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Abstract. Paleoclimate proxy records have non-negligible
uncertainties that arise from both the proxy measurement
and the dating processes. Knowledge of the dating uncertain-
ties is important for a rigorous propagation to further anal-
yses, for example, for identification and dating of stadial–
interstadial transitions in Greenland ice core records dur-
ing glacial intervals, for comparing the variability in dif-
ferent proxy archives, and for model-data comparisons in
general. In this study we develop a statistical framework to
quantify and propagate dating uncertainties in layer counted
proxy archives using the example of the Greenland Ice Core
Chronology 2005 (GICC05). We express the number of lay-
ers per depth interval as the sum of a structured component
that represents both underlying physical processes and biases
in layer counting, described by a regression model, and a
noise component that represents the fluctuations of the un-
derlying physical processes, as well as unbiased counting er-
rors. The joint dating uncertainties for all depths can then be
described by a multivariate Gaussian process from which the
chronology (such as the GICC05) can be sampled. We show
how the effect of a potential counting bias can be incorpo-
rated in our framework. Furthermore we present refined esti-
mates of the occurrence times of Dansgaard–Oeschger events
evidenced in Greenland ice cores together with a complete
uncertainty quantification of these timings.

1 Introduction

The study of past climates is based on proxy measure-
ments obtained from natural climate archives such as cave
speleothems, lake and ocean sediments, and ice cores. Pale-
oclimate reconstructions derived from proxies suffer from 3-
fold uncertainty. First, the proxy measurement itself involves
the typical measurement uncertainties. Second, the interpre-
tation of proxy variables, such as isotope ratios in terms of
physical variables, such as temperature, is often ambiguous,
and typically no one-to-one mapping can be established be-
tween the measured proxies and the climatic quantities of in-
terest. Third, the age has to be measured alongside the proxy
variable. In most cases an age model can be inferred that
provides a quantitative relationship between the depth in the
archive under consideration and the corresponding age. Such
age models are also subject to uncertainties.

This study is exclusively concerned with the dating uncer-
tainties of so-called layer counted archives, where the dat-
ing is performed based on counting periodic signals in the
proxy archives such as annual layers arising from the im-
pact of the seasonal cycle on the deposition process (e.g.,
Rasmussen et al., 2006). This type of archive comprises
varved lake sediments, ice cores, banded corals, tree rings,
and some speleothems (Comboul et al., 2014). Using the ex-
ample of the NGRIP ice core (North Greenland Ice Core
Project members, 2004) and its associated chronology, the
GICC05 (Vinther et al., 2006; Rasmussen et al., 2006; An-
dersen et al., 2006; Svensson et al., 2008), we present here
a statistical approach to generate ensembles of age models
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that may in turn be used to propagate the age uncertainties to
any subsequent analysis of the time series derived from the
NGRIP record. Our method can be directly adapted to other
layer counted archives.

Layer counting assesses the age increments along the axis
perpendicular to the layering, whose summation yields the
total age. In turn, also the errors made in the counting process
accumulate such that in chronologies obtained from count-
ing annual layers, the absolute age uncertainty grows with
increasing age (e.g., Boers et al., 2017).

Most importantly, dating uncertainties make it challeng-
ing to establish an unambiguous temporal relation between
signals recorded in different, and possibly remote, archives.
Therefore, it is often not possible to decipher the exact tem-
poral order of events and distinguish causes from conse-
quences across past climate changes. For example, abrupt
Greenland warmings known as Dansgaard–Oeschger (DO)
events (Dansgaard et al., 1993; Johnsen et al., 1992) evi-
denced in ice core records from the last glacial are accompa-
nied by changes in the east Asian monsoon system, which are
apparent from Chinese speleothem records (e.g., Zhou et al.,
2014; Li et al., 2017). However, since the dating uncertainties
exceed the relevant time scales of these abrupt climate shifts,
a clear order of events cannot be determined. This prevents
us from deducing if in the context of DO events, the abrupt
Greenland warming triggered a hemispheric transition in the
atmosphere, or vice versa, or if these changes happened si-
multaneously as part of a global abrupt climatic shift (Cor-
rick et al., 2020).

For the quantification of dating uncertainties in radiomet-
rically dated archives, there exist well established general-
ized frameworks. One example is the Bayesian Accumula-
tion Model (Blaauw and Christeny, 2011) which models the
sediment accumulation rate as a first order autoregressive
process with gamma distributed innovations. Other meth-
ods or software include OxCal (Ramsey, 1995, 2008) and
BChron (Haslett and Parnell, 2008; Parnell et al., 2008). Con-
trarily, the uncertainties of layer counted archives are tar-
geted systematically only by few studies. Comboul et al.
(2014) present a probabilistic model, where the number of
missed and double-counted layers are expressed as counting
processes shaped by corresponding error rates. However, this
approach requires knowledge about these rates and further
does not account for any uncertainty associated with them.
An alternative Bayesian approach for quantifying the dating
uncertainty of layer counted archives is presented in Boers
et al. (2017), where the uncertainty is shifted from the time
axis to the proxy value. However, this approach does not al-
low for generation of ensembles of chronologies as required
for uncertainty propagation.

Even though dating uncertainties are conveniently quan-
tified for many archives, many studies ignore these uncer-
tainties and instead draw inference from “average” or “most
likely” age scales, as already highlighted by McKay et al.
(2021). This involves the risk of losing valuable informa-

tion, as shown, for example, in Riechers and Boers (2020).
In some cases, rigorous propagation of uncertainty may yield
results that qualitatively differ from results obtained by using
the “average” or “best fit” age model. In this context, McKay
et al. (2021) propose to apply the respective analysis to an en-
semble of possible age scales to ensure the uncertainty prop-
agation, in line with the strategy proposed by Riechers and
Boers (2020).

We focus on the layer counted part of the GICC05 chronol-
ogy, a synchronized age scale for several Greenland ice cores
(Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,
2006; Svensson et al., 2008). It was obtained by counting
the layers of different Greenland ice cores and synchroniz-
ing the results using matchpoints. While the recent part of
the chronology is compiled from multiple cores, the older
part (older than 15 kyr b2k) is based exclusively on the layer
counting in the NGRIP core. We introduce a new method to
generate realistic age ensembles for the NGRIP core, which
conveniently represent the uncertainty associated with the
GICC05.

Originally, the dating uncertainty of the GICC05 is quan-
tified in terms of the maximum counting error (MCE). The
MCE increases by 0.5 years for every layer which is deemed
uncertain by the investigators during the counting process:

MCE(z)= 0.5Nu (z) , (1)

where Nu is the number of uncertain layers down to depth
z. In contrast to certain layers, which can be identified un-
ambiguously in the records, uncertain layers are less pro-
nounced and therefore it seems less certain that these signals
truly correspond to physical layers. The accumulation of un-
certain layers results in high values for the MCE for the older
parts of the core (MCE= 2.6 kyr at 60 kyr b2k estimated
age). However, it seems highly unlikely that all uncertain lay-
ers are consistently either true layers or no layers, which is
why we think that the MCE is an overly careful quantifica-
tion of the age uncertainty, as already suggested by Andersen
et al. (2006). One might, alternatively, be tempted to treat the
uncertain layers as a Bernoulli experiment with Nu repeti-
tions and a probability of one half for each uncertain layer
to be a true layer. However, this would neglect any sort of
bias in the assessment of the uncertain layers and would lead
to unrealistically small uncertainties, since over- and under-
counting practically cancel each other out in this Bernoulli
type interpretation (see for instance Andersen et al., 2006;
Rasmussen et al., 2006).

The method presented here abandons the notion of cer-
tain and uncertain layers. Instead, we separate the GICC05
chronology into contributions that can be captured by deter-
ministic model equations and corresponding residuals. We
construct a new age–depth model by complementing the de-
terministic part with a stochastic component designed in ac-
cordance with the statistics of the residuals. This model can
be used to generate age–depth ensembles in a computation-
ally efficient manner. In turn, these ensembles facilitate un-
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certainty propagation to subsequent analysis. The model pa-
rameters are tuned with respect to the GICC05 chronology
that includes every uncertain layer as half a layer.

The outline of this paper is as follows: Section 2 gives a
description of the data used for this study. Section 3.1 intro-
duces our statistical model for the dating uncertainties, and
details about how we incorporate physical processes and how
we deduce the noise of the model from the statistics of the
residuals. In Sect. 3.2 we show how we can formulate our
model in terms of a hierarchical Bayesian modeling frame-
work that allows for the physical and noise components to
be estimated simultaneously. That section also details how
one can use the resulting posterior distributions of the model
parameters to obtain a full description of the posterior dis-
tributions of the dating uncertainties using a sample-based
approach. We finally demonstrate how a potential counting
bias could be incorporated by the model, and how that would
affect the results. In Sect. 4 we show how our model can be
used to obtain a full description of the dating uncertainties
of abrupt warming events, which takes into account the dat-
ing uncertainties as well as the uncertainties in determining
their exact position in the noisy data. Further discussion and
conclusions are provided in Sect. 6.

2 NGRIP ice core data

We use the Greenland Ice Core Chronology 2005 (GICC05)
(Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,
2006; Svensson et al., 2008) as defined for the NGRIP ice
core together with the corresponding δ18O proxy record
(North Greenland Ice Core Project members, 2004; Gkinis
et al., 2014; Ruth et al., 2003). An analogous analysis for the
Ca2+ proxy record is presented in Appendix B. The final age
of the layer counted part of the GICC05 is 59 944 yr b2k,
and we consider data up to 11 703 yr b2k. The following
Holocene part of the record is excluded since it is governed
by a substantially different climate than the last glacial in-
terval (Rasmussen et al., 2014). For the considered period,
the NGRIP record is available at 5 cm resolution and thus
equidistant in depth, but not in time. In total, the data com-
prises n= 18672 data points of the form (zk,yk,xk),k ∈
{0,1, . . .,n− 1}, where zk denotes the kth depth, yk the cor-
responding age as indicated by the GICC05, and xk the mea-
sured proxy value.

The GICC05 is based on counting annual layers which are
evident in multi-proxy continuous flow measurements from
the NGRIP, DYE3, and the GRIP ice cores. While the mea-
surements from DYE3 and GRIP only facilitate layer count-
ing up to ages of 8.2 and 14.9 kyr b2k, respectively, the
NGRIP core allowed the identification of annual layers up
to an age of 60 kyr b2k. The uncertainty of the GICC05 has
been quantified as follows: whenever the investigators were
uncertain about whether or not a signal in the data should
be considered an annual layer, half a year was added to the

cumulative number of layers while simultaneously adding
±0.5 yr to the age uncertainty. The total age uncertainty de-
termined by the number of all uncertain layers up to a given
depth is termed the maximum counting error (MCE). The
MCE amounts to a relative age uncertainty of 0.84 % at the
onset of the Holocene and 4.34 % at the end of the layer
counted section of the core.
δ18O values from Greenland ice cores are interpreted as

a qualitative measure of the site temperature at the time of
precipitation (Jouzel et al., 1997; Gkinis et al., 2014). We in-
clude these data in our study since our modeling approach
will make use of the relation between atmospheric tempera-
tures and the amount of precipitation, which in turn affects
the thickness of the annual layers. In addition we use the di-
vision of the record into Greenland stadial and interstadial
phases as presented in Table 2 of Rasmussen et al. (2014).
We label the depths at which stadial–interstadial transitions
occur by z∗1, . . .,z

∗
p and the corresponding ages by y∗1 , . . .,y

∗
p.

Figure 1 shows the measured δ18O values as a function of the
GICC05 time scale, together with the Greenland stadial and
interstadial onsets.

3 Methods

3.1 Age–depth model

We assume that depths z= (z1, . . .,zn)> and proxy values
x = (x1, . . .,xn)> are measured accurately and hence treat
them as deterministic variables. In contrast, we consider the
ages y = (y1, . . .,yn)> as dependent stochastic variables and
will in the following establish a model to map the indepen-
dent depths and stable isotope concentrations onto ages, in a
way that reflects the uncertainties inherent to the dating. The
model will be supplemented with information on the prevail-
ing climate period.

In order to motivate our modeling approach we give some
general considerations about the deposition process as well
as the counting process. The decisive quantity for us will be
the incremental number of annual layers counted in a 5 cm
depth increment of the ice core:

1yk = yk − yk−1. (2)

This quantity is determined by the amount of precipitation
(minus the snow that is blown away by winds) during the
corresponding period, the thinning that the layers experience
over time deeper down in the core, and potential errors made
during the counting process. While the thinning process can
be expected to happen mostly deterministically, the net an-
nual accumulation of snow certainly exhibits stronger fluc-
tuations. Finally, the counting error adds additional random-
ness. Thus, it is reasonable to regard the observed age incre-
ments 1y as a realization of a random vector 1Y which can
be decomposed into a deterministic and a stochastic compo-
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Figure 1. The measured δ18O isotope values plotted against the corresponding GICC05 time scale, starting from 11 793 yr b2k. The vertical
gray lines denote the transitions between Greenland stadial and interstadial periods as reported by Rasmussen et al. (2014).

nent:

1Yk = a (zk)+ εk. (3)

Note that the number of layers within a 5 cm depth increment
is not necessarily an integer number. Given that the amount
of precipitation co-varies with atmospheric site temperatures
we can specify

a (zk)= a (zk,x (zk))→ a (zk,xk) . (4)

Based on physical arguments and the analysis of the observed
age increments 1yk , we will propose the structural form of
the deterministic part of the model and then tune the model
parameters to the data. In turn, this will allow us to design
the model’s noise component ε in accordance with the corre-
sponding residuals δk =1yk − a (zk,xk).

3.1.1 Linear regression

As explained above, the thickness of the counted layers, and
thereby the number of layers per depth increment 1zk =
zk−zk−1, is governed by two physical factors: the amount of
precipitation at the time the layer was formed and the thin-
ning of the core due to ice flow. These processes are here
assumed to follow a regression model. We take into account
the thinning by implementing a second order polynomial de-
pendency of 1Yk with respect to the depth zk . Choosing
this non-linear function conveniently accounts for the satu-
ration of the layer thinning evident in the NGRIP ice core.
The amount of precipitation is known to co-vary with atmo-
spheric temperatures, since by the Clausius–Clapeyron re-
lation the moisture holding capacity of the atmosphere in-
creases with temperatures. This is represented using a linear
response to the δ18O measurements. The same response is
applied to the log(Ca2+) in the alternative analysis presented
in Appendix B. Finally, we observe clear trends in the incre-
mental layers that persist over individual stadials and inter-
stadials. Given the consistency of these trends across the dif-
ferent climate periods, we decided to incorporate them into

the deterministic model component. Overall, we propose a
deterministic model of the form

a (zk,xk)= bz2
k + bxxk (zk)+

p∑
i=1

ψi(zk;ai,ci), (5)

with

ψi (zk;ai,ci)=
{
ai + cizk, z∗i < zk < z

∗

i+1
0, otherwise

, (6)

in order to capture the systematic features of the chronol-
ogy. Here, ci denotes the period specific slopes and ai their
corresponding offsets. For p transitions between stadials and
interstadials we have to tune 2p+ 2 regression parameters,
which is achieved by fitting the above model for a(zk,xk)
to the observed layer increments 1yk given by the GICC05
time scale in a least squares approach. As explained above,
the GICC05 ages contain the contribution of uncertain layers,
which were counted as half a year each. Here, we abandon
the distinction of certain and uncertain layers and regard the
GICC05 ages as the best possible estimate of the true ages
and accordingly use them directly for the optimization. The
fitted model is shown in red in Fig. 22a.

3.1.2 Noise structure

After tuning the deterministic part of Eq. (3), the residuals
are given by

δk = a (zk,xk)−1yk. (7)

We find the residuals to be symmetric and unimodally dis-
tributed, and apart from some degree of over-dispersion they
appear to be well described by a normal distribution, as
shown in Fig. 3.

Moreover, by examining the empirical autocorrelation il-
lustrated in Fig. 3c, we observe that the residuals exhibit
a fast decay of memory which is indicative of stationarity.
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Figure 2. (a) Number of layers counted in the GICC05 time scale per 5 cm depth increments in the NGRIP ice core (black). The red
line shows the fitted values from the regression model a(zk,xk)= bz2

k
+ bxx(k)+

∑p
i=1ψi (zk;ai ,ci ). The vertical gray lines represent the

transitions between Greenland stadials and interstadials. (b) The residuals δk obtained from fitting the regression model a(zk,xk) to the layer
increments 1yk .

This suggests that the noise can be expressed using a short-
memory Gaussian stochastic process.

We explore three different models for the correlation struc-
ture of the noise ε. The first model assumes that they follow
independent and identically distributed (iid) Gaussian pro-
cesses:

εk
iid
∼N

(
0,σ 2

ε

)
. (8)

The second model assumes that the noise can be described
by a first order autoregressive (AR) process

εk = φεk−1+ ξk, (9)

where φ is the first-lag autocorrelation coefficient and ξk is
a white noise process with variance σ 2

ξ = σ
2
ε /(1−φ

2). The
third model assumes the noise follows a second order autore-
gressive process

εk = φ1εk−1+φ2εk−2+ ξk, (10)

where φ1 and φ2 are the first- and second-lag autocorrelation
coefficients and ξk is a white noise process with variance:

σ 2
ξ = σ

2
ε

1−φ2

(1+φ2)
(
(1−φ2)2

−φ2
1
) . (11)

Note that a potential global or at least climate-regime-
specific bias in the counting process, such as overseeing sys-
tematically 1 out of 10 layers, would be captured by the re-
gression model and thus cannot be identified as a systematic
error. We will investigate the influence of potential system-
atic errors below. Similarly, fluctuations in the physical pro-
cesses can be captured by the noise model which aims to
represent the counting errors. It would therefore be more ac-
curate to interpret a(zk,xk) as a structured component repre-
senting a part of both the physical processes and a systematic
counting error which can be accounted for by linear regres-
sion, and εk as the fluctuations of both the physical processes
and counting errors. Hence, εk can be considered an upper
boundary on the counting uncertainty.

3.2 Simultaneous Bayesian modeling

So far, we have fitted only the structural model component.
This enabled us to investigate statistical properties of the
residuals and formulate corresponding noise model candi-
dates. Fitting both the linear regression model and the dif-
ferent noise models can in principle be performed in two
stages: First, the linear regression model is fitted to the layer
increments using the method of least squares. Thereafter, the
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Figure 3. (a) Histogram of the residuals obtained from least squares fit of the regression model a(zk,xk). (b) The corresponding quantile–
quantile plot. We observed key properties of symmetry and unimodality indicating Gaussianity. The quantile–quantile plot indicates a small
over-dispersion, but overall the data seem to be consistent with a normal distribution. (c) The autocorrelation function of the residuals from
the least squares fit of the linear regression model, up to a maximum of 20 lags. A fast memory decay can be inferred.

fitted values are subtracted and the selected noise model is
fitted to the residuals. However, this approach has the disad-
vantage that some variation that may in reality be caused by
the noise process εk may have been attributed to the struc-
tured component a(zk,xk) and removed before fitting the
noise model. We therefore introduce here a Bayesian ap-
proach that enables us to estimate all model parameters si-
multaneously. The Bayesian approach has three key advan-
tages over the least squares fitting of the structured compo-
nent: first, it treats the noise and the structured component
equally. Second, it returns the joint posterior probability of
all model parameters which indicates the plausibility of a cer-
tain parameter configuration in view of the data. The poste-
rior probability distribution can be regarded as an uncertainty
quantification of the model’s parameter configuration. Third,
in the Bayesian parameter estimation, prior knowledge and
constraints on the parameter can be incorporated via a con-
venient choice of the so-called prior distributions.

In general terms, let D denote some observational data and
θ denote parameters that shape a model which is assumed
to reasonably describe the process that generated the data.
Then Bayes’ theorem can be used to deduce the posterior

probability density of the parameters θ given the data D:

π (θ |D)=
π (D|θ )π (θ )
π (D)

. (12)

In our case the GICC05 age y = (y1, . . .,yn), or more
precisely their increments 1y, represent the observa-
tional data D assumed to be generated from the model
defined by Eq. (3). There are 2p+ 2 parameters β =

(b2,bx,a1,c1, . . .,ap,cp) for the structured component alone
and the noise adds another one to three parameters, depend-
ing on the choice of the noise structure. Thus the set of model
parameters reads

θ = (β,ψ) , (13)

where ψ = σε if the residuals are assumed to follow an iid
Gaussian distribution, ψ = (σε,φ) if they are assumed to fol-
low an AR(1) process, and ψ = (σε,φ1,φ2) if they are as-
sumed to follow an AR(2) process. For any given parameter
configuration, the likelihood is for all three choices of the
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noise structure defined by a multivariate Gaussian distribu-
tion,

π (1y|θ )= (2π )−n/2|6|−1exp
{
−

1
2

(1y

−a)>6−1 (1y− a)
}
, (14)

where a = (a(z1,x1), . . .,a(zn,xn))> and the entries of the
autocovariance matrix 6 are given by the autocovariance
function 6ij = γ (|i− j |) of the assumed noise model. For
the iid model, the autocovariance function is simply σ 2

ε if
i = j , and zero otherwise, resulting in a diagonal covariance
matrix. For the AR(1) model the autocovariance function is

γ (k)=
σ 2
ε

1−φ2φ
|k|. (15)

The autocovariance function of the AR(2) model is specified
by the difference equation,

γ (k)= φ1γ (k− 1)+φ2γ (k− 2), (16)

with initial conditions:

γ (0)=
(

1−φ2

1+φ2

)
σ 2
ε

(1−φ2)2−φ2
1

(17)

γ (1)=
φ1

1−φ2
γ (0) . (18)

A benefit of having the likelihood follow a Gaussian dis-
tribution is that it can be evaluated easily and samples can be
obtained efficiently, despite the large number of parameters.
Finally, we define convenient priors for the model parame-
ters. For the parameters of the structured model component β
we choose vague Gaussian priors, with variances that safely
cover all reasonable parameter configurations. For the noise
parameters ψ we restrict the scaling parameter σε to be posi-
tive, and the autoregressive coefficients such that they define
a stationary model. These constraints are embedded into the
model by adopting suitable parameterizations. The scaling
parameter σε is assigned a gamma distribution through the
parameterization κ = log(1/σ 2

ε ). For the lag-one correlation
parameter in the AR(1) model we assume a Gaussian prior
on the logit transformation ρ = log((1+φ)/(1−φ)). For the
AR(2) model we instead assign priors on the logit transfor-
mation of the partial autocorrelations ψ1 = φ1/(1−φ2) and
ψ2 = φ2, using penalized complexity priors (Simpson et al.,
2017).

In principle, the joint posterior density can then be sam-
pled by using a Markov chain Monte Carlo (MCMC) algo-
rithm (e.g., Goodman and Weare, 2010). However, to solve
Eq. (12) more efficiently, we formulate the problem in terms
of a latent Gaussian model and then use integrated nested
Laplace approximations (INLAs) (Rue et al., 2009, 2017) to

compute the joint and marginal posterior distributions (for
details see Appendix A).

The posterior distribution of θ enables us to generate en-
sembles of different realizations of the random variable Y ,
i.e., of the age increments that correspond to the fixed depth
increments1z. In a two-stage Monte Carlo simulation, first a
value for θ is randomly sampled from the posterior π (θ |1y).
Second, the noise ε is sampled according to the noise model
using noise parameters sampled in the first step. An ensem-
ble generated in this fashion simultaneously reflects the un-
certainty enshrined in the stochastic process and the model
thereof as well as the uncertainty about the model parame-
ters. Each realization of age increments yields a correspond-
ing possible chronology according to

yk = y0+

k∑
i=1

(a (zi,xi)+ εi) , (19)

where y0 is the number of reported layers up to the depth
z0. Figure 4 shows the 95 % credible intervals obtained from
age ensembles for the three different noise models with re-
spect to the GICC05 age. Each ensemble comprises 10 000
realizations of Y . In this plot we notice a significant increase
of uncertainty going from the iid to the AR(1) model. This
is intuitive as when more memory is added to the model, the
variation increases.

However, going from AR(1) to AR(2) adds only moder-
ate additional uncertainty. We therefore argue that an AR(1)
process is sufficient in terms of modeling the correlation
structure of the residuals. The same is observed when using
log(Ca2+) as a proxy instead (see Fig. B1). All computations
henceforth are carried out with the AR(1) noise model.

3.3 Incorporating an unknown counting bias

When originally quantifying the uncertainty of the GICC05
chronology, a concern was that the layer counting was poten-
tially biased in the sense that layers were consistently over-
counted or missed. As highlighted by Andersen et al. (2006),
there is no way to quantify a potential bias based on the data.
Here, we investigate the influence that such a bias would have
on our model, assuming a given maximum bias strength. To
capture the effect of a systematic bias in the layer counting
we introduce a scaling parameter η such that

1Yk = η (a (zk,xk)+ εk) . (20)

Given that we have no knowledge about the size of the bias,
η must be regarded as a random variable whose distribution
can only be estimated by experts a priori. Originally, biases
on the order of 1 % in the counting performed by different
investigators have been observed (Rasmussen et al., 2006;
Andersen et al., 2006). Here we assume

η ∼ U (1±1η) , (21)
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Figure 4. The 95 % credible intervals of the dating uncertainty distribution when δ18O is used as the proxy covariate. The GICC05 time
scale has been subtracted and the noise is modeled using iid (black), AR(1) (blue), and AR(2) (red) noise models. Only the posterior marginal
mean computed using AR(1) distributed noise is included (gray) since it is very similar to the mean obtained using other noise assumptions.

meaning the layer counters are just as likely to systemati-
cally over-count as to under-count, on a maximum rate of
1η. While the expectation for the age increments E(1Y )
remains unchanged as long as E(η)= 1, their variance will
grow due to the additional uncertainty. Figure 5 shows the
95 % credible intervals for potentially biased chronology en-
sembles generated under the assumption that1η equals 0 %,
2 %, or 4 %.

It is evident that the bias uncertainty contributes substan-
tially to the age uncertainty. This is expected since a rela-
tively small counting bias yields a large absolute error at a
possible age of 60 kyr b2k, which in turn exceeds the uncer-
tainty contribution of the noise by far. We also observed that
one would need a maximum error rate of 1η ≈ 4 % in order
for the uncertainty to approach the maximum counting error
at the end of the layer counted core segment.

4 Examples of applications

4.1 Dating uncertainty of DO events

Both the NGRIP δ18O and log(Ca2+) records are character-
ized by prominent abrupt shifts from low to high values,
including the so-called Dansgaard–Oeschger (DO) events
(Johnsen et al., 1992; Dansgaard et al., 1993). These jumps
are interpreted as sudden warming events in Greenland,
which took place repeatedly during the last glacial period.
In order to explain the physical relationship between these
abrupt Greenland warming events and apparently concomi-
tant abrupt climate shifts evidenced in other archives from
different parts of the planet, it is crucial to disentangle the
exact temporal order of these events. This requires a rigorous

treatment of the uncertainties associated with the dating of
DO events in Greenland ice core records.

Rasmussen et al. (2014) provide a comprehensive list of
Dansgaard–Oeschger events and other stadial–interstadial
transitions, indicating depths from the NGRIP ice core at
which they occur, and the corresponding GICC05 age. They
report the visually identified event onsets and provide uncer-
tainty estimates in terms of data points along the depth axis
and the respective MCE associated with the estimated event
onset depth. This assessment was later refined by Capron
et al. (2021) using the algorithm for detecting transition on-
sets designed by Erhardt et al. (2019). Here, we present a rig-
orous combination of the depth and age uncertainties, which
complicate the exact dating of abrupt warming events.

First, we adopt the Bayesian transition onset detection de-
signed by Erhardt et al. (2019) to estimate the onset of the
abrupt warming transitions in the proxy records with re-
spect to the depth in the core. By Z∗ we denote a contin-
uous stochastic variable that represents the uncertain onset
depth and by x∗ we denote a selected data window of the
proxy record enclosing the transition. For each transition this
yields a posterior distribution π (Z∗|x∗) over potential tran-
sition onset depths, assuming a linear transition from low
to high proxy values perturbed by AR(1) noise. For infer-
ence we adopt the methodology of INLA as it is particularly
suited for such models, granting us a significant reduction in
computational cost over traditional MCMC algorithms. The
application of the transition onset detection to the onset of
GI-11 is presented in Fig. 6a, with the resulting posterior
marginal distribution for Z∗ illustrated in Fig. 6b. Note that
the dating method for the transitions is sensitive to the choice
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Figure 5. The 95 % credible intervals of the difference between estimated dating and the GICC05 time scale compared with the maximum
counting error (solid black). Dating uncertainties in this case include a bias expressed by a stochastic scaling parameter drawn from a uniform
U(1±1η) distribution. The solid blue line represents the unbiased1η = 0 dating uncertainty, while the dashed and dotted blue lines represent
the biased cases of 1η = 2% and 1η = 4%, respectively. The differences in dating uncertainty between iid, AR(1), and AR(2) models are
dwarfed by the uncertainty introduced by the unknown bias; hence, only the AR(1) distributed residuals are shown here.

of the data window. In Appendix D we detail how the fitting
windows for the linear ramps are optimally chosen. The se-
lected data windows are listed in Table D1. Furthermore, the
Bayesian transition detection fails in some cases where the
transition amplitudes are small. We successfully derive pos-
terior marginal distribution for a total of 29 events, whose
summary statistics are listed in Table 1.

Each potential transition onset depth z∗ yields a distribu-
tion over potential transition onset ages Y ∗. This uncertainty,
denoted by π (Y ∗|1y,z∗), is determined by linearly inter-
polating the age ensemble members generated according to
Sect. 3.1 based on the observed layer increments 1y. The
posterior distribution for the transition onset date for a given
DO event thus reads

π
(
Y ∗|1y,x∗

)
=

∫
π
(
Y ∗|1y,Z∗

)
π
(
Z∗|x∗

)
dZ∗. (22)

Technically, we create an ensemble of potential onset ages
in the following way: First, we generate an ensemble of
10 000 samples from the posterior distribution of the tran-
sition onset depth,

z∗r ∼ π (Z∗ | x∗), r ∈ [1,10000],

to represent the onset depth uncertainty. Second, for each on-
set depth sample z∗r we produce a simulation of a chronology
from the corresponding age uncertainty:

y∗r |z
∗
r ∼ π (Y ∗|1y,z∗r ).

Thus, for both proxies (δ18O and Ca2+) and for each event
we obtain 10 000 possible values for the transition onset age
whose distribution corresponds to the posterior distribution
expressed in Eq. (22). The posterior marginal mean and 95 %
credible intervals for each event are reported in Table 1. This
table hence gives the timing of the transitions together with
the full uncertainties, stemming from the transition onset de-
tection and the dating of the record. The estimated dating
uncertainties are presented visually in Fig. 7, where they
are also compared to the onset age obtained by Rasmussen
et al. (2014), as well as the best estimates from Buizert et al.
(2015) and Capron et al. (2021) which are presented in Ta-
ble 2.

Although the GICC05 ages y∗ of abrupt warming events
and subevents as reported by Rasmussen et al. (2014) fall
within our estimated 95 % credible intervals for all transi-
tions, there are some transitions where there is a notable
difference between the estimated posterior marginal mean
E(Y ∗) and the reported y∗. This can be partially explained
by the fact that Rasmussen et al. (2014) uses a lower 20-
year temporal resolution, and that they determine the onset
from three different ice cores and two different proxies (δ18O
and Ca2+), whereas our assessment is based on the univari-
ate NGRIP proxy records only. With E(Y ∗)− y∗ ∼ 120 the
difference is most prominent in the GI-11 transition, whose
simulated ages are represented in the histogram in Fig. 6c.
This discrepancy is caused by the difference between our es-
timated onset depth Z∗ and z∗ from our linear ramp model
fit shown in Fig. 6a. Our estimated onset depth E(Z∗) dif-
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Table 1. Linear ramp model fits for the NGRIP depth of 29 abrupt warming events, as well as the full dating uncertainty. Data include the
depth z∗ and dating y∗ from Rasmussen et al. (2014), as well as the posterior marginal mean and 95 % credible intervals for the estimated
onset depth Z∗ and age Y ∗.

Event z∗ (m) Z∗ mean (m) Z∗ 95 % CI (m) y∗ (yr b2k) Y ∗ mean (yr b2k) Y ∗ 95 % CI (yr b2k)

GI-1d 1574.80 1574.97 (1574.85, 1575.11) 14 075 14 078.53 (14 020.02, 14 136.57)
GI-1e 1604.64 1604.52 (1604.47, 1604.57) 14 692 14 689.13 (14 621.21, 14 758.25)
GI-2.2 1793.19 1793.87 (1793.63, 1794.08) 23 340 23 383.98 (23 269.8, 23 497.12)
GI-3 1869.12 1869.22 (1868.95, 1869.56) 27 780 27 789.43 (27 661.18, 27 916.42)
GI-4 1891.57 1891.67 (1891.32, 1892.05) 28 900 28 909.82 (28 777.57, 29 042.34)
GI-5.2 1951.65 1952.02 (1951.98, 1952.06) 32 500 32 524.76 (32 383.73, 32 662.2)
GI-6 1974.55 1974.40 (1974.36, 1974.44) 33 740 33 734.54 (33 590.28, 33 874.96)
GI-7b 1997.04 1997.25 (1997.20, 1997.31) 35 020 35 029.43 (34 881.88, 35173.95)
GI-7c 2009.44 2009.76 (2009.70, 2009.82) 35 480 35 502.41 (35 352.63, 35 649.46)
GI-8c 2070.02 2069.91 (2069.78, 2070.07) 38 220 38 216.54 (38 058.91, 38 372.02)
GI-9 2099.61 2099.65 (2099.64, 2099.66) 40 160 40 163.26 (40 001.66, 40 322.67)
GI-10 2124.03 2124.38 (2124.26, 2124.47) 41 460 41 484.34 (41 320.07, 41 647.05)
GI-11 2157.49 2159.20 (2159.02, 2159.37) 43 340 43 469.75 (43 300.83, 43 637.19)
GI-12c 2222.30 2222.27 (2222.16, 2222.39) 46 860 46 860.6 (46 685.25, 47 035.35)
GI-13b 2253.84 2254.11 (2254.05, 2254.17) 49 120 49 135.6 (48 957.52, 49 313.66)
GI-13c 2256.89 2257.39 (2257.26, 2257.54) 49 280 49 313.32 (49 134.13, 49 491.73)
GI-14b 2295.90 2296.00 (2295.81, 2296.17) 51 660 51 666.83 (51 482.6, 51 849.78)
GI-14c 2340.38 2340.03 (2339.93, 2340.13) 53 960 53 943.9 (53 753.12, 54 131.19)
GI-14d 2341.38 2341.55 (2341.52, 2341.59) 54 020 54 028.81 (53 837.72, 54 215.99)
GI-14e 2345.52 2345.65 (2345.59, 2345.70) 54 220 54 233.81 (54 042.35, 54 421.9)
GI-15.1 2355.34 2355.35 (2355.33, 2355.36) 55 000 55 002.51 (54 810.67, 55 190.97)
GI-15.2 2366.32 2366.56 (2366.47, 2366.64) 55 800 55 824.2 (55 630.79, 56 013.95)
GI-16.1b 2397.35 2397.36 (2397.28, 2397.47) 57 960 57 959.99 (57 762.56, 58 153.23)
GI-16.1c 2398.78 2398.67 (2398.58, 2398.75) 58 040 58 035.39 (57 838.32, 58 228.46)
GI-16.2 2402.55 2402.30 (2402.25, 2402.34) 58 280 58 266.31 (58 068.78, 58 459.55)
GI-17.1a 2409.78 2409.50 (2409.37, 2409.66) 58 780 58 765.24 (58 567.02, 58 960.27)
GI-17.1b 2410.65 2411.26 (2411.04, 2411.45) 58 840 58 876.59 (58 677.75, 59 072.46)
GI-17.1c 2415.01 2414.83 (2414.77, 2414.89) 59 080 59 069.05 (58 870.83, 59 265.27)
GI-17.2 2420.44 2420.70 (2420.64, 2420.76) 59 440 59 465.5 (59 266.65, 59 662.2)

fers from the value z∗ reported by Rasmussen et al. (2014)
by approximately 1.6 m. This discrepancy propagates into an
accordingly large difference in the age estimation of the tran-
sition onset. This demonstrates the importance of incorporat-
ing proper estimation and uncertainty quantification of the
onset depth. Although the absolute uncertainty added from
determining the onset depth can be considered negligible
compared with the much larger age–depth uncertainty, there
can still be a noticeable shift in the estimated onset age prop-
agated from the estimation of the onset depth.

5 Discussion

Motivated by the relationship between air temperature on the
one hand and the water-holding capacity and thus precipita-
tion on the other hand, we assumed a linear dependency of
the number of incremental layers per 5 cm on respective val-
ues of δ18O, which serves as an air temperature proxy. The
only other climate proxy variable which is available from the
NGRIP ice core at the same resolution over the same time

period is the Ca2+ particle concentration (Ruth et al., 2003).
From visual inspection one can already see that the negative
logarithm of the Ca2+ mass concentration record shows high
covariability with the δ18O record (see, for example, Fig. 1
of Rasmussen et al. (2014)). Changes in the Ca2+ concentra-
tions are interpreted as changes in the local and hemispheric
atmospheric circulation (e.g., Ruth et al., 2007; Schüpbach
et al., 2018; Erhardt et al., 2019), which would also affect
the amount of precipitation over Greenland. Above, we have
focused on the δ18O; and analogous analysis for − logCa2+

is presented in Appendix B. The results of the − logCa2+-
based chronology modeling are in very good agreement with
the ones based on δ18, which corroborates our methodology.

Adopting Gaussian noise models in principle allows for
a negative modeled number of incremental layers in a 5 cm
incremental core segment, which does not seem plausible
from a physical perspective. To avoid this, for comparison
one could log-transform the age increments and then apply
the modeling procedure. The model output would then have
to be transferred back by taking the exponential. However,
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Table 2. Greenland interstadial transitions observed in the NGRIP record. Data include the median onset NGRIP depth and age for the δ18O
and Ca2+ proxy records as reported in Capron et al. (2021) and the δ18O record presented in Buizert et al. (2015).

Capron et al. (2021) Buizert et al. (2015)

Transition Depth (m) δ18O onset (yr b2k) Ca2+ onset (yr b2k) Depth (m) δ18O onset (yr b2k)

GI-1e 1604.89 14 700 14 708 1604.05 14 628
GI-2.2 1794.49 23 400 23 428
GI-3 1869.35 27 788 27 797 1869.00 27 728
GI-4 1891.77 28 911 28 912 1891.27 28 838
GI-5.2 1952.26 32 528 32 540 1951.66 32 452
GI-7c 2010.12 35 510 35 507 2009.62 35 437
GI-8c 2070.22 38 231 38 239 2069.88 38 165
GI-10 2124.46 41 482 41 494 2123.98 41 408
GI-11 2159.33 43 471 43 366 2157.58 43 297
GI-12c 2222.71 46 887 46 896 2221.96 46 794
GI-14e 2345.73 54 235 54 233 2345.39 54 164
GI-15.1 2355.41 55 006 55 038 2355.17 54 940
GI-15.2 2366.71 55 831 55 831 2366.15 55 737
GI-16.2 2402.53 58 279 58 298 2402.25 59 018
GI-17.1c 2415.01 59 080 59 095 2414.82 59 018
GI-17.2 2420.98 59 480 59 483 2420.35 59 386

it turns out that the log transformation induces systematic
deviations of the mean model output age from the reported
GICC05 age. With the chances of negative layer increments
being fairly small (less than 5 %), overall the original model
outperforms the log-transformed model. A more detailed dis-
cussion on the log-transformed modeling approach is given
in Appendix C.

From Fig. 2b we observe that the variance of the residu-
als increases slightly with increasing depth down in the core.
This heteroskedasticity can be incorporated into our latent
Gaussian model by assuming that the variance depends on
the core depth in some predefined way. As this implemen-
tation is rather technical we consider it beyond the scope of
the current paper. Regardless, assuming constant variance ap-
pears to be a good first order approach.

6 Conclusions

We have developed a general statistical framework for quan-
tifying the age–depth uncertainty of layer counted proxy
archives. In these records the age can be determined by
counting annual layers that result from seasonal variations,
which in turn impact the deposition process. By counting
these layers one can assign time stamps to the individual
proxy measurements. However, there is a non-negligible un-
certainty associated with this counting process. Proper quan-
tification of this uncertainty is important since it carries valu-
able information and the error propagates to further analyses,
e.g., dating of climatic events, determining cause and effect
between such events, and model-data comparisons. Origi-
nally, the uncertainty of the GICC05 is quantified in terms

of the maximum counting error (MCE), defined as half the
number of uncertain layers. However, since this method as-
sumes that uncertain layers are either true or false, we believe
this to be an overly conservative estimate, giving too high un-
certainty for deeper layers.

In our approach we express the number of layers per
depth increment as the sum of a structured component and a
stochastic component. The structured component represents
physical layer thinning, a positive temperature–precipitation
feedback, and persisting trends over individual stadials and
interstadials. The stochastic component takes into account
the natural variability of the layer thickness and the errors
made in the counting process. After fitting the structured
component in a least squares manner, we find the residuals
to be approximately stationary, Gaussian distributed, and to
exhibit short-range autocorrelation. These summary statistics
motivate us to employ Gaussian white noise, or an autore-
gressive process of first or second order, as the stochastic part
of the age–depth model.

After defining the structure of the model, we estimate all
model parameters simultaneously in a hierarchical Bayesian
framework. The resulting joint posterior distribution on the
one hand serves as a quantification of the parameter uncer-
tainty in the model and on the other hand allows to generate
chronology ensembles that reflect the uncertainty in the age–
depth relationship of the NGRIP ice core. The dating uncer-
tainties obtained from this approach are significantly smaller
than those from the MCE. We also find that our estimates do
not deviate much from the GICC05 in terms of best estimates
for the dating.

Additional information that may help to further constrain
the uncertainties, such as tie points obtained via cosmogenic
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Figure 6. (a) The recorded δ18O of the NGRIP data x∗ (gray) as a function of depth for the GI-11 transition. The black line represents
the posterior marginal mean of the linear ramp model fitted using INLA. The enclosing red lines represent the corresponding 95 % credible
intervals. The blue curves at the bottom illustrate the (unscaled) posterior distributions of the onset (solid) and end point (dotted) of the
transition. The vertical dotted line represents the onset depth z∗ as reported in Rasmussen et al. (2014). (b) The posterior marginal distribution
of the onset depth Z∗ following a linear ramp model fit. The solid vertical lines represent the posterior marginal mean (black) and 95 %
credible intervals (gray). The dotted vertical line represents z∗. (c) Histogram describing the complete dating uncertainty of the transition to
GI-11, taking into account the uncertainty of the NGRIP depth of the onset as well as the dating uncertainty at this depth. The solid vertical
black line represents the mean of these samples, E(Y ∗), and the dotted vertical line represents the GICC05 onset age y∗ as reported in
Rasmussen et al. (2014).

radionuclides (Adolphi et al., 2018), will be fed into the
model in future research.

One of the biggest concerns regarding the layer counting
is that of a potential counting bias. Such a systematic error
cannot be corrected after the counting and, therefore, we in-
vestigate how a potential unknown counting bias increases
the uncertainty of the presented age–depth model. If such a
counting bias is restricted to ±4% we obtain total age un-
certainties comparable to the estimates based on the MCE.
Finally, we apply our method to the dating of DO events. Us-
ing a Bayesian transition onset detection we are able to com-
bine the uncertainty of the onset depth with the correspond-
ing age uncertainty, and to give a posterior distribution that
entails the complete dating uncertainty of each transition on-
set. We find that previous estimates of the DO onsets reported
in Rasmussen et al. (2014) are well within our estimated un-
certainty ranges both in terms of depth and age. However, the

dating uncertainties of the abrupt warming event onsets are
all considerably smaller than the MCE, even when account-
ing for the additional uncertainty associated with the onset
depth.

In theory, it should be possible to apply this approach to
other layered proxy records as well. However, there are some
requirements that need to be fulfilled for this approach to be
applicable. The first condition is that a potential layer thin-
ning can be adequately expressed by a regression model. In
our results we find the residuals to follow a Gaussian process,
but it should be possible for the model to be adapted such that
it supports other distributions for the residuals as well. How-
ever, depending on the model, if the residuals exhibit too long
memory then this could lead to the simulation procedure hav-
ing an infeasibly high computational cost. Moreover, if there
are many effects in the regression model there needs to be
sufficient data to achieve proper inference.

Clim. Past, 18, 1275–1294, 2022 https://doi.org/10.5194/cp-18-1275-2022



E. Myrvoll-Nilsen et al.: Uncertainty estimation of the timing of Greenland warmings 1287

Figure 7. Posterior distributions of the onset ages of abrupt climate transitions for the NGRIP δ18O (black) and Ca2+ (gray) proxy records.
The results are compared with ages reported by Rasmussen et al. (2014) (blue), Buizert et al. (2015) (green), and Capron et al. (2021) (red and
pink for the δ18O and Ca2+ record, respectively). The Ca2+-based posterior distributions rely on modeled chronologies which are presented
in Appendix B and which are not shown in the main text.

Appendix A: Latent Gaussian model formulation

In this study we consider different Gaussian models for
the noise component, including independent identically dis-
tributed (iid) and first and second order autoregressive (AR)
models. These models all exhibit the Markov property, mean-
ing there is a substantial amount of conditional indepen-
dence. So-called Gaussian Markov random fields are known
to work really well with the methodology of integrated nested
Laplace approximations (INLAs), which will grant a sub-
stantial reduction in computational cost in obtaining full
Bayesian inference. However, this requires formulating our
model into a latent Gaussian model where the data, here
D = (1y1, . . .,1yn)>, depend on a set of latent Gaussian
variables X = (X1, . . .,XN )> which in turn depend on hy-
perparameters θ = (θ1, . . .,θm)>. This class of models con-
stitutes a subset of hierarchical Bayesian models and is de-
fined in three stages.

The first stage defines the likelihood of the data and how
they depend on the latent variables. For the data and models

used in this study we assume a direct correspondence be-
tween an observation yi and the corresponding latent vari-
able Xi , which is achieved using a Gaussian likelihood with
some negligible fixed variance and mean given by the linear
predictor,

ηk = E(1yk)= bz2
k + bxxk +

p∑
i=1

ψi(zk;ai,ci)+ εk(θ ).

Here, β = (b0,b,bx, {ai}, {ci}) are known as fixed effects,
even though they are indeed stochastic variables in the
Bayesian framework. The noise variables εk(θ ) are referred
to as random effects since they depend on hyperparameters θ .
The hyperparameters are θ = σε if we assume the residuals
follow an iid Gaussian process, θ = (σε,φ) if they follow an
AR(1) process, and θ = (σε,φ1,φ2) if they follow an AR(2)
process. All random terms in the predictor, and the predictor
itself, are included in the latent field X = (η,β,ε). The la-
tent field is assigned a prior distribution in what is the second
stage of defining a latent Gaussian model. For latent Gaus-
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sian fields this prior is multivariate Gaussian:

X | θ ∼N (µ (θ ) ,6 (θ )) .

Specifically, we assume vague Gaussian priors for β, while
the prior for ε(θ ) is either an iid, AR(1), or AR(2) process.
The predictor η is then a Gaussian with a mean vector corre-
sponding to the linear regression a(β) and a covariance ma-
trix given by the covariance structure of the assumed noise
model.

The third and final stage of the latent Gaussian model
definition is to specify a prior distribution on the hyper-
parameters. We use the default prior choices included in
the R-INLA package, which means that for all models of
ε considered in this paper the scaling parameter σ 2

ε is as-
signed a log-gamma distribution through the transformation
κ = 1/σ 2

ε . When the residuals follow an AR(1) distribution
we assume a Gaussian prior on the additional lag-one cor-
relation parameter using a logit transformation ρ = log((1+
φ)/(1−φ)). For the AR(2) residuals we instead assign penal-
ized complexity priors (Simpson et al., 2017) on the partial
autocorrelations ψ1 = φ1/(1−φ2) and ψ2 = φ2, also using a
logit transformation.

Inference is obtained by computing the posterior marginal
distributions:

π (Xk|D)=
∫
π (Xk|θ ,D)π (θ |D)dθ

and

π (θk|D)=
∫
π (θ |D)dθ−k.

The notation θk refers to the kth hyperparameter, and
θ−k refers to all except the kth hyperparameter. These
integrals can be approximated efficiently using R-INLA,
and the resulting posterior marginal distributions are in-
cluded in Fig. A1. The estimated hyperparameter posterior
marginal means and credible intervals (given in parentheses)
are σ iid

ε ≈ 0.427 (0.423, 0.431) for iid residuals, σAR
ε (1)≈

0.428 (0.423, 0.434) and φAR(1)≈ 0.194 (0.178,0.217)
for AR(1) residuals, and σAR

ε (2)≈ 0.429 (0.423, 0.438),
φAR

1 (2)≈ 0.180 (0.158, 0.210), and φAR
2 (2)≈ 0.108 (0.089,

0.134) for AR(2) residuals.
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Figure A1. The posterior marginal distributions obtained by fitting the model with INLA. Panel (a) shows the density of σε using iid
distributed residuals. Panels (b) and (c) show the densities of σε and φ using AR(1) distributed residuals. Panels (d)–(f) show the densities
of σε,φ1, and φ2 using AR(2) distributed residuals. The vertical lines represent the mean (black) and 95 % credible intervals (gray).
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Appendix B: Ca2+ analysis

As an alternative, we perform an analogous study using the
log(Ca2+) as the proxy variable xk , which is available at the
same period and resolution (Ruth et al., 2003). Missing val-
ues in the Ca2+ data set are filled using linear interpolation.
Performing the same analysis as described in Sect. 3 we pro-
duce joint samples of the chronologies. The resulting poste-
rior marginal means and 95 % credible intervals of the dat-
ing uncertainties are illustrated in Fig. B1, where the credi-
ble intervals obtained using an iid, AR(1), and AR(2) noise
model are compared. These results are consistent with those
obtained using δ18O as the proxy variable, shown in Fig. 4.

Figure B1. The 95 % credible intervals of the dating uncertainty distribution when log(Ca2+) is used as the proxy covariate. The GICC05
time scale has been subtracted and the noise is modeled using iid (black), AR(1) (blue), and AR(2) (red) noise models. Only the posterior
marginal mean computed using AR(1) distributed noise is included (gray) since it is very similar to the mean obtained using other noise
assumptions.

Appendix C: Log-normal distribution

A possible concern with the approach presented above is that
assuming a normal distribution on the layer increments as-
signs a non-zero probability of negative depositions, violat-
ing monotonicity. Furthermore, one might be concerned by
our choice of an additive thinning function rather than a mul-
tiplicative. Both of these issues are resolved by instead as-
suming a log-normal regression model on the layer incre-
ments, i.e.,

log1yk = a (zk,xk)+ εk, (C1)

where εk follows either an iid, AR(1), or AR(2) model as be-
fore. This results in the joint age variables being a multivari-
ate process with marginals described by sums of log-normal
distributions.
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Simulations of the chronology can be produced as follows:
First, the latent Gaussian model is fitted to the data and sec-
ond, a(zk,xk) and εk are sampled from the resulting posterior
distributions. Then compute the sampled chronologies:

yk = y0+

k∑
i=1

exp(a (zi,xi)+ εi) . (C2)

The resulting dating uncertainty is illustrated in Fig. C1 and
is more curved than for the original model. This suggests that
the normal distribution is a better fit to the observed layer
increments. We will hence focus on the original Gaussian
model in the analysis of this paper.

Figure C1. The 95 % credible intervals of the dating uncertainty distribution when the GICC05 time scale has been subtracted and a log-
normal distribution is assumed, using iid (black), AR(1) (blue), and AR(2) (red) noise models. Only the posterior marginal mean computed
using AR(1) distributed noise is included (gray) since it is very similar to the mean obtained using the other noise models.

Appendix D: Determination of the fitting windows

The estimation for the onset depth is sensitive to the choice
of the data window which represents the transition. It is im-
portant to select these carefully such that the data best repre-
sent a single linear ramp function while being of a sufficient
size. As some DO events are located more closely to other
transitions than others, it is necessary to determine these data
windows individually for each transition. As such there are
indeed some transitions where it is difficult to determine a
clear transition point, and a linear ramp model is not appro-
priate. These transitions will be omitted from our analysis.
The reduction in computational cost granted by adopting the
model for INLA allows us to perform repeated fits to de-
termine the optimal data interval based on a given criteria.
Specifically, we adjust both sides of the interval until we find
the data window for which the fitted model yields the low-
est amplitude of the AR(1) noise, measured by the posterior
marginal mean of the standard deviation parameter.
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We impose some restrictions on the domain of the optimal
start and end points of our data interval. To achieve the best
possible fit we want our interval to include both the onset
and end point of the transition, which we suspect are located
close to the NGRIP onset depth z∗ given by Table 2 of Ras-
mussen et al. (2014). Unless the DO events are located too
close to adjacent transitions, we assume the optimal interval
always contains the points representing 1 m above to 2.5 m
deeper than z∗. These are the minimum distances from the
proposed onset. Similarly, we also introduce a maximum dis-
tance from z∗ to be considered for the start and end points of
the data interval. This is set to be 10 m above and 15 m deeper
than z∗, or at the adjacent transitions if they are located closer
than this. From these intervals we create a two-dimensional
grid for which we perform the INLA fit for each grid point.
The start and end points of the interval representing the grid
point for which INLA found the lowest noise amplitude are
selected. Those events that failed to provide a decent fit af-
ter the conclusion of this procedure were discarded. This left
us with 29 DO events for which the results are displayed in
Table D1. Although the GICC05 onset depths z∗ fall outside
the 95 % credible intervals for several transitions, they are
still remarkably close to our best estimates, considering Ras-
mussen et al. (2014) used a lower 20 year resolution data set.

Table D1. The optimal interval for the data window for fitting a
linear ramp model to 29 DO events, expressed in terms of depth and
the corresponding index in our data. The Rasmussen et al. (2014)
onset depths z∗ were used as a starting midpoint in the optimization
procedure.

Event k∗ Index interval z∗ (m) Depth interval (m)

GI-1d 1648 (1622, 1711) 1574.8 (1573.5, 1577.95)
GI-1e 2245 (2175, 2285) 1604.65 (1601.15, 1606.65)
GI-2.2 6016 (5986, 6079) 1793.2 (1791.7, 1796.35)
GI-3 7534 (7482, 7574) 1869.1 (1866.5, 1871.1)
GI-4 7983 (7929, 8023) 1891.55 (1888.85, 1893.55)
GI-5.2 9185 (9106, 9223) 1951.65 (1947.7, 1953.55)
GI-6 9643 (9572, 9683) 1974.55 (1971, 1976.55)
GI-7b 10 093 (10 068, 10 142) 1997.05 (1995.8, 1999.5)
GI-7c 10 341 (10 169, 10 404) 2009.45 (2000.85, 2012.6)
GI-8c 11 552 (11 352, 11 592) 2070 (2060, 2072)
GI-9 12 144 (12 098, 12 174) 2099.6 (2097.3, 2101.1)
GI-10 12 633 (12 563, 12 690) 2124.05 (2120.55, 2126.9)
GI-11 13 302 (13 102, 13 386) 2157.5 (2147.5, 2161.7)
GI-12c 14 598 (14 417, 14 718) 2222.3 (2213.25, 2228.3)
GI-13b 15 229 (15 212, 15 274) 2253.85 (2253, 2256.1)
GI-13c 15 290 (15 245, 15 339) 2256.9 (2254.65, 2259.35)
GI-14b 16 070 (16 054, 16 110) 2295.9 (2295.1, 2297.9)
GI-14c 16 960 (16 881, 16 983) 2340.4 (2336.45, 2341.55)
GI-14d 16 980 (16 968, 16 992) 2341.4 (2340.8, 2342)
GI-14e 17 062 (16 986, 17 185) 2345.5 (2341.7, 2351.65)
GI-15.1 17 259 (17 247, 17 272) 2355.35 (2354.75, 2356)
GI-15.2 17 478 (17 365, 17 610) 2366.3 (2360.65, 2372.9)
GI-16.1b 18 099 (18 087, 18 111) 2397.35 (2396.75, 2397.95)
GI-16.1c 18 128 (18 108, 18 146) 2398.8 (2397.8, 2399.7)
GI-16.2 18 203 (18 190, 18 215) 2402.55 (2401.9, 2403.15)
GI-17.1a 18 348 (18 315, 18 371) 2409.8 (2408.15, 2410.95)
GI-17.1b 18 365 (18 353, 18 431) 2410.65 (2410.05, 2413.95)
GI-17.1c 18 452 (18 387, 18 464) 2415 (2411.75, 2415.6)
GI-17.2 18 561 (18 531, 18 608) 2420.45 (2418.95, 2422.8)

Code and data availability. NGRIP δ18O data (North Green-
land Ice Core Projects Members, 2004; Gkinis et al., 2014) and
the GICC05 chronology (Vinther et al., 2005; Rasmussen et al.,
2006; Andersen et al., 2006; Svensson et al., 2008) are avail-
able at http://www.iceandclimate.nbi.ku.dk/data/ (last access: 13
June 2022). The code used for generating the results of this pa-
per will be uploaded as supplementary material. The code to
reproduce the analysis and results is available at https://github.
com/eirikmn/dating_uncertainty (last access: 17 June 2022) and
https://doi.org/10.5281/zenodo.6637528 (Myrvoll-Nilsen, 2022) or
upon request to the corresponding author.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-18-1275-2022-supplement.
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