al. (2011), which corresponds to a difference in shortwave
top-of-the-atmosphere insolation of 1.25 Wm−2 (∼ 0.1 %)
between the second half of the 20th century (1950–2000)
and the Maunder Minimum (1645–1715 CE). Variations in
greenhouse gas concentrations related to CO2, N2O, and
CH4 follow the reconstruction of the PMIP3 protocol. The
concentrations were held constant to the values of 1 CE be-
tween 100 BCE and 1 CE because the Law Dome records
do not extend beyond the year 1 CE. After 1850 CE, a re-
constructed aerosol loading following Eriksen Hammer et
al. (2018) was also employed to account for transient anthro-
pogenic aerosol emissions. The extension and reconstruction
of the volcanic forcing is related to a rescaling of the newly
available Sigl et al. (2015) dataset to match the reconstruc-
tion of Crowley and Unterman (2013). The large volcanoes
at different latitudinal bands are rescaled according to sulfate
concentrations, and the Crowley algorithm was also eventu-
ally applied to yield aerosol optical depths and effective radii
for four latitudinal bands separated by 30◦.

Appendix B

We have explored a range of Bi-LSTM architectures, includ-
ing employing different network depths, introducing dropout
layers, using different learning rates, and employing different
loss functions to provide a more comprehensive evaluation of
the Bi-LSTM method’s performance and effectiveness. Ta-
bles B1–B6 present the reconstruction statistic skills for the
spatial North Hemisphere mean temperature in the verifica-
tion period for ideal PPEs based on CESM using different
architecture settings of the Bi-LSTM method. In our PPE
tests on paleo-CFRs, it seems that in this case we could not
unequivocally identify optimal neural network structure that
could universally outperform all others. The final Bi-LSTM

architecture employed in our CFR experiments was finally
determined and uses two hidden layers, 4000 hidden nodes,
and a learning rate of 10−3, using the Leaky ReLu activation
function, a batch size of 20, and the Huber loss function.

Table B1. Different loss functions conditioned using other fixed
parameters (two hidden layers, 4000 hidden nodes, and learning rate
of 10−3, using the Leaky ReLu activation function and a batch size
of 20).

Loss cc SD ratio
functions

MAE 0.483 0.670
MAPE 0.124 0.050
MSE 0.465 0.759
Huber 0.462 0.770

MAE is the mean absolute error, MAPE is
the mean absolute percentage error, MSE
is the mean square error, and Huber is the
Huber loss.

Table B2. Different learning rates using Huber loss, with the rest of
the parameters fixed as in Table B1.

Learning cc SD ratio
rates

1× 10−1
−7× 10−3 1× 107

1× 10−4 0.462 0.770
1× 10−6 0.462 0.675
1× 10−8 0.012 0.271

Table B3. Different activation functions, with the rest of the param-
eters fixed as in Table B1.

Activation cc SD ratio
function

ReLU 0.505 0.566
Leaky ReLu 0.462 0.770
ELU 0.529 0.617
PReLU 0.509 0.544

Table B4. Different hidden-layer amounts, with the rest of the pa-
rameters fixed as in Table B1.

Number of cc SD ratio
layers

1 0.508 0.733
2 0.462 0.770
4 0.442 0.603
6 0.335 0.411
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Table B5. Different hidden-node amounts in each layer, with the
rest of the parameters fixed as in Table B1.

Number of hidden cc SD ratio
nodes

200 0.479 0.620
1000 0.502 0.692
2000 0.503 0.711
4000 0.462 0.770

Table B6. Example values with and without dropout layers hav-
ing been conditioned, with the rest of the parameters fixed as in
Table B1.

Dropout cc SD ratio

Dropout 0.462 0.770
Non-dropout 0.467 0.760

Appendix C

Appendix C displays the SD ratios for ideal pseudoproxies
after filtering the reconstructed and target fields with a 30-
year low-pass filter. At this timescales, the SD ratio is again
lower than for the interannual variance.

Figure C1. The 30-year filtered SD ratio pattern using ideal PPEs based on the MPI model over the validation period (850–1899 CE) for the
NAE (a–c) and NH (d–f) regions.

https://doi.org/10.5194/cp-18-2643-2022 Clim. Past, 18, 2643–2668, 2022



2664 Z. Zhang et al.: Evaluation of statistical climate reconstruction methods

Data availability. The MPI-ESM-P model output that was em-
ployed for this study is available upon request from the au-
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model data can be downloaded from https://www.cesm.ucar.edu/
projects/community-projects/LME/ (NCAR, 2022; Otto-Bliesner et
al., 2016).
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