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Abstract. Numerical climate simulations produce vast
amounts of high-resolution data. This poses new challenges
to the palaeoclimate community – and indeed to the broader
climate community – in how to efficiently process and inter-
pret model output. The palaeoclimate community also faces
the additional challenge of having to characterise and com-
pare a much broader range of climates than encountered in
other subfields of climate science. Here we propose an analy-
sis framework, grounded in dynamical systems theory, which
may contribute to overcoming these challenges. The frame-
work enables the characterisation of the dynamics of a given
climate through a small number of metrics. These may be
applied to individual climate variables or to several variables
at once, and they can diagnose properties such as persis-
tence, active number of degrees of freedom and coupling.
Crucially, the metrics provide information on instantaneous
states of the chosen variable(s). To illustrate the framework’s
applicability, we analyse three numerical simulations of mid-
Holocene climates over North Africa under different bound-
ary conditions. We find that the three simulations produce
climate systems with different dynamical properties, such as
persistence of the spatial precipitation patterns and coupling
between precipitation and large-scale sea level pressure pat-
terns, which are reflected in the dynamical systems metrics.
We conclude that the dynamical systems framework holds
significant potential for analysing palaeoclimate simulations.

At the same time, an appraisal of the framework’s limitations
suggests that it should be viewed as a complement to more
conventional analyses, rather than as a wholesale substitute.

1 Motivation

Numerical climate models have enjoyed widespread use
in palaeoclimate studies, from early investigations based
on simple thermodynamic or general circulation models
(e.g. Gates, 1976; Donn and Shaw, 1977; Barron et al.,
1980) to the state-of-the-art models being used in the fourth
phase of the Paleoclimate Modelling Intercomparison Project
(PMIP4, Kageyama et al., 2018). Compared to data from
palaeo-archives, which are typically geographically sparse
and with a low temporal resolution even for the more re-
cent palaeoclimates (e.g. Bartlein et al., 2011), numerical
climate simulations produce a vast amount of horizontally
gridded, vertically resolved data with a high temporal reso-
lution. Moreover, the resolution and complexity of numerical
models – and hence the amount of data they produce – has
increased vastly in recent years. This poses new challenges
to the palaeoclimate community in how to efficiently process
and interpret model output – indeed an issue that is faced by
the broader climate community (Schnase et al., 2016).
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A related, yet distinct, challenge faced by the palaeocli-
mate community are the large uncertainties often found in
palaeo-simulations. These reflect the uncertainties in palaeo-
archives and in our knowledge of the boundary conditions
and forcings affecting past climates (e.g. Kageyama et al.,
2018). Thus, different simulations of the climate in the same
period and region may yield very different results. This
emerges in both reconstructions of climates from millions
of years ago, such as the mid-Pliocene warm period over
3 Ma BP (e.g. Haywood et al., 2013) and in climates much
closer to us, such as the mid-Holocene around 6000 years BP
(e.g. Pausata et al., 2016). Characterising and understanding
these discrepancies requires analysis tools that can efficiently
distil the differences between the simulated palaeoclimates.

Here, we propose an analysis framework which addresses
the challenges of efficiently processing and interpreting large
amounts of model output to compare different simulated
palaeoclimates. The framework is grounded in dynamical
systems theory and enables the characterisation of the dy-
namics of a given dynamical system – for example the at-
mosphere – through three one-dimensional metrics. The first
metric estimates the persistence of instantaneous states of the
system. We term this metric rather mundanely “persistence”.
The second metric, which we term “local dimension”, pro-
vides information on how the system evolves to or from in-
stantaneous states. Finally, the co-recurrence ratio is a metric
applicable to two (or more) variables, which quantifies their
instantaneous coupling. In other words, the dynamical infor-
mation embedded in three-dimensional (latitude, longitude
and time) or four-dimensional (latitude, longitude, pressure
level and time) data, commonly produced by climate mod-
els, can be projected onto three metrics, which each provide
a single value for every time step in the data. These may then
be interpreted and compared with relative ease.

The rest of this technical note is structured as follows: in
Sect. 2 we briefly describe the theory underlying the dynam-
ical systems framework, and provide both a qualitative and a
technical description of the metrics. We further provide a link
to a repository from which MATLAB code to implement the
metrics may be obtained. In Sect. 3, we illustrate the appli-
cation of the metrics to palaeoclimate data and their interpre-
tation by using a set of recent numerical simulations for the
mid-Holocene climate in North Africa. This is not meant to
be a comprehensive analysis but instead provides the flavour
of the information provided by our framework. We conclude
in Sect. 4 by reflecting on the framework’s strengths and
limitations and by outlining potential applications in future
palaeoclimate studies.

2 A qualitative overview and theoretical
underpinnings of the dynamical systems
framework

In Sect. 2.1, we explain qualitatively how the dynamical sys-
tems metrics we use may be interpreted when computed for
a hypothetical sea level pressure (SLP) field. We also pro-
vide a conceptual analogy to raindrops flowing on complex
topography. In Sect. 2.2, we provide a brief mathematical
derivation of the metrics and outline some of the obstacles
encountered when computing them for climate data.

2.1 A qualitative overview of the dynamical systems
framework

The dynamical systems framework we propose rests on three
indicators. All are instantaneous in time, meaning that given
a long data series, they provide a value for each time step.
For example, if we were to analyse daily latitude–longitude
SLP in a given geographical region over 30 years, we would
have 30× 365 values for each indicator.

The first indicator, termed “local dimension” (d), provides
a proxy for the number of active degrees of freedom of the
system about a state of interest (Lucarini et al., 2016; Faranda
et al., 2017a). In other words, the value of d for a given day in
our SLP dataset tells us how the SLP in the chosen geograph-
ical region can evolve to or from the pattern it displays on
that day. The number of different possible evolutions is pro-
portional to the number of degrees of freedom, and therefore
days with a low (high) local dimension correspond to SLP
patterns that derive from and may evolve into a small (large)
number of other SLP patterns in the preceding and following
days. An intuitive – if not entirely precise – analogy may be
drawn with the path followed by raindrops once they fall to
the ground (Fig. A1a). In this case, an impermeable topogra-
phy would effectively function as a bi-dimensional potential
surface. If there is a deep valley, all raindrops falling on a
small patch of ground on the side of the valley will follow
similar paths: they will all reach the bottom of the valley and
then flow along it. There may be places where the drops can
follow slightly different paths, for example in going around
a large stone, but their general course is constrained. This
would be equivalent to a patch of ground with a low local
dimension. Now imagine the case of raindrops falling on
a second small patch of ground, but this time on a craggy
mountain peak. In the latter case, very small changes in ex-
actly where each drop falls may result in the drops following
completely different paths. A first drop may follow a narrow
crevasse to the side of the patch, while a second drop falling
very close to it may take an entirely different route towards
the bottom of the valley. This would be equivalent to having
a high local dimension.

The second indicator, termed “persistence” (θ−1), mea-
sures the mean residence time of the system around a given
state. In other words, if a given day in our SLP dataset
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has a high (low) persistence, the SLP pattern on that day
has evolved slowly (rapidly) from and will evolve slowly
(rapidly) to a different SLP pattern. The higher the persis-
tence, the more likely it is that the SLP patterns on the days
immediately preceding and following the chosen day will re-
semble the SLP pattern of that day. This metric is related
to, yet distinct from, the notion of persistence issuing from
weather regimes and similar partitionings of the atmospheric
variability (Hochman et al., 2019, 2020b). Returning to our
raindrop analogy (Fig. A1b), one may imagine that if the val-
ley’s sides are steep, the raindrops will leave the patch of
ground they have fallen on very rapidly, i.e. a low persis-
tence. If, on the other hand, the valley is edged by shallow
slopes, the raindrops will take longer to leave the patch, i.e.
a high persistence.

Both indicators may be used to characterise the dynamics
underlying complex systems, including the Earth’s climate
(e.g. Faranda et al., 2017a; Buschow and Friederichs, 2018;
Brunetti et al., 2019; Gualandi et al., 2020; Hochman et al.,
2020a). On a more practical level, they can also be linked to
the notion of intrinsic predictability of the system’s different
states. A state with a low d and high θ−1 will afford a bet-
ter predictability than one with a high d and low θ−1. For
more detailed discussions on this topic and a comparison to
the conventional idea of predictability as evaluated through
numerical weather forecasts, see Messori et al. (2017), Scher
and Messori (2018), and Faranda et al. (2019a). Both d and
θ−1 may in principle be computed for more than one cli-
mate variable jointly (Faranda et al., 2020; De Luca et al.,
2020b, a), but here we will focus on their univariate imple-
mentation.

Unlike the first two, the third metric we propose here,
termed “co-recurrence ratio” (α), is exclusively defined for
two or more variables. Given two climate variables, α di-
agnoses the extent to which their recurrences co-occur and
hence provides a measure of the coupling between them
(Faranda et al., 2020). As an example, imagine that we now
have both our SLP dataset and a corresponding precipita-
tion dataset, which also provides daily values on a latitude–
longitude grid. If α on a given day is large, then every time
we have an SLP pattern on another day that closely resembles
the SLP pattern of the chosen day (i.e. a “recurrence”), the
precipitation pattern on that other day will also resemble the
precipitation pattern of the chosen day. In other words, recur-
rences of similar SLP patterns lead to recurrences of similar
precipitation patterns, which would suggest that the two vari-
ables are highly coupled. If α on a given day is small, then ev-
ery time we have an SLP pattern on another day that closely
resembles the SLP pattern of the chosen day, the precipitation
pattern on that other day will not resemble the precipitation
pattern of the chosen day. In other words, recurrences of sim-
ilar SLP patterns do not lead to recurrences of similar precip-
itation patterns, which would suggest that the two variables
are weakly coupled. We note that α may not be interpreted
in terms of causation. However, since the joint recurrence of

two fields implies the existence of common underlying dy-
namics, the information it provides is nonetheless grounded
in the physics of the system being analysed. Finally, α pro-
vides very different information from many other conven-
tional statistical dependence measures, since it gives a value
for every time step in the dataset. In our raindrop analogy,
α could link the raindrop paths to, for example, the growth
pattern of vegetation on the ground (Fig. A1c, d). Vegeta-
tion will affect the raindrop paths, yet the path of the rain-
drops will determine where the water flows and hence affect
the growth of the vegetation. One may therefore imagine that
whenever the raindrops collectively follow similar paths, this
will correspond to a recurring pattern of vegetation growth.
Conversely, whenever there are similar patterns of vegetation
growth, this will presumably result in the raindrops follow-
ing similar paths. The raindrop paths and vegetation growth
patterns therefore co-recur, resulting in a high α.

2.2 Theoretical underpinnings of the dynamical systems
framework

The three dynamical systems metrics described above issue
from the combination of extreme value theory with Poincaré
recurrences (Freitas et al., 2010; Lucarini et al., 2012, 2016).
We consider a stationary chaotic dynamical system possess-
ing a compact attractor – namely the geometrical object host-
ing all possible states of the system. Given an infinitely long
trajectory x(t) describing the evolution of such system (in
our previous example, our daily time series of SLP latitude–
longitude maps) and a state of interest ζ x (one specific SLP
map), we define logarithmic returns as follows:

g(x(t),ζ x)=− log
[
dist(x(t),ζ x)

]
. (1)

In this equation, dist is the Euclidean distance between two
vectors. More generally, dist can be a distance function that
tends to zero as the two vectors increasingly resemble each
other. For the implications of using dist other than the Eu-
clidean distance, the reader is referred to Lucarini et al.
(2016) and Faranda et al. (2019b). The − log implies that
g(x(t),ζ x) attains large values when x(t) and ζ x are close
to one another. We thus have a time series g of logarithmic
returns, which is large if x at a specific time resembles the
state of interest ζ x .

We next define a high-threshold s(q,ζ x) as the qth quan-
tile of g(x(t),ζ x) (here q = 0.98) and define exceedances
u(ζ x)= g(x(t),ζ x)−s(q,ζ x)∀g(x(t),ζ x)> s(q,ζ x). These
are effectively the previously mentioned Poincaré recur-
rences for the chosen state ζ x . The interpretation of the above
quantities for the idealised case of the Lorenz ’63 attractor
(Lorenz, 1963) – a simple three-dimensional dynamical sys-
tem – is illustrated graphically in Fig. 1. We then leverage the
Freitas–Freitas–Todd theorem (Freitas et al., 2010; Lucarini
et al., 2012), which states that the cumulative probability dis-
tribution F (u,ζ x) converges to the exponential member of
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Figure 1. Schematic of the computation of the dynamical systems
metrics for a state ζ (for ease of notation we drop the x subscript
used in the text) on the Lorenz ’63 attractor. All trajectory segments
shown on the right-hand side panels are part of a single, long tra-
jectory x(t). The white circles along the trajectory represent dis-
crete, instantaneous measurements of the continuous evolution of
the trajectory, with the index i referring to some reference time rel-
ative to which the measurements are taken.. The state of interest ζ
is shown in red. Panel (c) illustrates the hyper-sphere determined
by the high threshold s(q,ζ ), which defines recurrences, and the
logarithmic distances between measurements defined by g(x(t),ζ ).
Here, g takes large values for small separations. Thus, for all points
within the hyper-sphere, we find that g(x(t),ζ )> s(q,ζ ). In the
schematic, only two measurements satisfy this condition (adapted
from Faranda et al., 2020).

the generalised Pareto distribution:

F (u,ζ x)' exp
[
−ϑ(ζ x)

u(ζ x)
σ (ζ x)

]
. (2)

Here, u and σ are parameters of the distribution which de-
pend on the chosen ζ x , while ϑ is the extremal index:
the standard measure of clustering in extreme value the-
ory (Moloney et al., 2019). We estimate the latter using the
Süveges maximum likelihood estimator (Süveges, 2007). We
then obtain the persistence as follows: θ−1(ζ x)=1t/ϑ(ζ x),
where 1t is the time step of the data being analysed, and the
local dimension as d(ζ x)= 1/σ (ζ x). The metrics’ bounds
are 0≤ d <+∞ (the limiting case of d =+∞ does not ap-
ply to compact attractors; see the discussion later in this sub-
section) and 0≤ θ ≤ 1.

Finally, we define the co-recurrence ratio by considering
two trajectories x(t) and y(t) and a corresponding joint state
of interest ζ = (ζ x,ζ y) (in our previous example, a specific
SLP map and the associated precipitation map). We then have
the following equation (where we drop the ζ x and ζ y argu-

ments for ease of notation):

α(ζ )=
ν
[
g(x(t))> sx(q) | g(y(t))> sy(q)

]
ν
[
g(x(t))> sx(q)

] , (3)

with 0≤ α ≤ 1. Here, ν[−] is the number of events satisfying
condition [−], and all other variables are defined as above.
By definition, α is symmetric with respect to the choice
of variable (x or y), since ν[g(x(t))> sx(q)] ≡ ν[g(y(t))>
sy(q)].

The above derivations all rely on the definition of recur-
rences relative to a threshold s. For cases where identical pat-
terns repeatedly appear within the dataset being analysed, the
threshold s may become ill-defined – for example because
the distance of the closest recurrences from the state of in-
terest is 0 or because the distance of the closest recurrences
exactly matches s. This does not imply that the dynamical
system as a whole is repeatedly visiting identical states but
instead that the states are identical relative to the chosen vari-
able – technically a so-called Poincaré section of the full sys-
tem. When one observes recurrences identical to the state of
interest in the chosen variable, the asymptotic distribution of
the exceedances u(ζ x) is a Dirac delta. The state thus effec-
tively has d = 0, namely the dimension of a point and holds
no dynamical information. In the current analysis, we chose
to remove both these d = 0 states and states whose closest
recurrences exactly matched the relevant s from our calcula-
tions. The upper bound in d is numerically given by the size
of the phase space being analysed – in our case by the number
of grid points in the chosen geographical domain. The limit-
ing case of d =+∞ can be observed only for non-compact
attractors and thus does not apply to climate data. For per-
sistence, 0≤ θ ≤ 1 implies that 1≤ θ−1

≤+∞. θ can only
be zero at a fixed point of the system, i.e. if all successive
time steps bring no change to the state of the system. A triv-
ial example is a pendulum in its equilibrium position (or the
equilibrium climate of a hypothetical planet with temperature
0 K and without any external energy input). The case θ = 1
instead corresponds to non-persistent states of the dynamics,
at least at the time resolution of the chosen data. The above-
mentioned issue of an ill-defined s also precludes the use of
the Süveges estimator for ϑ . In the case of identical patterns
repeating within the dataset, the persistence θ−1 may be com-
puted simply as the average number of consecutive identi-
cal time steps in the variable being analysed. For consistency
with the d data, we instead chose to exclude cases where the
Süveges estimator could not be applied from our analysis. Fi-
nally, the lower (α = 0) and upper (α = 1) bounds of the co-
recurrence ratio correspond to uncoupled dynamics and per-
fectly coupled dynamics, respectively. The above ill-defined
threshold examples preclude computing α, as ν[−] = 0.

The analytical derivation of the above framework makes
a number of assumptions that are typically not realised for
climate data. For example, one has to take into account both
the finite length of the datasets and non-stationarities such
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as those issuing from internal low-frequency variability or
varying external forcing. A formal justification of the appli-
cability of the dynamical systems metrics to finite data is-
sues from the results of Caby et al. (2020). There, the authors
show that finite-time deviations of d and θ from the asymp-
totic, unknown values contain information about the underly-
ing system, since they are linked to the presence of unstable
or periodic points of the dynamics. Similarly, both analyt-
ical and empirical evidence from Pons et al. (2020) shows
that, although affected by the curse of dimensionality, esti-
mates of d from finite time series may be used in a relative
sense to characterise the dynamics of a system – i.e. by com-
paring values of d to one another. The conclusions drawn
from these more theoretical results match those issuing from
empirical tests on climate time series of finite length con-
ducted by Buschow and Friederichs (2018). In practice, the
two metrics may thus be applied to a variety of datasets issu-
ing from chaotic dynamical systems, including (weakly non-
stationary) climate datasets (e.g. Faranda et al., 2019c, 2020;
Brunetti et al., 2019).

MATLAB code to compute d, θ−1 and α is provided at the
end of this paper under “Code availability”.

3 Dynamical systems in action: an example from the
mid-Holocene Green Sahara

3.1 The mid-Holocene Green Sahara: background and
data

Today, the Sahara is the largest hot desert on Earth. Most of
the precipitation in north-western Africa is associated with
the West African Monsoon (WAM), which reaches to around
16–17◦ N (e.g. Sultan and Janicot, 2003) and effectively sets
the boundary between the semiarid Sahel and the Sahara.
However, the region has repeatedly experienced momentous
hydroclimatic shifts in the past. In particular, there have been
several periods when the Sahara was wetter and greener than
today, often termed “African Humid Periods” (AHPs; see
Claussen et al., 2017 and Pausata et al., 2020, for recent re-
views on the topic).

The most recent AHP peaked during the mid-Holocene
(MH), approximately 9000–6000 years BP. It is thought to
have coincided with an intensification and northward shift
of the WAM, allowing the presence of vegetation, lakes and
wetlands in areas that today are desert (e.g. Holmes, 2008,
and references therein). Palaeo-archives suggest that during
the MH AHP, summer precipitation reached the northern
parts of the present-day desert (e.g. Sha et al., 2019) and that
tropical vegetation may have extended as far as 24◦ N (Hély
et al., 2014).

Numerical climate simulations of the MH have struggled
to reproduce the full extent of the monsoonal intensification
suggested by the palaeo-archives, and commonly suffer from
a dry bias (Harrison et al., 2014). Early investigations on
the topic highlighted the large sensitivity of the simulations

to land surface characteristics (e.g. Kutzbach et al., 1996;
Kutzbach and Liu, 1997; Claussen and Gayler, 1997). More
recent modelling efforts have confirmed this and have further
highlighted the potential role of an incorrect representation of
atmospheric aerosols in favouring the dry bias (Pausata et al.,
2016; Gaetani et al., 2017; Messori et al., 2019). Such a hy-
pothesis has triggered a lively discussion in the literature (cf.
Thompson et al., 2019; Hopcroft and Valdes, 2019).

Here, we analyse the simulations used in Messori et al.
(2019), performed with the EC-Earth Earth System Model
v3.1 (Hazeleger et al., 2010). The atmospheric model has
a T159 horizontal spectral resolution and 62 vertical levels.
The ocean model has a nominal horizontal resolution of 1◦

and 46 vertical levels. In all simulations, the vegetation and
aerosol concentrations are prescribed.

To illustrate the dynamical systems approach described in
Sect. 2, we consider three different simulations. The first
is a MH control simulation (MHCNTL), which follows the
PMIP3 protocol in imposing pre-industrial vegetation and at-
mospheric dust concentrations (Braconnot et al., 2011). The
second is a Green Sahara simulation (MHGS+PD), which im-
poses shrubland over the region 11–33◦ N and 15◦W–35◦ E.
The third is a Green Sahara simulation that, in addition to the
vegetation, also imposes a strongly reduced atmospheric dust
loading (MHGS+RD). Indeed, a greening of the Sahara would
intuitively correspond to decreased dust emissions and hence
to a lower atmospheric loading, as also supported by palaeo-
archives (Demenocal et al., 2000; McGee et al., 2013) and
modelling studies (Egerer et al., 2016).

We analyse 30 years of daily data of sea level pressure
(SLP), 500 hPa geopotential height (Z500) and precipita-
tion frequency (prp) for each simulation. Precipitation fre-
quency is constructed by assigning a value of 1 to grid points
and time steps with non-zero precipitation and a value of
0 otherwise. This is preferable to using raw precipitation
data for estimating the dynamical systems metrics (and d in
particular), as discussed further in Langousis et al. (2009)
and Faranda et al. (2017a). As a technical consideration,
we underline that the binary discretisation does not affect
the spatio-temporal fractal nature of the precipitation field
(Lovejoy and Schertzer, 1985; Brunsell, 2010). Nonetheless,
it does make the distance dist a fundamentally different kind
of random variable than for SLP and Z500, because its den-
sity consists of a finite number of point masses. The members
of the extreme value distribution family, on the other hand,
are continuous functions. Although there is no complete the-
oretical framework for the application of extreme value the-
ory to recurrences of discrete fields, the analysis by Hitz
(2016) supports the physical relevance of the results. Another
issue with the precipitation data is that there can be repeated
identical precipitation patterns (e.g. when there is no pre-
cipitation over the chosen domain). The implications of this
for estimating the dynamical systems metrics are discussed
in Sect. 2.2. We define the pre-monsoon season as March,
April and May (MAM) and the monsoon season as June,
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July, August and September (JJAS). These definitions are
based on the present-day WAM climatology. We use them in
our analysis as reference periods when comparing the three
numerical simulations described above. We quantify statis-
tically significant differences when comparing median val-
ues of datasets using the Wilcoxon rank sum test (Wilcoxon,
1945) at the 1 % significance level. For the geographical pre-
cipitation anomalies, one-sided 5 % significance bounds are
determined using bootstrap resampling with 1000 iterations.

3.2 A dynamical systems view of the mid-Holocene
Green Sahara

The main interest in analysing the above simulations lies in
understanding whether and why they reproduce different hy-
droclimates over the Sahelian–Saharan region. Our aim in
this section is not to systematically investigate these two as-
pects but instead to illustrate how the dynamical systems
framework proposed here can be used to characterise the in-
dividual simulations and provide a concise overview of the
differences between them. We argue that such an approach
can provide a valuable complement to conventional analyses,
and we relate our results to those obtained in earlier studies
(e.g. Pausata et al., 2016; Gaetani et al., 2017; Messori et al.,
2019).

A simple composite of JJAS average precipitation immedi-
ately highlights large differences in the precipitation regimes,
with the MHGS+PD simulation showing a large northward
shift and intensification of the monsoonal precipitation com-
pared to MHCNTL (Fig. 2a, b) and the MHGS+RD simulation
showing an additional, albeit smaller, precipitation increase
(Fig. 2c, d). However, this time mean picture hides a num-
ber of complex dynamical changes in the WAM, which we
investigate using our dynamical systems framework. We fo-
cus on the northern WAM region (12.5–30◦ N, 10◦W–20◦ E,
black box in Fig. 2a). This domain is chosen to reflect the re-
gion of seasonal monsoon rainfall that we expect to be most
affected by the changes in land surface and atmospheric dust
loading. Results for a more geographically extended domain
are shown in Appendix A.

We begin by studying the seasonality of d and θ−1 for pre-
cipitation data. In the MHCNTL (Fig. 3a, blue curve), the local
dimension displays a marked interannual variability for any
given calendar day, which we ascribe to the large variabil-
ity in the monsoonal precipitation reproduced by the model
(Fig. 3c, blue curve). The fact that the local dimension’s vari-
ability peaks in the pre-monsoon season, while that of pre-
cipitation itself peaks during the monsoon season, is likely
related to the use of precipitation frequency, which makes
the local dimension more sensitive to changes in the timing
of rain onset than to rain amount. This provides an insight
into the potentially large onset variations within the same
model simulation – an aspect which does not emerge from
the variability of the zonally averaged precipitation climatol-
ogy. The seasonal cycle of the local dimension displays two

peaks, roughly matching the onset and withdrawal phases of
the monsoon, somewhat lower values during the height of the
summertime monsoon, and the lowest values during the dry
season. Previous studies have noted how transition periods
can display an increase in the local dimension of atmospheric
fields because the atmosphere explores configurations be-
longing to more than one season (Faranda et al., 2017b). In
more technical terms, this would reflect a saddle-like point
of the atmospheric dynamics. We therefore interpret the two
local maxima in d as reflecting the northward shift and re-
treat of the monsoonal rainfall. The local dimension in the
MHGS+PD and MHGS+RD simulations (red and orange curves,
respectively) presents a similar seasonal cycle, yet with the
first local maximum shifted to earlier in the year, the second
local maximum shifted to later in the year (Fig. 3b) and lower
values throughout the monsoon season. Indeed, the medi-
ans of d during the monsoon season in the MHGS+PD and
MHGS+RD simulations are significantly different to that in the
MHCNTL simulation. The shift of the local maxima points to
a lengthening of the monsoon season, with an earlier rain-
fall onset and a later withdrawal. The timing of the first lo-
cal maximum in d indeed coincides with a rapid increase
in the zonally averaged precipitation at the southern edge
of the domain in the MHGS+PD and MHGS+RD simulations
(Fig. 3c). Such a lengthening of the monsoonal period un-
der a greening of the Sahara was previously noted in Pausata
et al. (2016) by adopting a monsoon duration algorithm.
The seasonal cycle of θ in MHCNTL (Fig. 3b, blue curve)
displays a very different pattern. Low values (high persis-
tence) occur during the monsoon season, while higher values
(lower persistence) occur during the dry season, albeit with
a very large spread. This may reflect sporadic rainfall events
at the edges of the domain outside of the monsoon season,
with more persistent precipitation patterns during the mon-
soon season. The MHGS+PD and MHGS+RD simulations (red
and orange curves, respectively) display a similar seasonal-
ity, albeit with a longer high-persistence monsoonal period,
higher-persistence values during the latter period, and a more
marked difference in values between the monsoonal and dry
phases. This chiefly results from lower θ values during the
monsoonal period, likely reflecting a more geographically
extensive and persistent precipitation regime. The median
θ values during the monsoon period in the MHGS+PD and
MHGS+RD simulations are significantly different from that
of the MHCNTL simulation. One may hypothesise that the
increased persistence underlies a decrease in importance of
transient, mesoscale convective systems for driving the mon-
soonal precipitation, in favour of a regional re-organisation of
precipitation into larger-scale persistent features. This would
also explain the decrease in d during the monsoon season
in the MHGS+PD and MHGS+RD simulations relative to the
MHCNTL case. Gaetani et al. (2017) investigated the spectral
properties and mesoscale motions of the monsoonal circula-
tion and concluded that the greening of the Sahara and dust
reduction suppress African easterly waves and their role in
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Figure 2. JJAS precipitation (mm d−1) for the (a) MHCNTL, (b) MHGS+PD and (c) MHGS+RD simulations. (d) Precipitation difference
between the MHGS+RD and MHGS+PD simulations. The black box in panel (a) marks the domain used to perform the dynamical systems
analysis (12.5–30◦ N, 10◦W–20◦ E).

Figure 3. Seasonal cycle of median (a) d, (b) θ and (c) zonally averaged daily precipitation (mm d−1) at 12.5◦ N for the MHCNTL (blue),
MHGS+PD (red) and MHGS+RD (orange) simulations. The blue shading marks ±1 SD from the MHCNTL. The vertical dashed lines mark
the pre-monsoon (MAM) and monsoon (JJAS) seasons. The data are smoothed with a 10 d moving average.
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triggering precipitation. This supports the hypothesis we for-
mulated here on the basis of the 1-D metric θ . The above
qualitative considerations are mostly insensitive to the exact
choice of geographical domain (cf. Figs. 3 and A2).

The seasonal variations in d and θ can also be related to
variations in the dynamical indicators on shorter timescales.
The fact that a rapid increase in d and a corresponding de-
crease in θ coincide with the northward progression of mon-
soonal rainfall indeed suggests that concurring high d values
and low θ values on daily timescales may correspond to spe-
cific spatial precipitation patterns. To verify this, we compute
composite rainfall anomalies during JJAS on days with con-
current d anomalies above the 70th percentile and θ anoma-
lies below the 30th percentile of the respective JJAS distri-
butions (Fig. 4). These relatively broad ranges are needed to
ensure a good sample of dates, since here we are imposing
a condition on each of the two metrics simultaneously. The
anomalies are defined as deviations from a daily seasonal cy-
cle. For example, the climatological value of a given vari-
able in a given simulation for the 22 July, is the mean of that
variable across all 22 July days in the simulation. Applying
a smoothing to the climatology leads to very minor quantita-
tive changes in our results (not shown). In MHCNTL (Fig. 4a),
the anomalies are limited to the southern part of the domain,
as the bulk of the Sahara receives little or no precipitation
even at the peak of the monsoon (see Fig. 2a). The spatial
pattern of the anomalies is wave-like, albeit with limited sta-
tistical significance, pointing to the fact that the dynamical
systems metrics may reflect modulations in African easterly
wave activity (see, e.g. Fig. 8 in Gaetani et al., 2017, and the
discussion above). The MHGS+PD and MHGS+RD simulations
instead display clear and statistically significant anomaly
dipoles, oriented in a predominantly meridional direction but
with some zonal asymmetry. These correspond to a north-
ward shift of the monsoonal precipitation relative to the cli-
matology (Fig. 4b and c, respectively). The dipoles span the
whole domain and display the largest anomaly values in the
MHGS+RD simulation. This is indeed the simulation showing
the largest total rainfall, as well as the strongest northward
shift of the monsoonal precipitation range (Fig. 2d). Very
similar results are obtained if the same calculation is repeated
over a larger domain (Fig. A3).

We next try to understand the physical processes underly-
ing the differences in precipitation in the three simulations,
by computing the co-recurrence ratio α between SLP and
prp (Fig. 5a). In MHCNTL (blue line), as the monsoonal pre-
cipitation progresses northwards the coupling between the
two variables increases, peaking in the middle of the mon-
soon season and waning thereafter. The dry season is charac-
terised by overall low coupling values. In the MHGS+PD and
MHGS+RD simulations (red and orange curves, respectively),
α displays two local minima in the pre-monsoon season and
in autumn. During the northward progression of precipita-
tion and the peak monsoonal phase, the values are mostly
higher than for the MHCNTL simulation. Indeed, the median

α values during the monsoon season of the MHGS+PD and
MHGS+RD simulations are significantly different to those of
the MHCNTL simulation. Both simulations also show higher
α values than MHCNTL during the dry season, although these
values are generally lower than in the monsoonal period.
Similar results are found when extending the geographical
domain (cf. Figs. 5 and A4), albeit with slightly higher cou-
pling values for the extended domain during the dry season.
These are likely associated to the presence of more abun-
dant wintertime precipitation at the latter domain’s southern
boundary (Fig. A5). The stronger coupling in the MHGS+PD
and MHGS+RD simulations compared to the MHCNTL during
the pre-monsoon and monsoon seasons, points to the role of
circulation anomalies – reflected in the SLP field – in favour-
ing the northwards extension of the monsoonal precipitation.
This was indeed noted in Pausata et al. (2016) by analysing
changes in lower-level atmospheric thickness related to the
Saharan heat low (see also Lavaysse et al., 2009). The higher
α values during wintertime in the MHGS+PD and MHGS+RD
simulations may once again be related to the presence of lim-
ited amounts of winter precipitation in the domain while pre-
cipitation is almost entirely absent in the MHCNTL simulation
(Fig. A5). A similar picture is found for the co-recurrence
ratio between Z500 and prp (Fig. 5b and Fig. A4b), high-
lighting the robust nature of the increased coupling between
precipitation and large-scale atmospheric circulation features
in the MHGS+PD and MHGS+RD simulations.

As for d and θ above, one may relate the seasonal vari-
ations in α to the daily anomalies associated with large or
small values of the metric. We specifically consider precip-
itation, SLP and Z500 anomalies (computed as in Fig. 4)
on JJAS days when α exceeds the 95th percentile of its
anomaly distribution. These “strong coupling” days may be
conceptualised as days on which recurrent spatial large-scale
circulation anomalies favour recurrent spatial precipitation
anomalies. In MHCNTL, this takes the form of significantly
increased precipitation across the southern portion of the do-
main, favoured by negative SLP anomalies to the north of the
strongest precipitation anomalies (Fig. 6a) and positive Z500
anomalies to the north of the negative SLP core (cf. Fig. 6a
and Fig. 7a). These are likely the footprint of a strengthened
heat low (see, e.g. Fig. 2b in Lavaysse et al., 2009), which
favours a northward progression of the monsoonal precipita-
tion. As noted above, the signal being limited to the southern
part of the domain is due to the MHCNTL simulation display-
ing little or no precipitation in the more northerly parts of the
domain. The MHGS+PD simulation shows a statistically sig-
nificant, predominantly zonal dipole, with positive precipita-
tion anomalies in the eastern part of the domain and negative
anomalies further west (Figs. 6b and Fig. 7b). On strong cou-
pling days, the large-scale circulation therefore favours an
eastward extension of precipitation into a region that, even
under a vegetated Sahara, receives little precipitation (see
Fig. 2b). The SLP composite anomalies broadly match the
ones of the MHCNTL simulation, while the Z500 anomalies
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Figure 4. JJAS precipitation anomalies (mm d−1) on days with high d and low θ (see text) for the (a) MHCNTL, (b) MHGS+PD and
(c) MHGS+RD simulations. The anomalies are only shown over the domain used to perform the dynamical systems analysis (see the black
box in Fig. 2a). Bold lines mark significance bounds (see text).

Figure 5. Seasonal cycle of median (a) αSLP,PRP and (b) αZ500,PRP for the MHCNTL (blue), MHGS+PD (red) and MHGS+RD (orange)
simulations. The blue shading marks ±1 SD from the MHCNTL. The vertical dashed lines mark the pre-monsoon (MAM) and monsoon
(JJAS) seasons. The data are smoothed with a 10 d moving average.

are much larger in magnitude. The MHGS+RD simulation re-
sembles the MHGS+PD simulation for the Z500 case, albeit
with weaker geopotential height anomalies (Fig. 7c). An in-
verted precipitation dipole, with a significantly drier eastern
part of the domain and a significantly wetter northwestern
part, is instead seen for the SLP composite (Fig. 6c). Com-

parable results are found when extending the geographical
domain, with some differences that we partly ascribe to the
effect of α capturing some tropical precipitation patterns at
the southern edge of the domain (cf. Fig. 6 and Fig. 7 with
Fig. A6 and Fig. A7). A hypothesis to explain the differences
between the MHGS+PD and MHGS+RD simulations is that in
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Figure 6. JJAS precipitation (colours, mm d−1) and SLP (contours, hPa) anomalies on days with high α (see text) for the (a) MHCNTL,
(b) MHGS+PD and (c) MHGS+RD simulations. The contour lines have an interval of 0.25 hPa and span the following ranges: (a) −0.25 to
−1.5 hPa, (b) −0.25 to −1.25 hPa and (c) +0.5 to −0.75 hPa. Continuous contours show zero and positive anomalies, and dashed contours
show negative anomalies. The anomalies are only shown over the domain used to perform the dynamical systems analysis (see the black box
in Fig. 2a). Bold lines mark significance bounds for precipitation (see text).

Figure 7. JJAS precipitation (colours, mm d−1) and Z500 (contours, m) anomalies on days with high α (see text) for the (a) MHCNTL,
(b) MHGS+PD and (c) MHGS+RD simulations. The contour lines have an interval of 20 m and span the following ranges: (a) +40 to −40 m,
(b) +60 to −100 m and (c) +60 to −20 m. Continuous contours show zero and positive anomalies, and dashed contours show negative
anomalies. The anomalies are only shown over the domain used to perform the dynamical systems analysis (see the black box in Fig. 2a).
Bold lines mark significance bounds for precipitation (see text).
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the latter enhanced deep convection triggered by large up-
ward heat fluxes over the Sahara plays a larger role in shap-
ing precipitation (Gaetani et al., 2017). This is in agreement
with the increased amount of locally recycled moisture over
the Sahara driven by dust reduction under a vegetated Sahara,
as noted by Messori et al. (2019).

The above results illustrate some of the strengths and lim-
itations of the analysis framework we propose in this work,
which we discuss further in Sect. 4 below. If applied in the
context of a full-length research paper, some of the hypothe-
ses expounded here could be verified through additional anal-
yses. These could include, for example, the use of lower-
level atmospheric thickness or other tailored indicators of
heat low activity, of atmospheric radiative and heat fluxes,
and of moist static energy as an indicator of convection.

4 An appraisal of the dynamical systems framework
in a palaeoclimate context

Palaeoclimate simulations of the same period and region may
yield very different results, the understanding of which re-
quires analysis tools that may efficiently distil the discrep-
ancies and point to possible underlying drivers. In this tech-
nical note, we have outlined an analysis framework which
can efficiently compare the salient dynamical features of dif-
ferent simulated palaeoclimates. The framework is grounded
in dynamical systems theory and rests on computing three
metrics: the local dimension d, the persistence θ−1 and the
co-recurrence ratio α. The first two metrics inform on the
evolution of a system about a given state of interest – for ex-
ample how the atmosphere evolves to or from a given large-
scale configuration. The third metric describes the coupling
between different variables.

From a theoretical standpoint, the dynamical systems
framework presents a number of advantages over other sta-
tistical approaches for the analysis of large amounts of cli-
mate data such as clustering, principal component analy-
sis or canonical correlation analysis. The first two are often
used to define climate variability modes or weather regimes.
The d and θ metrics reflect the information captured by
partitioning the atmospheric variability into specific regimes
(e.g. Faranda et al., 2017a; Hochman et al., 2019), yet they
also provide additional information on how the atmosphere
evolves within and between the regimes. Canonical correla-
tion analysis (CCA), which identifies maximum-correlation
linear combinations of two variables, provides information
which largely overlaps that given by α (De Luca et al.,
2020b). However, the latter may be flexibly applied to multi-
variate cases beyond two variables, without the need for spe-
cific adaptations (such as partial CCA). Further, while sta-
tistical techniques can provide valuable information on the
evolution of the climate system, the dynamical indicators we
propose here are rooted in the system’s underlying dynamics.
In other words, their values are projections of mathematical

properties of the underlying equations of the system, even
when these are unknown. For example, a low local dimension
not only points to a specific metastable state of the dynamics
– as is the case for a conventionally defined weather regime
– but also shows that this state is in a predictable region of
the attractor. Moreover, the computation of the dynamical
systems metrics requires essentially a single free parameter
to be fixed, namely the threshold to define recurrences, and
one may easily test the stability of the estimates with respect
to small perturbations to this threshold. Furthermore, states
with θ→ 0 indicate quasi-singularities – technically unsta-
ble fixed points – of the system. Quasi-singular states por-
tend tipping points or tipping elements of the climate system
that have not yet been crossed (e.g. Lenton et al., 2008) and
can thus be of interest for a range of palaeoclimate appli-
cations. Indeed, analysis of data issuing from both concep-
tual (Faranda et al., 2019c) and reduced-complexity (Mes-
sori et al., 2021) models of specific features of atmospheric
dynamics have highlighted that changes in d and θ values re-
flect transitions between different basins of attraction of the
system. Finally, the metrics provide one value for every time
step in the analysed data, and may be conveniently used to in-
vestigate seasonality, oscillatory behaviours, high-frequency
variability and more. This is especially valuable for the co-
recurrence ratio, as a number of other measures of coupling
or correlation between two variables only provide a single
value for the whole time period being considered.

Because of these characteristics, the dynamical systems
metrics can be particularly helpful when processing large
datasets (see, e.g. Rodrigues et al., 2018; Faranda et al.,
2019a). To illustrate their practical applicability in palaeocli-
mate studies, we have analysed three numerical simulations
of the mid-Holocene climate over North Africa: a control
simulation with pre-industrial vegetation and atmospheric
dust loading, a Green Sahara simulation with shrubland im-
posed over a broad swath of what is today the Sahara desert,
and a second Green Sahara simulation that additionally fea-
tures heavily reduced atmospheric dust loading. Our aim is
to show that the different hydroclimates in these simulations
correspond to different dynamical properties of the modelled
climate systems, which are captured by the three dynamical
systems metrics. The seasonal cycles of d and θ−1 reflect fea-
tures of the duration, interannual variability and geograph-
ical extent of the monsoon, which do not always emerge
clearly from the precipitation’s seasonal cycle. The metrics
further capture the differences between the simulations and
may be leveraged to formulate hypotheses on their physical
drivers, such as modulations in atmospheric wave activity.
The co-recurrence ratio α, which provides a temporally re-
solved measure of coupling between different variables, en-
riches the picture by enabling the contextualisation of precip-
itation changes relative to large-scale atmospheric circulation
anomalies.

As a caveat, we note that our approach is more successful
in providing insights into the changes between the control
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and each of the Green Sahara simulations than between the
latter two simulations. Previous analyses of these same sim-
ulations and studies from other authors (e.g. Pausata et al.,
2016; Thompson et al., 2019) suggest that, compared to
the effect of Saharan Greening, the dust reduction under a
Green Sahara scenario only has limited impacts on the at-
mospheric circulation. This points to our framework being
best suited for diagnosing shifts in palaeoclimate dynamics,
as opposed to smaller climatological changes not associated
with changes in the underlying driving processes.

Additionally, obtaining good estimates of d, θ−1 and α
requires relatively long time series, limiting their applica-
bility to palaeo-archives. At the same time, empirical evi-
dence shows that daily time series of a few decades – as of-
ten obtained from numerical simulations – are typically suf-
ficient for many climate applications. Indeed, previous stud-
ies have outlined that the estimates of the metrics for atmo-
spheric observables convergence relatively fast (e.g. Faranda
et al., 2017a; Buschow and Friederichs, 2018). There are no
fixed rules for determining the minimum required amount of
data, but current best practice is to have several good recur-
rences of the patterns of interest in the data. While no formal
definition of what constitutes a “good recurrence” is forth-
coming, a simple test that may be applied is to reduce the
length of the datasets being used and repeat the metrics’ esti-
mates to check their stability (e.g. Buschow and Friederichs,
2018). Non-stationary data, such as may be found in tran-
sient palaeoclimate simulations, also require some care in
verifying that recurrences can be identified (see also Sect. 2).
Our methodology is able to detect weak non-stationarities in
the climate system, as for example is the case for the ongo-
ing climate change (e.g. Faranda et al., 2019a). However, an
abrupt regime shift poses a different challenge, and it is an
open question as to what the limit of validity of our metrics
for non-stationary systems is. A further difficulty that may
be encountered in applying the dynamical systems frame-
work pertains to its interpretation. While the three metrics
lend themselves to making relatively intuitive heuristic infer-
ences, they may sometimes provide counterintuitive results,
such as Figs. 6c and 7c here, and there is no universally valid
approach to overcome these interpretative difficulties. Fur-
thermore, expounding formal arguments to support the re-
sults obtained requires a detailed knowledge of the underly-
ing theoretical bases, which may initially be daunting.

In this technical note, we aimed to give a taste of the dy-
namical systems framework’s possible application to palaeo-
climate simulations, as opposed to presenting a systematic
analysis. We specifically wished to highlight its potential for
comparing different palaeoclimates while also providing an
appraisal of its limitations. To do so, we focussed on three
existing simulations and on a small number of atmospheric
variables. However, the approach is relevant to a very broad
range of palaeoclimate applications and is thus not limited
to the comparison of different climates or to the atmosphere.
In particular, the co-recurrence coefficient could be used to
study interactions between the different components of the
climate system varying on different timescales, such as the
hydrosphere and the atmosphere or the hydrosphere and the
cryosphere (e.g. by comparing the response of different nu-
merical models to the same forcing). As mentioned above, θ
may also have a direct application in the detection of tipping
points or states. From a technical perspective, we envisage
that the most effective application of the framework would
be for the analysis of very large datasets, such as those is-
suing from the PMIP initiative or from downscaling efforts
on very long transient simulations (e.g. Lorenz et al., 2016).
At the same time, we stress that we do not view the frame-
work as a wholesale substitute for conventional analyses of
palaeoclimate dynamics. Rather, it is intended as a comple-
ment that may help to strengthen mechanistic interpretations
and rapidly identify features deserving further investigation.
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Appendix A: Additional figures

In this appendix, we provide a schematic of the raindrop anal-
ogy for the dynamical systems metrics and figures illustrating
the sensitivity of our results to the choice of geographical do-
main and season. The figures are discussed in the main text.

Figure A1. The raindrop analogy for the dynamical systems metrics. (a) Depending on the topography, raindrops falling on a small patch
of ground on the side of a valley may follow similar paths (low local dimension) or different paths (high local dimension). (b) If the patch
of ground is on a steep incline, the raindrops will leave it very rapidly (low persistence); if the incline is shallow, the raindrops will take
longer to leave the patch (high persistence). (c, d) Vegetation will affect the raindrop paths, and at the same time the paths of the raindrops
will affect the growth of the vegetation. Whenever the raindrops collectively follow similar paths, this will correspond to a recurring pattern
of vegetation growth and vice versa (high co-recurrence ratio). Part of the figure has been excerpted from Marshak (2019), with permission
of the publisher, W. W. Norton & Company, Inc. All rights reserved (Copyright © 2019, 2015, 2012, 2008, 2005, 2001 by W. W. Norton &
Company, Inc.).

Figure A2. The same as Fig. 3a and b but using the domain 10–30◦ N, 15◦W–20◦ E.
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Figure A3. The same as Fig. 4 but using the domain 10–30◦ N, 15◦W–20◦ E.

Figure A4. The same as Fig. 5 but using the domain 10–30◦ N, 15◦W–20◦ E.
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Figure A5. The same as Fig. 2 but for the October–February period.

Figure A6. The same as Fig. 6 but using the domain 10–30◦ N, 15◦W–20◦ E. The contour lines have an interval of 0.25 hPa and span the
following ranges: (a) −0.25 to −1.25 hPa, (b) 0 to −1.5 hPa, and (c) +0.25 to −0.75 hPa.
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Figure A7. The same as Fig. 7 but using the domain 10–30◦ N, 15◦W–20◦ E. The contour lines have an interval of 20 m and span the
following ranges: (a) +40 to −20 m, (b) +60 to −80 m, and (c) +60 to −20 m.

Clim. Past, 17, 545–563, 2021 https://doi.org/10.5194/cp-17-545-2021



G. Messori and D. Faranda: Comparing palaeoclimates with dynamical systems 561

Code availability. The code to compute the three dynamical sys-
tems indicators used in this study is made freely available through
the cloud storage of the Centre National de la Recherche Scien-
tifique (CNRS) under a CC BY-NC 3.0 license: https://mycore.
core-cloud.net/index.php/s/pLJw5XSYhe2ZmnZ (Faranda, 2021).

Data availability. The EC-Earth model data are stored as global
3-D or 4-D NetCDF files and exceed the size limitations of most on-
line repositories. The files needed to reproduce the results presented
in this study may be obtained upon request to the corresponding au-
thor.

Author contributions. GM conceived the study and performed
the analysis. DF provided the publicly available code. Both authors
contributed to drafting the manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The authors thank Francesco Pausata,
Qiong Zhang and Marco Gaetani for making the palaeoclimate sim-
ulations available. We also thank the two anonymous reviewers for
the detailed and pertinent comments they provided.

Financial support. Gabriele Messori has been partly sup-
ported by the Swedish Research Council Vetenskapsrådet (grant
no. 2016-03724) and the Swedish Research Council for Sustainable
Development FORMAS (grant no. 2018-00968). Davide Faranda
was supported by a CNRS/INSU LEFE/MANU grant (DINCLIC
project) and by an ANR-TERC grant (BOREAS project).

The article processing charges for this open-access
publication were covered by Stockholm University.

Review statement. This paper was edited by Martin Claussen
and reviewed by Christian Franzke and one anonymous referee.

References

Barron, E. J., Sloan II, J., and Harrison, C.: Potential significance of
land–sea distribution and surface albedo variations as a climatic
forcing factor; 180 my to the present, Palaeogeogr. Palaeoclim.
Palaeoecol., 30, 17–40, 1980.

Bartlein, P. J., Harrison, S., Brewer, S., Connor, S., Davis, B.,
Gajewski, K., Guiot, J., Harrison-Prentice, T., Henderson, A.,
Peyron, O., Prentice, C., Scholze, M., Seppa, H., Shuman, B.,
Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu,
H.: Pollen-based continental climate reconstructions at 6 and
21 ka: a global synthesis, Clim. Dyn., 37, 775–802, 2011.

Braconnot, P., Harrison, S., Otto-Bliesner, B., Abe-Ouchi, A., Jung-
claus, J., and Peterschmitt, J.: The paleoclimate modeling Inter-

comparison project contribution to CMIP5, CLIVAR Exchanges,
56, 15–19, 2011.

Brunetti, M., Kasparian, J., and Vérard, C.: Co-existing climate at-
tractors in a coupled aquaplanet, Clim. Dyn., 53, 6293–6308,
2019.

Brunsell, N.: A multiscale information theory approach to assess
spatial–temporal variability of daily precipitation, J. Hydrol.,
385, 165–172, 2010.

Buschow, S. and Friederichs, P.: Local dimension and recur-
rent circulation patterns in long-term climate simulations,
Chaos: An Interdisciplinary J. Nonlinear Sci., 28, 083124,
https://doi.org/10.1063/1.5031094, 2018.

Caby, T., Faranda, D., Vaienti, S., and Yiou, P.: Extreme value
distributions of observation recurrences, Nonlinearity, 34, 118,
https://doi.org/10.1088/1361-6544/abaff1, 2020.

Claussen, M. and Gayler, V.: The greening of the Sahara during
the mid-Holocene: results of an interactive atmosphere-biome
model, Global Ecol. Biogeogr., 6, 369–377, 1997.

Claussen, M., Dallmeyer, A., and Bader, J.: Theory and modeling
of the African humid period and the green Sahara, in: Oxford
Research Encyclopedia of Climate Science, Oxford University
Press, Oxford, UK, 2017.

De Luca, P., Messori, G., Faranda, D., Ward, P. J., and
Coumou, D.: Compound warm–dry and cold–wet events
over the Mediterranean, Earth Syst. Dynam., 11, 793–805,
https://doi.org/10.5194/esd-11-793-2020, 2020a.

De Luca, P., Messori, G., Pons, F. M., and Faranda, D.: Dynamical
systems theory sheds new light on compound climate extremes
in Europe and Eastern North America, Q. J. Roy. Meteor. Soc.,
146, 1636–1650, https://doi.org/10.1002/qj.3757, 2020b.

Demenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M.,
Baker, L., and Yarusinsky, M.: Abrupt onset and termination of
the African Humid Period:: rapid climate responses to gradual
insolation forcing, Quaternary Sci. Rev., 19, 347–361, 2000.

Donn, W. L. and Shaw, D. M.: Model of climate evolution based
on continental drift and polar wandering, Geol. Soc. Am. B., 88,
390–396, 1977.

Egerer, S., Claussen, M., Reick, C., and Stanelle, T.: The link be-
tween marine sediment records and changes in Holocene Saharan
landscape: simulating the dust cycle, Clim. Past, 12, 1009–1027,
https://doi.org/10.5194/cp-12-1009-2016, 2016.

Faranda, D.: Dyn_Sys_Analysis_Matlab_Package, avail-
able at: https://mycore.core-cloud.net/index.php/s/
pLJw5XSYhe2ZmnZ, last access: 25 February 2021.

Faranda, D., Messori, G., Alvarez-Castro, M. C., and Yiou, P.: Dy-
namical properties and extremes of Northern Hemisphere climate
fields over the past 60 years, Nonlin. Processes Geophys., 24,
713–725, https://doi.org/10.5194/npg-24-713-2017, 2017a.

Faranda, D., Messori, G., and Yiou, P.: Dynamical proxies of North
Atlantic predictability and extremes, Sci. Rep.-UK, 7, 41278,
https://doi.org/10.1038/srep41278, 2017b.

Faranda, D., Alvarez-Castro, M. C., Messori, G., Rodrigues, D., and
Yiou, P.: The hammam effect or how a warm ocean enhances
large scale atmospheric predictability, Nat. Commun., 10, 1–7,
2019a.

Faranda, D., Messori, G., and Vannitsem, S.: Attractor dimension
of time-averaged climate observables: insights from a low-order
ocean-atmosphere model, Tellus A, 71, 1–11, 2019b.

https://doi.org/10.5194/cp-17-545-2021 Clim. Past, 17, 545–563, 2021

https://mycore.core-cloud.net/index.php/s/pLJw5XSYhe2ZmnZ
https://mycore.core-cloud.net/index.php/s/pLJw5XSYhe2ZmnZ
https://doi.org/10.1063/1.5031094
https://doi.org/10.1088/1361-6544/abaff1
https://doi.org/10.5194/esd-11-793-2020
https://doi.org/10.1002/qj.3757
https://doi.org/10.5194/cp-12-1009-2016
https://mycore.core-cloud.net/index.php/s/pLJw5XSYhe2ZmnZ
https://mycore.core-cloud.net/index.php/s/pLJw5XSYhe2ZmnZ
https://doi.org/10.5194/npg-24-713-2017
https://doi.org/10.1038/srep41278


562 G. Messori and D. Faranda: Comparing palaeoclimates with dynamical systems

Faranda, D., Sato, Y., Messori, G., Moloney, N. R., and Yiou, P.:
Minimal dynamical systems model of the Northern Hemisphere
jet stream via embedding of climate data, Earth Syst. Dynam.,
10, 555–567, https://doi.org/10.5194/esd-10-555-2019, 2019c.

Faranda, D., Messori, G., and Yiou, P.: Diagnosing concurrent
drivers of weather extremes: application to warm and cold days
in North America, Clim. Dyn., 54, 2187–2201, 2020.

Freitas, A. C. M., Freitas, J. M., and Todd, M.: Hitting time statistics
and extreme value theory, Probab. Theory Rel., 147, 675–710,
2010.

Gaetani, M., Messori, G., Zhang, Q., Flamant, C., and Pausata, F. S.:
Understanding the mechanisms behind the northward extension
of the West African Monsoon during the Mid-Holocene, J. Cli-
mate, 30, 7621–7642, 2017.

Gates, W. L.: The numerical simulation of ice-age climate with a
global general circulation model, J. Atmos. Sci., 33, 1844–1873,
1976.

Gualandi, A., Avouac, J.-P., Michel, S., and Faranda, D.: The pre-
dictable chaos of slow earthquakes, Sci. Adv., 6, eaaz5548,
https://doi.org/10.1126/sciadv.aaz5548, 2020.

Harrison, S., Bartlein, P., Brewer, S., Prentice, I., Boyd, M., Hessler,
I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim.
Dyn., 43, 671–688, 2014.

Haywood, A. M., Hill, D. J., Dolan, A. M., Otto-Bliesner, B. L.,
Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Dowsett,
H. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Abe-Ouchi,
A., Pickering, S. J., Ramstein, G., Rosenbloom, N. A., Salz-
mann, U., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang,
Z.: Large-scale features of Pliocene climate: results from the
Pliocene Model Intercomparison Project, Clim. Past, 9, 191–209,
https://doi.org/10.5194/cp-9-191-2013, 2013.

Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S.,
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