

Corrigendum to

“A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years: GICC21” published in Clim. Past, 18, 1125–1150, 2022

Giulia Sinnl¹, Mai Winstrup², Tobias Erhardt^{3,4}, Eliza Cook¹, Camilla Marie Jensen⁴, Anders Svensson¹, Bo Møllesøe Vinther¹, Raimund Muscheler⁵, and Sune Olander Rasmussen¹

¹Physics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

²DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark

³Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

⁴Climate and Environmental Physics, Physics Institute and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland

⁵Quaternary Sciences, Department of Geology, Lund University, Lund, Sweden

Correspondence: Giulia Sinnl (giulia.sinnl@nbi.ku.dk)

Published: 3 August 2022

During the preparation of this article, we included some erroneous information in Table 3. We wish to thank Peter Abbott and Michael Sigl for kindly bringing these mistakes to our attention.

The correct information is as follows:

1. The Katmai volcano is in Alaska.
2. The Tianchi (Changbaishan) caldera is on the border between China and North Korea.
3. The correct reference for the Veiðivötn tephra is Abbott et al. (2021), reported in reference list below.
4. Tephra from the Okmok event was found in GISP2.
5. The age of 946 CE for the Tianchi (Changbaishan) event was reported by Oppenheimer et al. (2017). Sun et al. (2014) describe the tephra in NEEM-2011-S1 and NorthGRIP; Oppenheimer et al. (2017) provide an independent dendrochronological date of winter 946/947 CE with observations refining it further to November 946 CE.

6. The 775 CE solar proton event (SPE) ^{10}Be peak was also identified in TUNU2013. The GRIP finding is linked to the same event but is based on ^{36}Cl .
7. For the Aniakchak event, the GRIP tephra was discovered in an earlier paper by Hammer et al. (2003). The initial attribution to Thera of the GRIP tephra was later challenged by Pearce et al. (2004). Coulter et al. (2012) found the corresponding tephra in NorthGRIP and ultimately proved the attribution of the event to the Aniakchak eruption.
8. The GICC05 age of the Aniakchak event was 1641 BCE (Vinther et al., 2006).

Below, we report the corrected Table 3.

Table 3. GICC21 ages of chronostratigraphic markers in the Holocene which were important for this study. Tephra from eruptions and ^{10}Be from solar proton events (SPEs) both provide chronological references when the age of the event is known from historical evidence or other accurate timescales, such as dendrochronology.

Name, location	Historical age (CE/BCE)	GICC21 age ($\pm \delta t$) ^b (CE/BCE)	Reference	Ice core of tephra/ ^{10}Be finding
Katmai, Alaska	1912 CE	1912 \pm 2 CE	Coulter et al. (2012)	NorthGRIP
Laki, Iceland ^a	1783 CE	1783 \pm 2 CE	Fiacco et al. (1994)	GISP2
Veiðivötn-Bárðarbunga, Iceland	1477 CE	147 \pm 2 CE	Abbott et al. (2021)	TUNU13 ^h
Öræfajökull ^a	1362 CE	1362 \pm 2 CE	Palais et al. (1991), Coulter et al. (2012)	GISP2 GRIP
Samalas, Indonesia	1257 CE	1259 \pm 2 CE	Palais et al. (1992), Lavigne et al. (2013)	GISP2
994 CE SPE (^{10}Be) ^c	994 CE	992 \pm 3.6 CE	Sigl et al. (2015), Mekhaldi et al. (2015)	NEEM-2011-S1, NorthGRIP, GRIP
Tianchi, (Changbaishan), China/N. Korea	946 CE ⁱ	946 \pm 3.7 CE	Sun et al. (2014)	NorthGRIP, NEEM-2011-S1
Katla, Eldjá, Iceland	939 CE	939 \pm 3.8 CE	Zielinski et al. (1995)	GISP2
Bárðarbunga, Settlement, Iceland	\sim 877 CE	877 \pm 3.9 CE	Grönvold et al. (1995), Zielinski et al. (1997)	GRIP GISP2
775 CE SPE (^{10}Be)	774/775 CE	774 \pm 4.1 CE	Sigl et al. (2015), Mekhaldi et al. (2015)	NorthGRIP, NEEM-2011-S1, TUNU13 GRIP ^j
UE 88 (formerly attributed to Vesuvius 79 CE)	\sim 88 CE ^d	89 \pm 5.4 CE	Plunkett et al. (2022)	NEEM-2011-S1
Okmok, Alaska	\sim 43 BCE ^e	43 \pm 5.6 BCE	McConnell et al. (2020)	GISP2
660 BCE SPE (^{10}Be)	665–660 BCE ^f	663 \pm 6.8 BCE	O’Hare et al. (2019)	NorthGRIP, GRIP
Aniakchak, Alaska (formerly attributed to Thera, Santorini)	\sim 1641 BCE ^g	1629 \pm 7.3 BCE	Hammer et al. (2003), Coulter et al. (2012)	GRIP NorthGRIP

^a Only two of the events are used to anchor our timescale. ^b GICC21 ages are reported at the peak of the signal identifying the event; a delay in deposition might occur. ^c Not used as tie point across ice cores. ^d Age from NS1-2011 chronology. ^e Age from indirect historical evidence and tree rings (McConnell et al., 2020). ^f Age from tree rings (Park et al., 2017; Sakurai et al., 2020). ^g GICC05 age of acidity layer. ^h TUNU13 was not used for this study, but we verified the match with NEEM-2011-S1 and NorthGRIP to be the same as ours. ⁱ Age reported in Oppenheimer et al. (2017) based on dendrochronological evidence and narrowed down to November 946 CE. ^j The identification of the 775 CE SPE in GRIP is based on ^{36}Cl measurements.

References

Abbott, P. M., Plunkett, G., Corona, C., Chellman, N. J., McConnell, J. R., Pilcher, J. R., Stoffel, M., and Sigl, M.: Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption’s climatic impact, *Clim. Past*, 17, 565–585, <https://doi.org/10.5194/cp-17-565-2021>, 2021
 Hammer, C. U., Kurat, G., Hoppe, P., Grum, W., and Clausen, H. B.: Thera eruption date 1645 BC confirmed by new ice core data?, in: The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium B.C. Proceedings of the SCIEM 2000 – EuroConference Haindorf, Vienna, May 2001, edited by: Bietak, M., Österreichische Akademie der Wissenschaften, Vienna, 87–93, 2003.

Oppenheimer, C., Wacker, L., Xu, J., Galván, J. D., Stoffel, M., Guillet, S., Corona, C., Sigl, M., Di Cosmo, N., Hajdas, I., Pan, B., Breuker, R., Schneider, L., Esper, J., Fei, J., Hammond, J. O. S., and Büntgen, U.: Multi-proxy dating the “Millennium Eruption” of Changbaishan to late 946 CE, *Quaternary Sci. Rev.*, 158, 164–171, <https://doi.org/10.1016/j.quascirev.2016.12.024>, 2017.
 Pearce, N. J., Westgate, J. A., Preece, S. J., Eastwood, W. J., and Perkins, W. T.: Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini, *Geochim. Geophys. Geosy.*, 5, Q03005, <https://doi.org/10.1029/2003gc000672>, 2004.