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Abstract. Although collaborative efforts have been made to
retrieve climate data from instrumental observations and pa-
leoclimate records, there is still a large amount of valuable in-
formation in historical archives that has not been utilized for
climate reconstruction. Due to the qualitative nature of these
datasets, historical texts have been compiled and studied by
historians aiming to describe the climate impact in socioe-
conomic aspects of human societies, but the inclusion of this
information in past climate reconstructions remains fairly un-
explored. Within this context, we present a novel approach to
assimilate climate information contained in chronicles and
annals from the 15th century to generate robust tempera-
ture and precipitation reconstructions of the Burgundian Low
Countries, taking into account uncertainties associated with
the descriptions of narrative sources. After data assimilation,
our reconstructions present a high seasonal temperature cor-
relation of ∼ 0.8 independently of the climate model em-
ployed to estimate the background state of the atmosphere.
Our study aims to be a first step towards a more quantita-
tive use of available information contained in historical texts,
showing how Bayesian inference can help the climate com-
munity with this endeavor.

1 Introduction

Historical texts, including both descriptive sources such as
chronicles and written records of phenology such as grape
harvest dates, have enabled high-resolution reconstructions
of temperature and precipitation for periods prior to the mod-
ern instrumental record (White et al., 2018). The princi-
pal approach for these reconstructions has been the “index”
method (Pfister et al., 2018; Nash et al., 2021). Historical
climatologists working with these texts have converted their
information into ordinal indices (typically −3 to +3), which
approximate departures from average monthly or seasonal
conditions, and they have calibrated these indices to early
instrumental data to obtain reconstructed values for the pre-
instrumental period. The resulting temperature and precip-
itation reconstructions have demonstrated high reconstruc-
tion skill, especially at the decadal scale. Nevertheless, the
index method has significant drawbacks, including loss of
low-frequency variability and gaps in the reconstructions for
seasons without descriptions, particularly in regions and peri-
ods with less comprehensive historical records such as those
from the Middle Ages or early modern times (Brázdil et al.,
2010; Pfister et al., 2018).

Moreover, the index method does not capture the full
range of inferences obtainable from the analysis of historical
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records. For example, if researchers in historical climatology
found reliable descriptions that a winter was unusually cold,
they might assign that winter a value of−2. However, the−2
would express neither the uncertainty regarding that value
nor the possibilities of other values. While they are likely to
encounter such descriptions for a cold winter (−2 on the in-
dex scale), they may also find them for an extremely (−3) or
slightly (−1) cold winter but would very rarely find them for
a mild or warm winter (+1 through +3). The index method
does not express this range of likelihoods over different val-
ues. Similarly, the absence of any historical description is
more likely for normal seasons than extreme seasons, but the
index method cannot assign any value where there is a gap in
the evidence.

To address these problems, this article presents a novel
Bayesian approach for historical climatology. Bayesian ap-
proaches have been widely adopted in other fields of climate
science, including paleoclimate reconstructions, reanalysis,
and integration of written descriptions with physical proxies
(e.g., Brönnimann et al., 2013; Luterbacher et al., 2016; Sali-
nas et al., 2016; Gennaretti et al., 2017; Osman et al., 2021).
Here, we develop a Bayesian method for seasonal temper-
ature reconstructions and apply it to a sample of data from
the 15th century Burgundian Low Countries (Camenisch,
2015a, b). Our approach builds on existing familiarity and
expertise with the index method. It uses climate models to
set prior probabilities for each index value and instructs his-
torical climatologists to assign likelihoods for the evidence
(or lack thereof) given each index value. Applying Bayes’
theorem, these likelihoods are then used to obtain updated
posterior probability distributions.

This study aims to demonstrate the feasibility of the pro-
posed Bayesian method, particularly its potential to (1) create
a single posterior probability estimate of past climate states,
integrating information in archives of nature and society with
climate modeling; (2) combine the disciplinary expertise of
paleoclimatologists, climate modelers, and historical clima-
tologists in a single reconstruction; (3) incorporate the maxi-
mum possible information from written evidence into that re-
construction; (4) include the absence of historical records as
a probabilistic indicator of past conditions; and (5) use histor-
ical climatology to generate a reconstruction that is continu-
ous and captures low-frequency variability. For this purpose,
we have selected a region and period with limited but well-
researched historical records. Since there is no instrumental
record for the 15th century Low Countries, it is not possible
to test reconstruction skill through the standard calibration–
verification procedure (Dobrovolný, 2018), either for con-
ventional indices or for our Bayesian approach. Therefore,
reconstruction skill will be tested in future studies.

2 Data

In this study, we used two different groups of sources to re-
construct the climate of the Burgundian Low Countries. The
first source (Sect. 2.1) includes documentary data from his-
torical archives describing past climate events of the study
region that have been rescued, compiled, and studied by his-
torians in previous publications (e.g., Camenisch, 2015b),
while the second one (Sect. 2.2) is composed of tempera-
ture and precipitation simulations from large ensembles of
general circulation models (GCMs).

2.1 Documentary data

The basis for the reconstruction used here comes from a
dataset already published by Camenisch (2015a, b). These
data are not homogeneous and show different characteristics
as sources as well as the single records. In the 15th century
narrative sources were mainly chronicles and annals. These
texts were written by clerics as well as laymen. In regard
to the first decades of the century, rich and weather-sensitive
chronicles derive, for example, from the Abbey “Notre Dame
des Dunes” near Koksijde at the Flemish coast. In the dataset,
the texts of laymen increase later in the century. The texts
were written in Latin or a vernacular language: that is, me-
dieval forms of Flemish, Low German, Walloon, and other
French dialects in the Burgundian Low Countries, and they
contain information on temperature as well as on precipi-
tation (Camenisch, 2015a). Many of the descriptions con-
tained in these sources report directly on weather patterns,
while others include comprehensive descriptions of societal
climate impacts. The reason to write such texts varies from
author to author, but, in general, they aimed to preserve mem-
ories of past events. Among these were remarkable weather
events and their consequences. These sources are supple-
mented by municipal accounts, which also contain brief ref-
erences to weather patterns, as well as customs accounts,
which Buisman (1996, 1998) evaluated for his climate re-
construction.

The number of weather descriptions is not equally dis-
tributed within the century. In general, years with extreme
weather events – such as the winter 1407/08, the 1430s,
and the 1480s and 1490s – have significantly more reports
than more normal years. The original dataset contains about
3000 records from a bit more than 100 sources. This means
that in the well-documented years, about 200 records are
possible, whereas in the less documented years only a few
weather-related records are available (Camenisch, 2015a, b).
Among the less documented years are especially the 1450s
and 1460s, when generally fewer weather-sensitive sources
are available for the study area. The sources and their con-
tent are described year by year in Camenisch (2015a). One of
the advantages of these sources, however, is that they cover
the entire year, with almost similar numbers of descriptions
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Table 1. List with information concerning the model ensembles employed to generate the background state of the atmosphere. From left to
right are the ensemble and model names, the number of members, the pre-industrial time period with available information, and the spatial
resolution in decimal degrees.

Ensemble Model Members Period (CE) Resolution (◦)

ModE-Sim ECHAM 6.3.05p2 40 1420–1781 1.9× 1.9
CESM-LME CESM 1.1.2 (CAM5) 13 850–1849 1.9× 2.5

falling in winter, spring, and summer, as well as somewhat
fewer in autumn.

In addition to the actual weather descriptions, however, the
metadata for each source and for each individual record also
play a major role for the Bayesian approach. These meta-
data comprise the information that would be called extended
“source criticism” in the historical sciences. This includes,
for example, biographical information on the authors of the
texts in order to evaluate whether they were eyewitnesses
to the events described or the number and reliability of the
sources of a particular year or season. Moreover, general in-
formation on the existence and the characteristics of histori-
cal sources of a certain region and period as a whole is nec-
essary.

2.2 Model ensembles

The Bayesian approach requires a prior that is based on
prior knowledge. Climate model simulations can provide
prior probability estimates based on physical constraints (see
Sect. 3.3), information on external forcings (e.g., volcanic
eruptions), or even effects of large-scale oceanic variabil-
ity modes such as the El Niño–Southern Oscillation. We
used two sets of simulations to generate two priors: atmo-
spheric simulations that were constrained, among other fac-
tors, with time-varying sea-surface temperatures from re-
constructions as well as coupled simulations in which only
the external forcings are prescribed (see Table 1). Figure 1
(right) shows grid-point centers within the Burgundian Low
Countries where temperature and precipitation series were
extracted.

In first place we have historical simulations for PALEO-
RA – past 600 years with observed forcings (ModE-Sim),
which are composed of 40 full-forcing members of the
ECHAM 6.3 model with T63 horizontal and L47 vertical
resolutions. Sea surface temperatures (SSTs) and sea ice con-
ditions (SICs) have been prescribed from either Samakinwa
et al. (2021) or HadISST2 (Titchner and Rayner, 2014) using
for the latter 10 different realizations so that SST and SIC un-
certainties are taken into account. Vegetation and land use–
land change (LULC) have also been prescribed. Moreover,
almost all radiative forcings have been selected following
CMIP6/PMIP4 past2k specifications (Jungclaus et al., 2017)
with standard PMIP4 volcanic forcings (e.g., Sigl et al.,
2015; Toohey and Sigl, 2017) for the first 20 members and

Samakinwa et al. (2021) for the remaining members of the
ensemble.

Simulations from the Community Earth System Model –
Last Millennium Ensemble (CESM-LME) have also been
used to test the independence of our reconstructions from the
model employed. The CESM-LME Project (Otto-Bliesner,
2016) includes 13 simulations of the CESM 1.1 CAM5 with
a regular resolution of 1.9◦× 2.5◦, 30 vertical levels, and
all transient forcings (i.e., solar radiation, volcanic aerosols,
greenhouse gases, LULC, and orbital parameters). Both en-
sembles have their own advantages and disadvantages. For
instance, ModE-Sim simulations begin in 1420 CE, while the
CESM-LME starts in 850 CE, allowing for the reconstruction
of the entire 15th century. On the other hand, the ModE-Sim
ensemble is composed of 40 members in contrast with the
13 members of the CESM-LME, which makes the former a
more robust candidate to describe the background state of the
atmosphere.

Two climate variables at seasonal temporal resolution (i.e.,
DJF, MAM, JJA, SON) have been used from the ModE-Sim
ensemble: air temperature at 2 m (temp2) and wet days in
a month (wetdaysinmonth). While temp2 is a standard out-
put of the model, wetdaysinmonth is a custom variable de-
fined as the number of days with more than 1 mm of pre-
cipitation within a model day. Note that we decided to use
this customized variable as a precipitation estimator because
it presents a Gaussian distribution, which it is suitable for
our reconstruction method (see Sect. 3.4). Moreover, sea-
sonal 2 m air temperatures have also been extracted from the
CESM-LME (TREFHT).

3 Methodology

Historical documents have been assimilated by using the fa-
mous Bayes’ theorem (e.g., Efron, 2013; Puga et al., 2015)
to update prior atmospheric states estimated from model en-
sembles following Eq. (1):

p(climate |observation)

=p(climate) ·
p(observation | climate)

p(observation)
, (1)

where p(climate | observation) and p(climate) represent
the posterior and prior probability distributions, while
p(observation | climate) is the probability distribution as-
sociated with the information from historical documents.
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Figure 1. Maps of the Burgundian Low Countries with (left) historical document locations (grey points) describing past climate events
during the 15th century and (right) model grid points. The region is defined as the land area delimited by latitudes between 1.5 and 10◦ N
and longitudes between 48.5 and 54◦ E. Orange and blue crosses depict the grid points where temperature and precipitation series have been
extracted from the ModE-Sim ensemble and the CESM-LME, respectively.

Note that the right term is divided by a normalizing constant
(Eq. 2), which ensures that the sum of posterior probabilities
adds up to 1.

p(observation)=
3∑

Obs.=−3
p(climate) ·p(Obs. | climate) (2)

Figure 2 illustrates the methodology followed to obtain
the climate reconstruction of the Burgundian Low Countries.
This novel approach uses the probability distribution of Pfis-
ter indices (see Sect. 3.1) to quantify the information from
historical archives (i.e., notes and qualitative observations
preserved in documents and books) and, at the same time,
assess the uncertainty associated with those same documents
in terms of source reliability, data quality, and regional im-
pact (see Sect. 3.2). In addition, a forward model has also
been employed to convert ensemble members into Pfister
indices, transferring the information contained in the back-
ground state of the atmosphere into prior probability distri-
butions (see Sect. 3.3). Finally, the posterior probability is
obtained using Bayes’ theorem (see Sect. 3.4).

3.1 Pfister indices

Climate indices named after Christian Pfister serve as the ba-
sis for this reconstruction (e.g., Pfister et al., 1999, 2018).
Temperature and precipitation are reconstructed separately.
Depending on the source density, a seasonal, monthly, or
other temporal resolution is chosen. Due to the characteris-
tics of the sources and their density, a seasonal resolution was
chosen for this present reconstruction. The individual indices

have a 7◦ scale, which contains the following index values
with regard to temperatures (Fig. 3): −3 = extremely cold,
−2 = very cold, −1 = cold, 0 = normal, +1 = warm, +2 =
very warm, +3 = extremely warm. For the precipitation in-
dices, the scale is adjusted accordingly:−3= extremely dry,
−2 = very dry, −1 = dry, 0 = normal, +1 = wet, +2 = very
wet, +3 = extremely wet. In order to be able to determine
the actual index value, a list of events and characteristics was
developed for each individual index, which must apply to a
season for it to be assigned to a specific index value. These
properties are determined based on the climatic conditions
known today in the study area and adapted as far as possible
to the conditions of the 15th century. For example, a win-
ter −3 in the temperature index requires large watercourses
to carry ice cover, or a summer can only be assigned an in-
dex value of −3 in the precipitation reconstruction if springs
as well as smaller watercourses dried up and the grain har-
vest was negatively affected (e.g., Camenisch, 2015a, b). Ice
formation on water bodies occurred more frequently before
the large straightening and channelization projects or before
the discharge of industrial wastewater, so the 15th-century
report of (today rather rare) drift ice does not constitute an
extremely cold winter (−3) in the 15th-century Low Coun-
tries. In many cases, however, the assignment is not so clear
that for one season the other six index values could be clearly
excluded. Until now, it has not been possible to express this
uncertainty or the probability with which the season is as-
signed to a particular index value. For this reason, we have
taken the scale of the Pfister indices as a basis and have fur-
ther developed this approach.
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Figure 2. Methodology followed to assimilate historical documents into seasonal temperature and precipitation reconstructions of the Bur-
gundian Low Countries during the 15th century. Outside the rounded square are the inputs (top) and output (bottom) of the climate recon-
struction. All inputs are converted into probability distributions of Pfister indices from which posterior probability distributions are obtained
using Bayes’ theorem.

Figure 3. Pfister indices for temperature (top) and precipitation (bottom). Percentages show how climate information is distributed in terms
of its severity. Note that Pfister indices classify temperature and precipitation values into 12 quantiles (or duo-deciles) with a uniform
distribution of two duo-deciles for each index between −2 and 2, while minimum and maximum indices (i.e., −3 and 3) are associated with
the lowest and highest quantiles, respectively.
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3.2 Inclusion of probabilities and uncertainties

Because in many seasons the descriptions in the sources do
not allow a simple and unambiguous assignment to an in-
dex value, reconstructions with the index method have so far
been forced to settle on the most probable index value. The
discussion of the reliability of a source, the assessment of
uncertainties, and the weighing of the probability of a spe-
cific finding normally employed by historians and expressed
in descriptive texts in the historical sciences were lost by this
(allegedly) unambiguous decision in favor of an index value.

With the Bayesian approach presented here, it is possi-
ble to express this information in terms of a distribution of
likelihoods. The method used here is again based on Pfis-
ter indices, but it now requires that the researcher assign
a likelihood of getting such as observation assuming that
the true climate matched each value in the scale. In total,
these likelihoods must again add up to exactly 1. Moreover,
each likelihood should be at least 0.05, since even the best
source criticism cannot rule out misdating of observations.
The highest probability lies on the index value that was al-
ready assigned to the season in the original reconstruction
(Camenisch, 2015a, b). The exact delineation of the index
values for each season is described in detail in the two corre-
sponding publications.

For example, we have a well-documented summer, which
means that a lot of weather-related sources exist for this par-
ticular season. These sources describe the summer as warm
and sunny weather, a good harvest, and average or low prices
for agricultural products. Using the conventional historical
method, the historical climatologist would probably assign
the summer a +2 on the Pfister scale on the assumption that
this is the most probable state of the climate given the ob-
servations: p(climate | observation). The Bayesian approach,
on the other hand, would consider the likelihood of the evi-
dence assuming each value for the climate: p(observation |
climate). In this case, the observations would be very un-
likely assuming an extremely cold (−3) or very cold (−2)
summer and also unlikely assuming a cold (−1) summer.
The likelihood of the evidence given an average (0) summer,
however, is somewhat higher because summers with a few
chilling phases could also result in descriptions of a good
harvest, although these chilling phases would probably still
have been described in one source or another. The evidence is
somewhat unlikely assuming an extremely hot (+3) summer
because normally such a summer would produce some de-
scriptions of negative impacts. Therefore, such descriptions
are most likely in the event of a warm summer (+1) or very
warm summer (+2). These considerations result in the likeli-
hood distribution in Table 2.

Besides the fact that more information from the sources
and metadata can be expressed via this reconstruction
method, the Bayesian approach also has the great advan-
tage that an absence of observations does not necessarily
leave a gap in the climate reconstruction. In some cases, the

Table 2. Example of the distribution of likelihoods of a well-
documented very warm summer with a similar distribution of like-
lihoods for +2 (very warm) and +1 (warm).

Pfister index −3 −2 −1 0 1 2 3
Likelihood 0.05 0.05 0.05 0.15 0.25 0.30 0.15

Table 3. Example of the distribution of likelihoods of a summer
with no description of weather during a phase with otherwise good
source density.

Pfister index −3 −2 −1 0 1 2 3
Likelihood 0.05 0.05 0.20 0.40 0.20 0.05 0.05

Bayesian approach can actually turn the absence of observa-
tions into useful evidence. Most observers during the Mid-
dle Ages and early modern period were systematically more
likely to notice and record extreme conditions than average
ones. Thus, we may infer that the likelihood of finding no
weather descriptions for a particular season in a period and
region with historical sources – which is the case in the Low
Countries during the 15th century – is higher assuming av-
erage conditions rather than extreme conditions. This means
that such a decision takes the detailed knowledge about the
source situation in the specific years and area into account.
Using values in the Pfister index, such a likelihood distri-
bution for p(no observation | climate) might be described by
Table 3. Of course, the likelihood distribution for finding no
observations given each climate value will depend on the spe-
cific sources, region, and period under study. For instance,
the lack of any description of frozen lakes during some par-
ticular winter would be much higher assuming climate values
of −1, 0, +1, +2, and +3 rather than values of −2 or −3 on
the Pfister scale.

In a more classical approach, the calibration of the recon-
struction with other datasets and reconstructions would be
made. In this case, it is not necessary because this is not a
new reconstruction but another version of an already pub-
lished (and peer reviewed) climate reconstruction. As there
is no overlap with an early instrumental period, the original
reconstruction was compared to other reconstructions (Ca-
menisch, 2015b). Moreover, to verify the physical consis-
tency of the method, two different reconstructions were gen-
erated with the same observational likelihoods, but with pri-
ors coming from two independent climate models (ECHAM6
and CESM).

3.3 Prior generation

Prior seasonal temperature and precipitation states have been
converted into probability distributions of Pfister indices by
means of a forward model that classifies the members of a
certain model ensemble into different quantiles following the
Pfister index probability distribution function (Fig. 3). Pfis-
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ter indices have been defined for each member as duo-decile
intervals taking into account the relative severity and mag-
nitude of the climate values (e.g., for the temperature field,
each index has been associated with a range of tempera-
tures from extremely cold to extremely warm that depends
on the climatology of the ensemble member). In the case of
the ModE-Sim ensemble, 12 quantiles have been obtained
with simulations ranging from 1420 to 1781 CE, while for
the CESM-LME, these quantiles have been calculated with
simulations from 850 to 1849 CE. Seasonal outputs from the
ensembles have subsequently been converted into Pfister in-
dices depending on their value, with cooler (drier) conditions
having negative indices and warmer (wetter) conditions be-
ing associated with positive indices. Prior probability dis-
tributions are obtained by dividing the number of members
within a given index by the total number of members in the
ensemble. For instance, if for a given season and year, 20
members of the ModE-Sim ensemble have an index of−2, as
this ensemble has a total of 40 members, the prior probability
of that index (i.e., very cold) would be 50 %. It is noteworthy
to mention that the robustness of prior probability distribu-
tions depends on the number of ensemble members, recom-
mending the use of large multi-member ensembles (such as
the ModE-Sim ensemble) for this task.

3.4 Bayesian reconstruction

Once the prior and historical information are expressed in
terms of probabilities, the use of Bayes’ theorem to obtain
the posterior Pfister distribution is straightforward (Eq. 1).
The prior is multiplied by the probability distribution of the
historical archives and divided by the normalizing constant
(Eq. 2). This posterior probability distribution of Pfister in-
dices represents the updated state of the climate after data as-
similation. Climate variables have subsequently been recon-
structed for each member of the ensemble following Eq. (3)
as the weighted average of mean values associated with each
index; posterior probability distributions are used as weights:

climate=
3∑

n=−3
p(climate | n) · climaten, (3)

where climate is the reconstructed climate variable (i.e.,
temp2, TREFHT, or wetdaysinmonth), n is a Pfister index,
p(climate | n) is the posterior probability of climate given n,
and climaten is the mean value of climate associated with n.
Note that as climaten is estimated as the mean of climate val-
ues (e.g., temperature) related to a certain Pfister index, this
reconstruction method is optimal for climate variables that
present a Gaussian distribution.

Moreover, to assess the uncertainty of the reconstruction,
the weighted standard deviation (SD) for each member of the
ensemble has also been calculated following Eq. (4):

SD=

√√√√ M

M − 1
·

3∑
n=−3

p(climate | n) ·
(
climaten− climate

)2
, (4)

where M is the number of nonzero weights (i.e., p(climate |
n) > 0).

4 Results

Posterior probability distributions have been obtained for
temperature-related fields from independent GCMs. Fig-
ures 4 and S1 show (for summer and winter) how two differ-
ent background states (top panels) are updated by informa-
tion from documentary data (middle panels) to generate re-
constructions with similar posterior probability distributions
(bottom panels). This indicates that the information con-
tained in historical archives can be efficiently transferred into
climate reconstructions, yielding consistent results from dif-
ferent prior states. One of the main features of this methodol-
ogy is the important influence of documentary data to shape
the posterior distribution, which is based on the fact that like-
lihood distributions of historical texts are better defined than
the prior probability distributions from models, and we there-
fore obtain more well-defined posterior probability distribu-
tions when we combine the two using Bayes’ theorem. This
is consistent with the fact that ensemble members come from
different model realizations, generating a diverse range of at-
mospheric background states in contrast with better-defined
information on the real climate system extracted from docu-
ments.

On the other hand, Fig. 5 shows how precipitation-related
fields such as wet days in a month can also be reconstructed
using this method. Note that in this case we have complete
temporal information for summer (Fig. 5b), which allows for
the study of climate responses to important events such as the
volcanic eruption in 1452 CE (see Sect. 5). Focusing on the
probability distributions of Pfister indices, the same behavior
is observed: well-defined information retrieved from docu-
mentary data shapes the posterior distribution. This is even
more evident than in the temperature reconstruction because
precipitation is a dynamical field that depends on the inter-
nal variability of the climate system, which can differ sig-
nificantly among the members of the ensemble, generating
different background states and therefore providing a not-so-
well-defined prior.

4.1 Temperature reconstruction

Seasonal 2 m air temperature series have been reconstructed
for the Burgundian Low Countries using the posterior proba-
bility distributions of Pfister indices. Figure 6 shows mean
temperatures for each season obtained with 40 members
of the ModE-Sim ensemble reconstructed from 1420 to
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Figure 4. Prior, historical information, and posterior probability distributions of seasonal temperatures in the Burgundian Low Countries for
(a) winters and (b) summers ranging from 1420 to 1499 CE. Top panels represent the prior probability distribution, p(climate), extracted
from 2 m air temperatures of the 40-member ModE-Sim ensemble and converted into Pfister indices. Middle panels illustrate the probability
distribution of the information, p(observations | climate)/p(observations), acquired from historical archives compiled and converted into
Pfister indices by historians. Bottom panels depict the posterior probability distribution, p(climate | observation). White spaces are shown
when there are no observations available and therefore the posterior matches the prior.

1499 CE. Although most of the information from documen-
tary data is only available for summer and winter, consis-
tent results are obtained for each season with minimum mean
temperatures of ∼ 2.7 ◦C in winter, maximum mean temper-
atures of ∼ 17.5 ◦C in summer, and milder air temperatures
of ∼ 7.5 ◦C and ∼ 10 ◦C in spring and autumn, respectively.
Seasonal uncertainties defined as the difference between the
maximum minus the minimum values of the ensemble for
each year are quite similar for all seasons, with mean val-
ues of 0.25 ◦C for summer, spring, and winter and 0.4 ◦C for
autumn.

The same air temperature reconstruction has been per-
formed using the 13 members of the CESM-LME since
1400 CE. Figure 7 illustrates the seasonal mean tempera-
ture distribution from 1420 to 1499 CE for the ModE-Sim
ensemble (solid violins) and the CESM-LME (dashed vio-
lins) after data assimilation. Similar mean temperatures are
observed between the two ensembles with slightly colder
winters and warmer summers when the ModE-Sim ensem-
ble is employed. This indicates that although consistent re-
sults are obtained with different ensembles, the methodology
preserves the internal variability of the models, transferring

the background state into the final reconstruction. A direct
comparison with mean temperatures of the last decade (i.e.,
2010–2021) obtained from observations of the CRUTEM5
dataset shows how recent temperatures are persistently above
average with respect to the 15th century, yielding maximum
increases over 1 ◦C in autumn and winter. Note that simi-
lar recent increases in mean temperatures are obtained when
we take into account the last 2 (i.e., 2000–2021) and 3 (i.e.,
1990–2021) decades. Furthermore, there is a significant in-
crease in correlation between the ModE-Sim and CESM-
LME series after assimilating the information from histori-
cal archives. Table 4 shows the seasonal Pearson correlations
between the two air temperature priors from ModE-Sim and
CESM-LME, as well as the correlations of the posteriors.
Low correlations are obtained for the priors with a maxi-
mum correlation of 0.25 in summer and a minimum one of
0.08 in winter (which are associated with the expected cli-
mate response to external forcings), indicating that the inter-
nal variabilities of model outputs differ significantly among
each other. In contrast, significantly higher correlations are
found for posterior reconstructions with a minimum Pearson
correlation of 0.78 in summer and a maximum one of 0.85 in
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Figure 5. Prior, historical information, and posterior probability distributions of seasonal wet days in a month in the Burgundian Low
Countries for (a) winters and (b) summers ranging from 1420 to 1499 CE. Top panels represent the prior probability distribution, p(climate),
extracted from the 40-member ModE-Sim ensemble and converted into Pfister indices. Middle panels illustrate the probability distribution
of the precipitation information, p(observations | climate)/p(observations), acquired from historical archives compiled and converted into
Pfister indices by historians. Bottom panels depict the posterior probability distribution, p(climate | observation). White spaces are shown
when there are no observations available and therefore the posterior matches the prior.

Table 4. Pearson correlation between the ModE-Sim ensemble and
the CESM-LME multi-member mean temperatures over the Bur-
gundian Low Countries for the 1420–1499 CE period. 2 m air tem-
perature correlations have been calculated for each season before
(prior) and after (posterior) assimilation of historical documents
over the region.

Season Prior Posterior

Winter 0.08 0.85
Spring 0.18 0.81
Summer 0.25 0.78
Autumn 0.21 0.84

winter. This significant increase in correlation is associated
with the assimilation of documentary data and highlights the
importance of retrieving information from historical archives
to obtain a consistent reconstruction of the past climate.

4.2 Precipitation reconstruction

Moreover, wet days in a month have been obtained from
1420 to 1499 CE after including documentary data as shown
in Fig. 8. Interestingly, in this case we have complete infor-
mation for summer, allowing for the study of precipitation
anomalies during the 15th century. On the other hand, there
is almost no available information for autumn and the first
decades of springtime (i.e., continuously available informa-
tion for spring starts in 1471 CE). The reconstruction shows
(on average) between 13 and 17 wet days per autumn month,
17 to 21 d in winter months (the annual maximum), 16 to
19 wet days in spring, and 9 to 13 d in summer (the annual
minimum). Uncertainties represented as 1 weighted standard
deviation are in general between 1 and 2 d.

It is noteworthy to mention that Fig. 8 presents a prominent
anomaly after 1452 CE. There is an increase in wet days in
a month from 10–11 summer days to 13–14 summer days
that it is persistent for the 4 following years (i.e., 1453, 1454,
1455, and 1456). As a matter of fact, those years are in the top
10 % of wettest days from 1420 to 1499 CE as depicted by
the red violin in Fig. 9, increasing the number of wet days in
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Figure 6. Seasonal mean temperatures in the Burgundian Low Countries from 1420 to 1499 CE. Colored areas show mean temperatures ±
1 standard deviation averaged over all members of the ModE-Sim ensemble. They are reconstructed from posterior probability distributions
after assimilating regional information from historical documents.

a month to the same extent as autumn wet days. Therefore, a
major event such as a volcanic eruption is likely to have taken
place during 1452 CE or 1453 CE (Robin et al., 1994; Gao
et al., 2006) to generate this strong response of the climate
system (see Sect. 5).

5 Discussion

Consistent climate reconstructions have been obtained by
assimilating qualitative information from documentary data
compiled by historians. Although further methodological im-
provements can be made (e.g., developing a reconstruction
method able to work with variables following non-Gaussian
distributions), the Bayesian approach presented herein has
been proven effective in the task of providing a robust frame-
work not only by retrieving climate information from histor-
ical archives, but also by taking into account uncertainties
such as source reliability, data quality, and regional impact.
In this sense, the methodology has been adapted to the histo-
rian workflow (i.e., the common procedures followed in so-
cial sciences) while providing quantitative results for climate
scientists, serving as a common ground where collaborative
efforts between social and applied sciences can be made to
improve our understanding of past climatological events.

Moreover, our method addresses larger epistemological
concerns in historical research. Although scholars of history
and the historical sciences have often understood their work
as representing the past or debating interpretations of his-

torical evidence and events, philosophers have raised doubts
about the completeness and objectivity of such “representa-
tion” or “interpretations” (as discussed in e.g., Kuukkanen,
2015). A more defensible and productive epistemic stance
could be to understand historical research as Bayesian ab-
ductive inference – that is, a probabilistic reasoning from
effects to causes or, more specifically, from the traces left
by the past, including physical and written records, to hy-
potheses about the past itself. Previous studies have demon-
strated that this stance encapsulates the implicit principles
underlying historical research and that consciously adopting
Bayesian abductive methods improves the accuracy of histor-
ical studies and communication (Tucker, 2004; Lavan, 2019).
Our study substantiates this epistemological shift in the inter-
disciplinary field of historical climatology.

Summer precipitation after volcanic eruption

One of the most interesting aspects of the Bayesian method
resides in the possibility of studying past anomalous events
from documentary data recorded at the time of the incident
and reconstructing the posterior climate response at local and
regional scales. In this case, we focused on summer rain-
fall anomalies after 1452 CE that remained persistent for the
4 following years as described in Sect. 4.2. To generate such
climate response, the event that took place during 1452 CE
must have been of colossal proportions, which is consistent
with a major volcanic eruption reported in previous studies
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Figure 7. Distribution of mean temperatures in the Burgundian
Low Countries from 1420 to 1499 CE after data assimilation. Solid
(dashed) violins show the seasonal distribution when 2 m air tem-
peratures from the 40-member (13-member) ModE-Sim ensemble
(CESM-LME) are employed to generate the prior. Diamonds rep-
resent recent seasonal mean temperatures obtained from regional
observations within the CRUTEM5 dataset for the 2010–2021 time
period.

(e.g., Robin et al., 1994; Gao et al., 2006; Raible et al., 2016;
Esper et al., 2017; Hartman et al., 2019). This regional in-
crease in wetter summers over the Burgundian Low Coun-
tries after strong volcanic eruptions could be explained as
a remote effect of weakened atmospheric circulation sys-
tems such as the African and Indian monsoons (e.g., Oman
et al., 2006; Colose et al., 2016; Fadnavis et al., 2021). Weg-
mann et al. (2014) illustrated possible mechanisms that re-
late weaker monsoons with positive summer precipitation
anomalies over southern and central Europe after major vol-
canic eruptions. Within this context, weaker monsoons can
lead to a weakening of the northern branch of the Hadley cell
that can perturb the atmospheric circulation over the Mediter-
ranean and North Atlantic Ocean, increasing the European
summer rainfall for the coming years after the eruption. Note
that these wetter anomalies are also observed (with higher
uncertainties) in priors of 1453, 1455, and 1456 (Fig. 8),
indicating that GCMs are able to reproduce the forced sig-
nal after major climate events in agreement with historical
records. Nevertheless, more consistent results are obtained
after data assimilation such as in the reconstruction of 1454,
for which no clear wet conditions were extracted from the
prior, but they are clearly present in the posterior probability
distribution.

It is noteworthy to mention that the consequences of this
large volcanic eruption are more evident in the results pre-
sented herein than in previous reconstructions (e.g., Ca-
menisch, 2015b). This is due to the fact that in the 1450s and
1460s, the data quality and quantity in the Burgundian Low
Countries are not very consistent with regard to weather re-
ports in narrative sources.

Indeed, in other European regions with somewhat better
source coverage in these 2 decades, the rainy summers re-
sulting from the 1452 CE volcanic eruption can be traced in
historical sources. For example, reports from 1454 and 1456
confirm summer precipitation and temperature anomalies in
northern Switzerland: in 1454, a period of frost occurred at
the end of May, during which snowfall was observed in the
Black Forest to below 1150 m above sea level. The low tem-
peratures destroyed everything that grew in the fields. In the
first third of July it was still so cold that the “living rooms”
had to be heated and it rained unusually heavily. Cold and
rain continued in August and September. From the summer
of 1456 it is reported that from the end of June to the end of
October not 4 days of summer weather occurred in a row and
there were not 14 dry days. In addition, repeated thunder-
storms and hailstorms devastated the area. Because it rained
all the time, the crops were destroyed and the wine was sour
(Camenisch, 2022). The descriptions of these 2 years suggest
a “year without summer” in 1454 and maybe even in 1456.

This is an example of the potential of the Bayesian
approach, especially in the reconstruction of precipitation
anomalies. With conventional methods, it would not be pos-
sible to use historical sources from Switzerland as evidence
for Pfister index values in the Low Countries. Thus, this ap-
proach also represents an opportunity to make precise and
reliable statements with few historical sources spread over a
larger geographical area.

6 Conclusions

With the Bayesian approach applied here, we were able to
integrate probabilities and uncertainty into the proven Pfister
indices in an existing temperature and precipitation recon-
struction of the Burgundian Low Countries during the 15th
century. In this process, several gaps could be closed because
even years with ambiguous, little, or no concrete information
from historical sources could be evaluated. This was possi-
ble because no explicit decisions had to be made for an index
value, but all index values were evaluated according to their
probability of occurrence. Such an assessment is possible
thanks to a precise knowledge of the historical sources and
the way weather-related information is presented in them.
The Bayesian reconstructions obtained herein are not only
physically consistent due to background states of the climate
system provided by last-generation model simulations, but
also historically accurate thanks to the information retrieved
from historical documents. Hence, this study opens the door
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Figure 8. Seasonal mean wet days in a month in the Burgundian Low Countries from 1420 to 1499 CE. Colored areas show mean wet days±
1 standard deviation averaged over all members of the ModE-Sim ensemble. They are reconstructed from posterior probability distributions
after assimilating regional information from historical documents.

Figure 9. Distribution of average wet days in a month over the Bur-
gundian Low Countries from 1420 to 1499 CE after data assimila-
tion using the ModE-Sim ensemble as the prior. Depicted in red
are the four summers following a strong volcanic eruption in late
1452 CE (or early 1453 CE).

for the assimilation of documentary information contained in
the archives of most history faculties around the world, mo-
tivating collaboration between social and applied sciences.
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