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Abstract. Spatiotemporal paleoclimate reconstructions that
seek to estimate climate conditions over the last several mil-
lennia are derived from multiple climate proxy records (e.g.,
tree rings, ice cores, corals, and cave formations) that are
heterogeneously distributed across land and marine environ-
ments. Assessing the skill of the methods used for these re-
constructions is critical as a means of understanding the spa-
tiotemporal uncertainties in the derived reconstruction prod-
ucts. Traditional statistical measures of skill have been ap-
plied in past applications, but they often lack formal null
hypotheses that incorporate the spatiotemporal characteris-
tics of the fields and allow for formal significance testing.
More recent attempts have developed assessment metrics to
evaluate the difference of the characteristics between two
spatiotemporal fields. We apply these assessment metrics
to results from synthetic reconstruction experiments based
on multiple climate model simulations to assess the skill of
four reconstruction methods. We further interpret the com-
parisons using analysis of empirical orthogonal functions
(EOFs) that represent the noise-filtered climate field. We
demonstrate that the underlying features of a targeted tem-
perature field that can affect the performance of CFRs in-
clude the following: (i) the characteristics of the eigenvalue
spectrum, namely the amount of variance captured in the
leading EOFs; (ii) the temporal stability of the leading EOFs;
(iii) the representation of the climate over the sampling net-
work with respect to the global climate; and (iv) the strength
of spatial covariance, i.e., the dominance of teleconnections,
in the targeted temperature field. The features of climate
models and reconstruction methods identified in this pa-
per demonstrate more detailed assessments of reconstruction

methods and point to important areas of testing and improv-
ing real-world reconstruction methods.

1 Introduction

Climate field reconstructions (CFRs) are spatially explicit es-
timates of past climate conditions that use layered or banded
archives containing chemical, biological, or physical indica-
tors as proxies for climate prior to the advent of instrumen-
tal records. CFRs can target climate fields over a range of
timescales and mean states, but a particular period of fo-
cus for large-scale (continental to global) CFRs has been
the Common Era (CE), or the last 2 millennia (e.g., Jones
et al., 2009; Christiansen and Ljungqvist, 2017; Smerdon and
Pollack, 2016). This interval contains an abundance of high-
resolution proxy records that allow seasonal to annual CFRs
on regional to global spatial scales. Application of CFRs over
the CE has provided myriad insights into climate variability
and change (see reviews in Jones et al., 2009; Cook et al.,
2016; Smerdon, 2017), including, for example, characteri-
zations of volcanic impacts on climate (Anchukaitis et al.,
2017, 2010; Zhu et al., 2020; Wahl et al., 2014; Tejedor et al.,
2021a, b), determination of the causal mechanisms of multi-
decadal droughts in North America (Cook et al., 2004; Coats
et al., 2016; Steiger et al., 2019; Cook et al., 2016), char-
acterization of hydroclimatic variability and forced changes
on continental scales (e.g., Cook et al., 2004, 2010; Stahle
et al., 2016; Palmer et al., 2015; Stahle et al., 2020; Erb et al.,
2020), and assessments of model performance (e.g., PAGES
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Hydro2k Consortium, 2017; Mann et al., 2009b; Coats et al.,
2020).

There are many different CFR methods (e.g., Tingley
et al., 2012; Smerdon et al., 2016; Steiger et al., 2014b; Mann
et al., 2009b), most of which differ based on the manner in
which climatic proxies – principally measurements of a given
archival indicator – are transformed to estimate a given cli-
matic quantity and how spatial and temporal covariance es-
timates are used to infer missing data. CFR methods are in
turn applied to a wide range of proxy networks that are often
curated for a specific purpose. These collective and funda-
mental decisions determine the nature of any given derived
CFR, all of which are subject to shared and unique uncer-
tainties tied to their spatial and temporal performance (Wang
et al., 2014; Smerdon et al., 2016; Klein et al., 2019). As-
sessing the spatiotemporal skill of CFR methods is there-
fore critical as a means of understanding the uncertainties
in derived reconstruction products, and there has been an on-
going focus in the literature to better understand CFR per-
formance on hemispheric and global scales (Smerdon et al.,
2008a, b, 2010a, b, 2011, 2016; Li and Smerdon, 2012; Dan-
nenberg and Wise, 2013; Steiger et al., 2014a; Evans et al.,
2014; Wang et al., 2014; Yun et al., 2020; Harris et al., 2020).

Over the last 1.5 decades, one approach that has emerged
for evaluating CFR methods relies on synthetic exercises
called pseudoproxy experiments (PPEs; Smerdon, 2012).
The basic premise of PPEs is to subsample a given spa-
tially and temporally complete field from a transient last-
millennium simulation derived from a fully coupled global
climate model in a way that mimics the limited instrumental
and proxy data available for deriving real-world CFRs. The
subsampled data are then input into a reconstruction algo-
rithm that is used to generate a CFR estimate for a given last-
millennium simulation. The derived CFR can then be com-
pared to the withheld and known values of the simulated cli-
mate field as a means of evaluating reconstruction skill in
both space and time. The advantage of PPEs lies in their
ability to establish controlled experimental environments in
which the performance of CFR methods can be assessed.

Despite their widespread utility, interpretations of PPEs
are complicated by the fact that synthetic pseudoproxies are
only an approximation of the complicated signal and noise
structures inherent to proxy records (e.g., Wang et al., 2014;
Evans et al., 2013, 2014), while the model-specific climates
that underly each PPE may not fully mimic the spatiotempo-
ral characteristics of the real climate system. Hence, Chris-
tiansen et al. (2009) emphasized the importance of the under-
lying spatiotemporal characteristics of the target field by ac-
cessing multi-model dependencies through a means of mak-
ing surrogate climates, and Smerdon et al. (2011) tested the
spatiotemporal skill of four CFR methods in the context of a
global PPE based on last-millennium simulations from two
climate models. This work was later expanded by Smerdon
et al. (2016) to test four CFR methods using newer last-
millennium simulations from five models that contributed

to the Coupled Model Intercomparison Project Phase 5 and
the Paleoclimate Modeling Intercomparison Project Phase 3
(CMIP5/PMIP3) in support of Assessment Report 5 of the
Intergovernmental Panel on Climate Change (Stocker et al.,
2013). The findings of both studies highlighted important
differences between the performance of the employed meth-
ods, while also noting that the reconstruction skill was de-
pendent on the last-millennium simulation that was the basis
of the PPE. It is therefore important to perform PPEs based
on multiple last-millennium simulations, while working to
understand how the impacts of modeled spatiotemporal cli-
mate characteristics translate into implications for CFRs per-
formed for the real climate system. Critically, the skill of
real-world CFRs is ultimately dependent on the spatiotem-
poral character of the actual climate system, thus necessitat-
ing interpretations of PPEs in terms of the underlying spa-
tiotemporal characteristics of each climate model simulation
on which they are based and how these characteristics com-
pare to those of the real climate system.

Improved interpretations of PPEs that take into account
the above considerations require improved and more detailed
skill assessments. Almost all skill characterizations of previ-
ous PPEs are descriptive in nature, largely employing spatial
maps and global aggregates of statistics such as the mean
biases in derived CFRs, correlations between the CFRs and
known fields, or the root mean square error of the CFRs rel-
ative to the known fields. While such comparisons are useful
for evaluating the relative performance of the various CFR
methods, they do not employ a formal null hypothesis that
can determine whether or not the spatiotemporal differences
between reconstructed fields are statistically significant. One
limitation this presents, for example, is an assessment of
whether one method in a PPE performs better than another in
a statistically robust sense or whether spatiotemporal differ-
ences among methods are simply due to random error. An ad-
ditional challenge of previous statistical assessments is that
they interpret the derived CFRs as complete spatiotemporal
representations of the targeted climate field, despite the fact
that most CFR methods target reduced-space versions of a
field by selecting, for instance, only a few leading patterns
from matrix decompositions of the field’s covariance matrix.
Despite such reductions being the basis of almost all CFR
approaches, it is rare that skill assessments decompose re-
construction performance in terms of leading reconstructed
and targeted spatiotemporal patterns.

In an attempt to more rigorously compare spatiotemporal
characteristics of reconstructed and targeted climate fields
in PPEs, Li and Smerdon (2012) formalized a null hypoth-
esis for these comparisons. Their approach was expanded
by Li et al. (2016), who applied methods for comparing
the mean and covariance structure between two spatiotem-
poral random fields developed by Zhang and Shao (2015).
This method has significant advantages over other paramet-
ric tests: (i) it evaluates whether the spatially varying mean
or covariance structures of two climate fields exhibit sim-
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ilar patterns; (ii) the noise will be filtered by the principal
component analysis; (iii) it is completely nonparametric and
thus free of model-misspecification risks; (iv) it allows de-
pendence between two fields and temporal correlation within
each dataset; and (v) it is constructed to separate skill within
a given EOF basis and thus allows assessments of skill within
each leading pattern of spatiotemporal variability at different
directions or subspaces.

We use the formalism of Li et al. (2016) and the estab-
lished PPE framework from Smerdon et al. (2016) to evalu-
ate whether there are statistically robust differences between
derived CFRs and targeted climate fields. We demonstrate
how CFR skill can be separated into leading modes of vari-
ability, which allows us to better interpret the performance of
each CFR in terms of the particular spatiotemporal character-
istics of the climate model simulations on which each PPE is
based. This approach allows us to more clearly articulate the
reasons why the applied CFR methods perform differently
within model-specific PPEs and across PPEs based on dif-
ferent last-millennium simulations. Our results demonstrate
how our methods can be used to improve interpretations of
uncertainties and limitations in state-of-the-art CFR methods
and provide improved understanding of how specific charac-
teristics of the real climate system may give rise to enhanced
or reduced CFR performance.

2 Data and methods

The adopted experimental setup is specifically chosen to be
consistent with previous PPE and methodological assess-
ments of Smerdon et al. (2016) and Li et al. (2016). This con-
sistency allows meaningful comparisons to previous results
that were either based on more traditional skill assessment
metrics or did not fully diagnose the underlying reasons for
skill differences using Li et al. (2016) methods. In the follow-
ing subsections we describe the last-millennium simulations
that are used as the basis of our PPEs and the CFR methods
employed.

2.1 Pseudoproxy experimental setup

The PPEs employ concatenated last-millennium (850–
1849 CE) and historical simulations (1850–2005 CE) from
modeling centers as configured and implemented in
CMIP5/PMIP3. Simulations from the following models
are employed: the Beijing Climate Center CSM1.1 model
(BCC), the National Center for Atmospheric Research Com-
munity Climate System Model version 4 (CCSM), the God-
dard Institute for Space Studies E2-R model (GISS), the
Institute Pierre Simon Laplace CM5A-LR model (IPSL),
and the Max Plank Institute ESM-LR model (MPI). Abbre-
viations in parentheses are the convention by which each
model and associated PPE framework will be referenced
hereinafter. In all cases, annual means from the surface tem-
perature fields of the model are used, and all fields are inter-

polated to uniform 5◦ latitude–longitude grids from which
all subsampling is performed (Smerdon et al., 2016). The
CMIP5/PMIP3 simulations from these models were cho-
sen in Smerdon et al. (2016) based on the availability of
PMIP3 last-millennium simulations at the time. Additional
last-millennium simulations have since become available,
most notably the last-millennium ensemble from the Na-
tional Center for Atmospheric Research (NCAR) Commu-
nity Earth System Model (CESM) and a few last-millennium
simulations from the PMIP4 archive. These and additional
simulations will ultimately be available for PPEs, but in the
interest of consistency and because last-millennium simula-
tions from the PMIP4 archive are not yet fully available, we
limit our assessment to those simulations that were used for
PPEs in Smerdon et al. (2016) and subsequently in Li et al.
(2016).

The basic premise of PPEs is to subsample the pseu-
doproxy and instrumental data from the simulated climate
model in a way that approximates their availability in the real
world. Each model field is therefore subsampled to approxi-
mate available instrumental temperature grids and proxy lo-
cations in a given proxy network. The PPE framework em-
ployed herein approximates available grids in the Brohan
et al. (2006) surface temperature dataset (M = 1732 grid
cells) and the locations of the proxies used in the Mann et al.
(2009a) CFR (yielding p = 283 proxy locations; see Fig. 1).
Global proxy networks have been expanded since Mann et al.
(2009a) such that the sampling schemes used herein slightly
underestimate the densest network in state-of-the-art mul-
tiproxy datasets (PAGES2k Consortium, 2017). The spatial
sampling biases represented in the Mann et al. (2009a) net-
work are nevertheless similar to the PAGES2k biases, with
dense sampling in the Northern Hemisphere extratropics,
more sampling over land than over oceans, and sparser sam-
pling in the tropics and Southern Hemisphere. Improvements
in the PAGES2k sampling are nevertheless present over some
regions, such as the tropical oceans and Antarctica. Despite
these differences, the descriptions we have just provided are
based on the most recent sampling interval in the Mann et al.
(2009a) and PAGES2k networks. The adopted pseudoproxy
sampling scheme is a best-case scenario of the Mann et al.
(2009a) network and similarly would be representative of the
denser sampling intervals in the PAGES2k network. For in-
stance, the increased sampling of the tropical oceans in the
PAGES2k network, relative to Mann et al. (2009a), is associ-
ated with the coral-derived proxies in those regions, but these
records typically only span several centuries and are there-
fore not part of the sampling in the earlier centuries of the CE.
Our emulation of the Mann et al. (2009a) network is there-
fore still applicable to more recent multiproxy compilations
and in general represents a best-case sampling scenario even
for the most up-to-date networks given that these networks
still lose significant numbers of records back in time.

The application of PPEs also requires that the time se-
ries subsampled from last-millennium simulations are per-
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Figure 1. Proxy network and instrumental sampling mask. Grey dots (M = 1732) are the locations where the temperature field is sampled,
and the red dots indicate the grid points from which the temperature locations are sampled to derive the pseudoproxies (p = 283).

turbed with noise to mimic the imperfect connection between
measurements in proxy indicators and the climatic signal for
which they are interpreted. The common approach within
PPEs is to add randomly generated noise series to the sub-
sampled modeled time series representing proxy data, with
noise amplitudes scaled to mimic the signal-to-noise ratios
(SNRs) that are characteristic of real-world proxies. In this
study, we use the CFRs from Smerdon et al. (2016) that were
derived from pseudoproxies perturbed with Gaussian white
noise at an SNR of 0.5, a value deemed be within to the range
of SNRs (0.5–0.25) in real-world proxy networks (Smer-
don, 2012; Wang et al., 2014). In addition to SNR= 0.5, we
also analyze a no-noise experiment (SNR=∞). In all model
cases, the same realization of 283 Gaussian white noise se-
ries are used to perturb the pseudoproxy network.

The adopted PPE design is overall a simplification of real-
world conditions. Real proxies typically include noise that
is multivariate (i.e., tied to climatic conditions in addition to
temperature), autocorrelated, and nonstationary in time (e.g.,
Jacoby and D’Arrigo, 1995; Briffa et al., 1998; Esper et al.,
2005; Evans et al., 2002; Anchukaitis et al., 2006; Franke
et al., 2013; Evans et al., 2014; Baek et al., 2017; Anchukaitis
et al., 2017; Wilson et al., 2016), while most proxies typically
respond to season-specific conditions (e.g., Pauling et al.,
2003; Anchukaitis et al., 2006; St. George et al., 2010; Baek
et al., 2017). Real-world spatiotemporal variability is also
assumed to be realistically represented in the modeled cli-
mates used as the basis of the PPEs. Important characteristics
of the modeled climates can nevertheless vary across simu-
lations and stand in contrast to observed behavior, such as
the strength and spatial covariance of teleconnections (e.g.,
Coats et al., 2013). We therefore interpret our PPE design
as a best-case scenario relative to real-world conditions, and
additional modifications to the PPE framework to more fully
mimic reality are expected to only further degrade CFR skill

(e.g., Von Storch et al., 2004; Von Storch and Stehr, 2006;
Mann et al., 2007; Wang et al., 2014; Evans et al., 2014;
Smerdon, 2012; Smerdon et al., 2016).

2.2 Climate field reconstructions

We analyze four CFR methods that have been widely applied
in the CFR literature and specifically discussed in the context
of the analyzed PPEs in Smerdon et al. (2016). These meth-
ods include two versions of regularized expectation max-
imization (RegEM) (Schneider, 2001; Mann et al., 2007;
Christiansen et al., 2009), standard ridge regressions (Ho-
erl and Kennard, 1970), and canonical correlation analysis
(CCA) (Christiansen et al., 2009; Smerdon et al., 2010b), all
of which are briefly described in the following subsections.
In general, however, all of the tested methods comprise ver-
sions of regularized multivariate regressions. The basic ap-
proach of these methods relates a matrix of climate proxies
to a matrix of climate data during a common time interval
(termed the calibration interval) using a linear model. As a
general example, consider anm×nmatrix, P, which contains
proxy values, and an r × n matrix, T, consisting of instru-
mental temperature records withm as the number of proxies,
r as the number of spatial locations in the instrumental field,
and n corresponding to the number of time steps in the tem-
poral period of overlap between the proxy and instrumental
data. The regression of T columns on P columns for time-
standardized matrices (Tstd and Pstd) with rows that have
means of zero and standard deviations of 1 can be written
as

T=Mt +StTstd, P=Mp +SpPstd,

where Mt is a matrix of identical columns equal to the av-
erage of all columns of the matrix T, and St is a diagonal
matrix with elements that are the standard deviations of the
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rows of matrix T; Mp and Sp are similarly defined for matrix
P. In these terms,

Tstd = BPstd+ ε,

where B is a matrix of regression coefficients with dimen-
sions r ×m, and ε is the residual error. According to stan-
dard linear regression theory, the error variances of all the
elements of ε are minimized if B is chosen as

B= (TstdPT
std)(PstdPT

std)−1,

where the superscript T denotes the matrix transpose. Tem-
perature can thus be predicted, or “reconstructed”, using this
regression matrix during periods in which proxy data are
available:

T̂=Mt +StBS−1
p (P−Mp),

where T̂ denotes a matrix of reconstructed temperatures.
Most regression-based CFRs differ in the way that B is es-
timated. As an example, consider a reduced-rank representa-
tion of Pstd using singular value decomposition (SVD):

Pr
std = Ur

p6p
rVr T
p .

Here Pr
std denotes the reduced-rank representation of Pstd,

and matrices with the superscript r are the truncated versions
of the SVD factors. Similarly, the reduced-rank version of
Tstd is written as

Tr
std = Ur

t6
r
tV

r T
t .

Pr
std and Tr

std can thus be substituted into the expression for
B as follows.

B= Ur
t6

r
tV

r T
t Vr

p(6p
r)−1Ur T

p

Given this expression for B, several choices can be made.
The first involves rank-reducing either T, P, or both and by
how much, which is the basis of principal component regres-
sion. The other choice involves regularization. In the repre-
sentation of B above, this can by done by reducing or filtering
the cross-covariance matrix Vr T

t Vr
p. If we use CCA formal-

ism as an example, the cross-covariance matrix can again be
factored using SVD as Or

t6
r
ccaOr T

p , which is the truncated
form of the cross-covariance matrix in which some leading
number of canonical coefficients have been retained. Begin-
ning with the original expression for B, ridge regression al-
ternatively does not adopt T and P reductions, but instead re-
places the inverse matrix in B with (PstdPT

std+h
2I )−1, where

h is the ridge parameter, as a means of filtering the cross-
covariance between T and P. Further aspects of these meth-
ods are discussed in more detail elsewhere (e.g., Hoerl and
Kennard, 1970; Schneider, 2001; Christiansen et al., 2009;
Tingley et al., 2012; Smerdon et al., 2010b), but this brief dis-
cussion provides the basic framework for how the regression-
based CFR methods are applied. The following subsections

provide more details on the specific versions of the methods
that we apply and more references to the supporting liter-
ature. We also describe the choices for the calibration and
reconstruction intervals directly below.

All CFR methods use a calibration from 1850–1995 CE
and a reconstruction interval from 850–1849 CE. Tempera-
ture and proxy data are available after 1995, but the proxy
network as used in Mann et al. (2009a) becomes sparse af-
ter 1995 because many records collected over the last several
decades obviously do not include measurements after their
date of collection. Hence, as in Mann et al. (2009a), Smer-
don et al. (2016), and Li et al. (2016), our calibration period
is chosen to be 1850–1995 CE, which follows the convention
of previous PPE frameworks. We also note that while we test
these specific configurations and methods, the skill assess-
ments that we employ and the methodological insights that
are developed are not exclusive to the four methods that are
tested because of broad commonalities across the CFR prob-
lem.

2.2.1 Regularized expectation maximization

The RegEM framework is based on regularized multivariate
linear regressions, specifically ridge regression (Rutherford
et al., 2003, 2005) and truncated total least squares (Mann
et al., 2007, 2009b), but the regression coefficients are non-
linearly and iteratively estimated by casting CFRs as a miss-
ing value or imputation problem. Within this formalism, the
mean and covariance of an incomplete dataset are initially
infilled, updated, and ultimately selected based on the mini-
mization of the expected mean squared error of the infilled
data within some specified threshold of convergence. The
two versions of RegEM that we use herein both use trun-
cated total least squares for regularization (Schneider, 2001;
Mann et al., 2007; Christiansen et al., 2009). The first version
is the standard form of RegEM using truncated total least
squares as originally described by Schneider (2001), here-
inafter TTLS, and the second is the hybrid version applied
by Mann et al. (2009a), hereinafter TTLH. The hybrid con-
vention calibrates the multiproxy network on the target tem-
perature field in split spectral domains by first separating the
target field and the multiproxy (or pseudoproxy) network into
high- and low-frequency components. We follow the Mann
et al. (2009a) convention by splitting these two domains at
the 20-year period using a 10-point Butterworth filter. The
hybrid reconstruction is then derived by calibrating the pseu-
doproxy network in the two frequency domains using the
RegEM algorithm and subsequently combining the recon-
structions from each domain to derive a complete field (see
Mann et al., 2005, 2007, for a further description of the hy-
brid method). Note also that differences between reconstruc-
tions derived from the hybrid and standard versions of the
RegEM method have been reported to be minimal (Ruther-
ford et al., 2005; Mann et al., 2005, 2007; Smerdon et al.,
2011), although the importance of hybrid calibrations for the
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skill of the derived reconstructions has been debated (Ruther-
ford et al., 2010; Christiansen et al., 2010). A linear fit to
the log-eigenvalue spectrum is used to determine the trunca-
tion parameter for the RegEM CFRs in the same manner that
was advocated by Mann et al. (2007) for the high-frequency
component of their derived hybrid reconstructions. For the
Mann et al. (2009a) CFRs, a linear fit to the log-eigenvalue
spectrum was again used to determine the truncation parame-
ter for the high-frequency component of the reconstructions,
while the low-frequency truncation was determined by se-
lecting the eigenvalue rank yielding 33 % of the cumulative
variance in the low-frequency field. This percentage of re-
tained cumulative variance is reduced from 50 %, as origi-
nally adopted by Mann et al. (2007); the value of 33 % has
since been advanced by Rutherford et al. (2010) and Mann
et al. (2009a) as more appropriate.

2.2.2 Ridge regression

The CFRs derived from ridge regressions used the standard
formulation (Hoerl and Kennard, 1970). This approach is a
break from earlier studies that have used ridge regression
as the form of regularization in the iterative RegEM algo-
rithm, but there are now several studies that have applied
the single ridge regression approach in the context of CFRs
(Smerdon et al., 2011, 2016). CFRs derived from ridge re-
gressions in these two formulations have been discussed in
detail in various publications (Schneider, 2001; Mann et al.,
2005; Smerdon and Kaplan, 2007; Lee et al., 2008; Smer-
don et al., 2008a, 2010a; Christiansen et al., 2009). The stan-
dard ridge regression is applied herein because the iterative
RegEM ridge regression converges to the single ridge regres-
sion result when missing values comprise a single and reg-
ular block in the data matrix, which is true in the context
of our PPE design. The selection of the ridge parameter, de-
fined as h in the introduction of Sect. 2.2, is determined using
the same approach described by Schneider (2001) for ridge-
based RegEM, namely by the minimization of the general-
ized cross-validation function (Golub et al., 1979).

2.2.3 Canonical correlation analysis

We apply CCA to derive CFRs as described in Smerdon et al.
(2010b) and as briefly presented in the introduction of Sect.
2.2. SVD is used to factor and truncate the T, P, and cross-
covariance matrix Vr T

t Vr
p. The optimal dimensional reduc-

tions for all three of these dimensions were determined using
a minimization of the root mean squared error in a “leave-
half-out” cross-validation scheme, as described by Smerdon
et al. (2010b).

3 Skill assessment

3.1 A brief review of the functional methods

The methods of comparing two spatiotemporal random fields
developed in Zhang and Shao (2015) and Li et al. (2016) are
based on a functional data analysis approach. The basic idea
is to perform the comparison in subspaces that are of much
lower dimension but preserve a large portion of the variabil-
ity. Moreover, these comparisons can be done on individual
EOF–PC pairs, allowing CFR assessments to be done on spe-
cific leading modes of the targeted and reconstructed fields.
We briefly review the theoretical framework for the skill as-
sessments below.

Let {Xt (s)}Nt=1 and {Yt (s)}Nt=1 be two spatiotemporal ran-
dom fields observed over spatial locations, s ∈D, and time
points, t = 1, . . .,N . The two random fields can be either in-
dependent or dependent. For our CFR assessment, we use
X to denote the synthetic climate from climate models and
Y the CFRs based on the X process. We define the mean
function of each spatial process as µX(s)= E{Xt (s)} and
µY (s)= E{Yt (s)}. Also, the covariance function of each spa-
tial process is defined as CX(s,s′)= cov{Xt (s),Xt (s′)} and
CY (s,s′)= cov{Yt (s),Yt (s′)} over s and s′ ∈D, respectively.
We assume second-order stationarity in time, i.e., the mean at
each location is a constant over time, and the spatial covari-
ance function follows the same structure at different times.
We do not assume any stationarity in space. Instead we al-
low the mean and covariance to vary spatially. In practice,
we first remove a common trend from both X and Y to ap-
proximate stationarity in time. The trend is calculated as a
global average at each time t based on both random fields,
and thus the detrending has no effect on the spatially varying
mean and the following test. Furthermore, we do not require
{Xt (s)}Nt=1 and {Yt (s)}Nt=1 to be Gaussian, though the climate
model data can be approximated by a Gaussian random field.

To compare the mean and covariance functions of two spa-
tiotemporal random fields, we consider the following two hy-
potheses.

i. H0 : µX = µY vs. Ha : µX 6= µY ,

ii. H0 : CX = CY vs. Ha : CX 6= CY .

The two test statistics for these two hypotheses are TS1
and TS2, which are explained in detail in the following two
subsections. Because the empirical distributions of TS1 and
TS2 have been derived under H0, their p values can be cal-
culated. The p values for these two hypotheses are ultimately
what are used to evaluate the comparison between two fields,
in this case between the known model field and a CFR. An-
other available test for evaluating the difference between two
climate fields is to combine hypotheses (i) and (ii) into one
single test, as in Li and Smerdon (2012) and Li et al. (2016).
We omit this joint test because the focus of this paper is to
understand why the mean and covariance in a reconstructed
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field behave differently. Thus, each individual test is suffi-
cient and more pertinent for such a purpose.

3.1.1 Mean comparison

The mean surface of a given climate field is a measure of
its spatial variability across the global domain. In statistics,
this is called the first moment of a spatiotemporal process and
usually carries very important information about the distribu-
tion of the random process. Comparisons between the mean
structures between two climate fields are therefore funda-
mental for assessing their relative characteristics. The mean
structure will be compared in subspaces that contain the ma-
jor variability of the climate field, so we start by defining
the subspaces and projected mean differences prior to defin-
ing the test statistics (TS1). We denote the ith eigenvalues
and eigenfunctions, also called empirical orthogonal func-
tions (EOFs), corresponding to ĈX by {λ̂iX} and {φ̂iX}, where
ĈX denotes the sample covariance function using all time
points. Then we define a sequence of vectors consisting of
the projected mean differences on the first L eigenfunctions,

ψ̂k = (< µ̂X,k− µ̂Y,k, φ̂1
X > .. . < µ̂X,k− µ̂Y,k, φ̂

L
X > )T, (1)

for 1≤ k ≤N , where < x,y>=xTy, and µ̂X,k (µ̂Y,k) de-
notes the sample mean based on the recursive subsamples
{Xt (s)}kt=1 ({Yt (s)}kt=1). The reason we employ recursive
subsamples is that we use a sampling strategy known as self-
normalization for time series data developed by Zhang and
Shao (2015). Self-normalization is an alternative to boot-
strapping but has shown nice properties when used for time
series such as preserving temporal correlation and not requir-
ing a tuning parameter. Recursive samples are obtained by
drawing samples from time 1 to k, where k = 2, . . .,N , mean-
ing each time the new sample is formed by expanding the
previous sample by adding the current observation. More de-
tails can be found in Zhang and Shao (2015). Our test statistic
for hypothesis (i) is therefore

TS1(L)=Nψ̂T
NV
−1
ψ (L)ψ̂N , (2)

where Vψ = 1
N2

∑N
k=1k

2(ψ̂k − ψ̂N )(ψ̂k − ψ̂N )T. The param-
eter L is user-chosen and determines how many eigenfunc-
tions are to be used in the test.

3.1.2 Covariance comparison

The covariance structure refers to the correlation and the
variance of climate observations over different locations. It is
called the second moment in statistics. When the climate field
can be approximated by a Gaussian random field, the first and
second moments determine the distribution of the entire ran-
dom field. The covariance structure refers to either the local
correlation or far-field correlation driven by so-called tele-
connections within climate fields and is thus an important

description of the large-scale physical dynamics that under-
lie the climate system. To allow comparisons between lead-
ing patterns in modeled or reconstructed fields, we modify
the test for covariance to make it suitable for comparing two
cross-covariance functions. We again define subspaces and
projected differences of a covariance structure. LetC1,2

X (s,s′)
and C1,2

Y (s,s′) be the cross-covariance function for s ∈D1

and s′ ∈D2 and let Ĉ1,2
X (s,s′) and Ĉ1,2

Y (s,s′) denote the sam-
ple cross-covariance function forXt (s) and Yt (s) based on all
time points. We perform an SVD on Ĉ1,2

X (s,s′) or Ĉ1,2
Y (s,s′):

Ĉ
1,2
X (s,s′)= U ′DV, (3)

where U and V are orthogonal matrices with columns being
u1, . . .,un and v1, . . .,vm for n and m grid cells in subregion
D1 and D2, respectively. The computational complexity for
SVD isO(min{mn2,m2n}), and thus the computation can be
an issue for a large n and/orm. However, it is not a challenge
here because the SVD is performed only on subregions D1
and D2. Let Ĉ1,2

X,k(Ĉ
1,2
Y,k) denote the sample cross-covariance

based on recursive subsamples {Xt (s)}kt=1 ({Yt (s)}kt=1). That
is, Ĉ1,2

X,k is the sample cross-covariance of {Xt (s1)}kt=1 and
{Xt (s2)}kt=1. We define a sequence of matrices by the pro-
jected covariance differences, Ck = [c

i,j
k ], where c

i,j
k =<

ûiTX (Ĉ1,2
X,k − Ĉ

1,2
Y,k), v̂

j
X >,1≤ k ≤N, 1≤ i, j ≤ L, and 1≤

L≤min{m,n}.
Let α̂k be the vectorized Ĉk . The test statistic for hypothe-

sis (ii) is

TS2(d)=Nα̂T
NV
−1
α (d)α̂N , (4)

where d is the length of the unique component in α̂k , which
contains the elements on and below the main diagonal of
Ck . That is, d = L(L+ 1)/2 and Vα(d)= 1

N2

∑N
k=1k

2(α̂k −
α̂N )(α̂k− α̂N2 )T, where k2 is a weight to account for the sam-
ple size of the recursive subsample comprising observations
from 1 to [k/2] (the largest integer not greater than k/2 ∈ R)
in the estimation of αk . Again L is chosen by the user and
can be determined by the cumulative percentage of total vari-
ation.

Additionally, the test statistics of the above two tests will
change if we calculate the sample covariance matrix based
on the Y process rather than the X process because the EOFs
from Y are different than those from X. Thus, they are not
exchangeable but we have fixed the sample covariance matrix
based on the X process because the goal of our application
is to evaluate the skill of CFRs by comparing them to their
known targets: the climate model output on which each PPE
is based.
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4 Results

4.1 Mean structure skill

Despite the formalism of the preceding section, the important
implication is that comparisons between modeled and recon-
structed fields can be measured in terms of p values based
on a null hypothesis that similarities are within the range
of comparisons between two random spatiotemporal fields.
A p value close to 0 indicates that the difference between
modeled and reconstructed fields is statistically significant
against this null hypothesis, while p values close to 1 indicate
that the difference could be explained by random chance. In
other words, p values close to 0 indicate poor reconstruc-
tions, while p values close to 1 indicate that a CFR and tar-
get field are statistically similar within the range of random
chance. Moreover, these comparisons are broken out among
the leading spatiotemporal patterns in each field. Investigat-
ing the large-scale spatial patterns is an effective way to eval-
uate the skill of the CFRs as the important features of the
spatiotemporal fields are often masked by substantial noise.
Therefore, while such comparisons can be done for any num-
ber of leading principal components, we focus herein on the
leading five in each field as these five EOFs consist of more
than 80 % of the total variability and largely represent the
dominant spatial patterns of random fields. Subsequent com-
parisons are made between the CFRs in each model-based
PPE and the known model field during the reconstruction in-
terval (850–1849 CE).

The mean structure performance, in terms of the devel-
oped skill metric for the five leading EOFs, is shown for
each CFR method within each of the model-based PPEs in
Fig. 2; results are shown for PPEs using pseudoproxies with
SNR= 0.5 (upper panel) and SNR=∞ (bottom panel).
Several general observations associated with Fig. 2 stand out
as consistent with previous work using traditional skill mea-
sures in Smerdon et al. (2016). First, there are clearly dif-
ferences across each of the model-based PPEs, indicating
that CFR performance depends strongly on the spatiotempo-
ral characteristics of the underlying model fields. Consistent
with Smerdon et al. (2016), the methods perform best in the
CCSM-, GISS-, and MPI-based PPEs, while the BCC and
IPSL models appear to present the most challenging tests for
the CFR methods. Secondly, the level of noise in the pseu-
doproxies has an important and expected impact on the na-
ture of the methodological performance. Particularly for the
CCSM-, GISS-, and MPI-based PPEs, the no-noise experi-
ments yield much higher skill scores than the SNR= 0.5 ex-
periment. Notably, however, even the no-noise PPEs yield
CFRs with variable skill that depends on the method and
model.

With regard to the performance of specific methods, TTLS
and TTLH are generally most skillful across the top five
EOFs in the CCSM, GISS, and MPI PPEs, although that
is not true across all of the EOFs and is more ambiguous

for the CCSM experiment with SNR= 0.5. It is also true
that the TTLS and TTLH methods perform similarly within
each model-based PPE across the top five EOFs, which is
not surprising given the close methodological lineage of the
two methods (Smerdon et al., 2016). Similarly, the CCA and
RIDGE methods have similar skill performance for each of
the five EOFs across the PPEs, although the CCSM exper-
iment shows some ambiguity with regard to these general
observations again in the SNR= 0.5 case. Finally, the meth-
ods collectively perform the worst within the BCC and IPSL
PPEs, a finding that is again consistent with the mean bias
assessment in Smerdon et al. (2016), who found the largest
mean biases in the BCC and IPSL PPEs.

In addition to the above general observations, the applied
skill metric allows the skill associated with each of the lead-
ing EOFs to be separated. Nothing similar to these separa-
tions was performed in Smerdon et al. (2016), and they indi-
cate a complicated structure associated with skill across each
of the model-based PPEs and tied to the applied method. For
instance, some methods perform very well on several leading
EOFs, while performing very poorly on several others (CCA
in the CCSM PPE or CCA and RIDGE in the GISS PPE).
Other methods perform poorly on the leading EOF, while
performing very well on the remaining EOFs (TTLS and
TTLH in the CCSM and MPI PPEs) or perform poorly on all
EOFs except the fifth EOF (CCA, RIDGE, and TTLH in the
IPSL PPE). The implication of these assessments is that there
is a rich structure to the performance of the methods across
the different model-based PPEs, but the reasons for this per-
formance are not immediately obvious from these assess-
ments. We therefore perform a similar analysis in the next
subsection for the covariance structure skill, before working
to more deeply understand the performance of the CFR meth-
ods as indicated by the applied skill metric.

4.2 Covariance structure skill

Similar to the mean structure comparison, we employ the ap-
plied skill metric to evaluate how derived CFRs reproduce
the known covariance of the climate model simulations. We
first note, however, that the covariance comparisons between
the CFRs and the known climate model fields over the en-
tire reconstruction domain yielded results that were univer-
sally unskillful. In other words, our analyses yielded p val-
ues equal or close to 0 for all methods at all five leading
EOFs and across all PPEs. This result is perhaps not unex-
pected given an established understanding that there are large
regions with very low skill throughout the global CFR do-
main. Smerdon et al. (2016) demonstrated that many regions
of the reconstructed fields have small and insignificant cor-
relations relative to the known model fields, while locations
among the tropics and over dense pseudoproxy sampling lo-
cations achieve much larger correlations. These collective re-
sults thus suggest that if the global domain is used to identify
EOFs many of the locations will be defined by variability
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Figure 2. CFR mean structure performance within each of the model-based PPEs. Derived p values are shown for the mean comparison
between the target model and the CFRs based on the described skill metric and presented for the leading five principle components. Upper and
bottom panels show skill assessment for the SNR= 0.5 and SNR=∞ PPEs, respectively. PCs with p values greater than the significance
level of 0.05 (dotted line) are considered to skillfully recover the mean structure of each model.

dominated by noise. Alternatively, constrained domains that
encompass dominant regions of variability can be used to tar-
get leading EOFs that are less susceptible to noise. We there-
fore modify our approach in this section to describe com-
parisons between areas of dominant teleconnections in the
model fields.

Our modified approach is to analyze the covariance struc-
ture only in regions where the teleconnection associated with
the El Niño–Southern Oscillation (ENSO) is dominant. We
specifically focus on ENSO because it is the leading mode of
internal variability on a global scale, making it easy to iden-
tify and likely strongly expressed in the leading few modes
of each climate model simulation. We examine the ENSO
dependencies by computing the correlation between the time
series of averaged temperatures over the Niño3 region (5◦ N–
5◦ S, 150–90◦W) and the time series at all other grid points
in the global temperature field. Maps of these correlations for
each climate model are shown in Fig. 3. We discard locations
proximal to the ENSO region (local covariance structure) that
are not the consequence of the ENSO teleconnection (large-
scale covariance structure). An empirical covariance estimate
suggests that pairs within 10 000 km are due to this prox-
imity. Thus, we exclude the locations in the orange shaded
area (20◦ S–20◦ N, 150◦ E–35◦W) that are within 10 000 km
from the center of the Niño3 region, as shown in Fig. 3. Af-
ter excluding these proximal locations, we choose the grid
points that have significant positive or negative correlations
with the Niño3 index in each model at the 10 % significance
level, which we interpret as reflecting each model’s ENSO
teleconnection pattern. Because the selected grid points vary
for different climate models, we use the collection of over-
lapping grid points (black dots in Fig. 3) from all five climate
models.

The p values for the modified covariance structure skill
metric assess how well the large-scale teleconnection pat-
terns associated with ENSO are reproduced in the CFRs rel-
ative to the known model fields. These results are shown in
Fig. 4, which presents the p values for all four CFRs for the
leading five PCs using the SNR= 0.5 and SNR=∞ PPEs.
Relative to assessments over the entire domain, stronger as-
sociations between the CFRs and known model fields are ob-
served when the covariance structure is limited to the ENSO
teleconnection regions. Even with a constrained focus on
the ENSO teleconnection regions, however, the covariance
structure skill is still limited across most of the methods and
model-based PPEs. The TTLS and TTLH methods are again
the most skillful across all of the methods. In the SNR=∞
case, skill is detected for the CCA method across all model-
based PPEs, and there is some skill for the RIDGE method
except for the IPSL and MPI PPEs. Interestingly, the skill of
TTLS and TTLH is higher for most of the EOF patterns in
the SNR= 0.5 PPEs based on the CCSM, GISS, and IPSL
models relative to the no-noise case, while it is more typical
to have skill reduction for SNR= 0.5 as in the CFRs derived
for the BCC and MPI PPEs. Specifically, compared to the no-
noise case, CCA and RIDGE results show skill reduction for
SNR= 0.5 for all PPEs. We also note that for the covariance
comparison, it is particularly important to examine the skill
of CFRs in the first PC because the first EOF contains over
80 % of the total variation in all models (see further discus-
sion in Sect. 4.4), except for BCC (the first EOF contains ap-
proximately 45 % of the variability). TTLS and TTLH within
the CCSM PPE are most skillful over the first two PCs, show-
ing evident skill in the subspace containing over 90 % of the
total variation. While most of the model-based PPEs indicate
some skill associated with at least the TTLS and TTLH meth-
ods, the BCC- and MPI-based PPEs stand out as yielding al-
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Figure 3. Model-based correlations between the Niño3 index and temperatures at all other grid points. The Niño3 index is computed as the
average sea surface temperature within the indicated box in the tropical Pacific (5◦ N–5◦ S, 150–90◦W). Global correlations are indicated by
the color scaling. Shared grid-point locations where local temperatures significantly correlate with the Niño3 index (p < 0.1) are indicated
by the same black dots in each panel (D2). The orange shaded region in each map indicates where locations have been excluded to focus
predominantly on far-field teleconnection structure.

most no skill at any PC for all the methods in the SNR= 0.5
PPEs. In the case of no noise, CCA, TTLS, and TTLH have
skill associated with over 80 % of the variation in MPI, while
CCA and RIDGE show very little skill in all EOFs other than
the first.

To complement the analysis of the covariance structure
skill in the ENSO-teleconnected regions, we investigate the
proportion of variance explained by the first five leading
EOFs of the ENSO teleconnection dominant region (D2).
Figure 5 shows that more than 30 % of the variance is ex-
plained by the first EOF in CCSM and IPSL models, while
the other three models present less than 30 % of the vari-
ance in their first EOFs. This feature is likely linked to the
results in Fig. 4 (SNR= 0.5), showing that the first PC of
BCC, GISS, and MPI models fail to show skill. This sig-
nal is especially weakly expressed in the leading modes of
the modeled data and not well represented in its CFRs when
SNR= 0.5 (only TTLH showing p value of 0.03), although
Fig. 3 shows that MPI exhibits a strong teleconnection signal.
This is particularly so as noise is added to the pseudoprox-
ies and especially for the CCA and RIDGE methods. Thus,
for the MPI model, the skill of most of the CFRs is associ-
ated with the first PC when there is no noise (SNR=∞) but
none when the noise is present (SNR= 0.5).

4.3 Cumulative CFR skill

Figures 2 and 4 present the performance of the CFRs over the
first five EOFs in each of the PPEs, but these comparisons do
not characterize how the skill accumulates over the collec-
tion of EOFs and how much total variability in the field is
represented in the skill assessment. Figures 6 and 7 therefore
present the p values for the overall skill of CFRs associated
with the mean and covariance structure for the SNR= 0.5
PPEs, respectively, but in this case they are derived accord-
ing to the proportion of the cumulative variability explained
by a successive number of leading PCs. Despite the indica-
tion of skill across multiple PCs demonstrated in Figs. 2 and
4, the skill as a function of cumulative variance reveals that
most methods across most PPEs do not recover mean struc-
ture skill beyond about 30 % of the total variability. Regard-
ing mean structure skill specifically, TTLH exhibits the most
skill within the CCSM and GISS PPEs and only up to about
20 %–30 % of the total variation. In the GISS model, unlike
the other models, all of the CFRs except RIDGE present skill
up to 20 % of the total variability. On the other hand, CFRs in
the BCC and MPI PPEs show no skill for cumulative EOFs.
The mean comparison results for the no-noise cases also ex-
hibit very similar results (results not shown).

Regarding the cumulative covariance structure skill in the
ENSO teleconnection regions shown in the top panel of
Fig. 7, only TTLS and TTLH in the CCSM and IPSL PPEs
show skill. Because the first PC of these CFRs in CCSM and
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Figure 4. CFR covariance structure performance within each of the model-based PPEs in ENSO teleconnection regions only. Derived p
values are shown for the covariance comparison between the target model and the CFRs based on the described skill metric and presented for
the leading five principle components. Comparisons are performed only in the ENSO teleconnection regions shown in Fig. 3 (D2 locations).
Upper and bottom panels show skill assessment for the SNR= 0.5 and SNR=∞ PPEs, respectively. PCs with p values greater than the
significance level of 0.05 (dotted line) are considered to skillfully recover the covariance structure in the strong ENSO teleconnection regions.

Figure 5. Eigenvalue spectra of ENSO-teleconnected regions for
each of the last-millennium simulations: the spectra of the ENSO-
teleconnected regions for each last-millennium simulation are com-
puted as the ratio between the first five eigenvalues and the cumula-
tive sum of all eigenvalues over the ENSO dominant region (D2).

IPSL already consists of more than 80 % of the total vari-
ation, TTLS and TTLH are very skillful in recovering the
teleconnection pattern in the CCSM and IPSL PPEs. There
is also some skill detected for TTLS and TTLH in the GISS
PPE (Fig. 4), but because the percent of variation in the third
PC is very small (less than 10 % of the total variation) the
skill at this PC is masked by the variation of the previous two
PCs. Moreover, in the case of no noise, CFRs of the BCC and

GISS PPEs consistently show no skill, and there is some skill
associated with TTLS and TTLH at the first PC in CCSM,
IPSL, and MPI PPEs in the bottom panel of Fig. 7.

Figures 6–7 indicate that even though CFRs show some
skill for each individual PC, the cumulative variability that
is skillfully explained must be evaluated for a more com-
plete picture of methodological performance. This is espe-
cially true for the TTLS and TTLH methods. Despite show-
ing outstanding skill in recovering the modeled mean struc-
ture at each PC in most of the climate models in Fig. 2, Fig. 6
shows that the two methods often do not account for skill up
to higher-order cumulative EOFs. For example, both TTLS
and TTLH are skillful only up to 20 %–30 % of the total vari-
ation of the climate field. Additionally, we note that the CCA
method poorly recovers the mean structure in most of the
climate models, and both CCA and RIDGE are poor in re-
covering the covariance structure in all five climate models
when the comparison is projected onto the cumulative EOF
basis function.

4.4 Interpreting the mean and covariance skill
assessments

While the preceding subsections provided some guidance re-
garding the performance and comparisons of the CFR meth-
ods in the multiple model-based PPEs, it is still unclear why
the methods perform differently and how they depend on dif-
ferent characteristics of the climate simulated by each model.
In the following subsection, we therefore characterize the
features of the temperature fields simulated by the models
and the underlying consequences for the various CFR meth-
ods. We interpret the skill assessments by exploring several
features of the CFRs and the underlying model fields on
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Figure 6. Mean comparison of the successive order of principal components during the reconstruction period: for every climate model,
p values for the mean comparison between the target model and the CFRs based on the described skill assessment are presented for the
successive range of PCs. PCs with p values greater than the significance level of 0.05 (dotted line) are considered to skillfully recover the
mean structure.

Figure 7. Covariance comparison over the successive order of principal components within only ENSO teleconnection regions: for every
climate model, p values are derived for covariance comparisons only in the D2 locations of the target model and the CFRs using the
described skill assessment for the successive range of PCs based on SNR= 0.5 and SNR=∞ PPEs shown in the top and bottom panels,
respectively. PCs with p values greater than the significance level of 0.05 (dotted line) are considered to have some skill in recovering the
ENSO teleconnection structure.

which the PPEs are based: (i) the percent variance explained
by the leading EOFs in the modeled temperature field, (ii) the
temporal stability of the EOF structure in the reconstruction
and calibration periods, and (iii) the degree to which the spa-
tiotemporal variability in the modeled temperature fields are
represented by the locations where pseudoproxies are sam-
pled.

4.4.1 Structure of the eigenvalue spectrum

Because each of the CFR methods investigated in this study
is a form of regularized multivariate regression, they all share
a similar feature, namely they each only target a few of the
leading EOFs in the target temperature field. An important
control on the skill of CFRs is therefore tied to how much of
the variance in the target temperature field is explained by the
leading EOFs. We therefore hypothesize that the PPEs based
on the climate model simulations with significant amounts of

variance in a few leading EOFs will be those experiments in
which the CFRs perform most skillfully.

In Fig. 8, the variance explained by the first five EOF–PC
pairs (same-rank pair of an empirical orthogonal function and
its principal component) in each model is represented as the
ratio between each of the five eigenvalues of the decomposi-
tion of the covariance matrix of the surface temperature fields
and the sum of all the eigenvalues. These calculations indi-
cate that except for the BCC model, a large portion of the
variance is explained by the leading EOF–PC pairs in each
of the modeled surface temperature fields. Additionally, the
proportion of the explained variance in the first eigenvalue is
relatively high in all of the models except for BCC. Based
on these results alone, the BCC model would be predicted to
form the basis for the most difficult PPE, an expectation that
is largely reflected in the skill assessments from Figs. 2 and
4.
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Figure 8. Eigenvalue spectra for each of the last-millennium sim-
ulations: the spectra for each last-millennium simulation are com-
puted as the ratio between the first five eigenvalues and the cumula-
tive sum of all eigenvalues.

In addition to providing a broad assessment of the relative
challenges presented by the individual model-based PPEs,
the eigenvalue spectra for each of the CFRs in each of the
model experiments also indicate that the similarity between
the variance explained in the first several EOFs of the tar-
get and reconstructed fields is largely indicative of the per-
formance of the individual CFR methods. In particular, the
proportions of the first eigenvalues in the TTLS and TTLH
CFRs are almost equivalent to those of the true model fields
from the CCSM, GISS, IPSL, and MPI simulations (Fig. 9).
This is reflective of the fact that those two methods generally
performed the most skillfully in both of the skill assessment
metrics. In contrast, the proportions of the first eigenvalues
of the CFRs in the BCC PPE are significantly lower than that
of the true model, which matches the relatively poor skill of
all CFR methods based on the BCC PPE. CFR performance
is therefore strongly associated with how well the first EOF
represents the total variation in the targeted climate field and
how well that variance is reproduced in a given CFR.

While the above analyses of the eigenvalue spectra give
important insights into the difficulty of reconstructing a given
climate field and the likely performance of a reconstruction
that targets such a field, the variance explained by a given
set of EOF–PC pairs alone may not be fully indicative of re-
construction performance. For instance, it is possible that the
EOFs in the reconstruction are reordered so that they do not
represent the spatial characteristics of any given EOF in the
target field well. It is therefore useful to assess how well the
spatial characteristics of specific EOFs in a CFR represent
the spatial characteristics of the EOFs in a targeted field.

To assess this feature and allow for the fact that a given re-
constructed EOF may be ordered differently than the equiv-
alent EOF in the target field, we take the inner product be-
tween each of the first three EOFs in the reconstructed and
targeted fields (this is similar to the spatial correlation statis-
tic often discussed in the climate literature, e.g., Coats et al.,
2013; Baek et al., 2017). If the absolute value of the inner
product is close to 0, it suggests that the spatial patterns rep-
resented by two EOFs are very different, while if the inner
product is close to 1, it implies that they are equivalent. The
p values testing the significance of the inner products can
be derived using bootstrap analysis. Each sample is obtained
by bootstrapping spatial locations at each time point, from
which the inner product of the CFR and the associated true
climate model is calculated based on the sampling. For each
inner product pair, we perform bootstrapping 1000 times and
calculate the p value of the observed inner product.

Table 1 presents the inner products of the first three EOFs
for the CFRs and the corresponding climate model fields,
with significance also indicated. Inner products along the di-
agonals that are close to 1 and marked as significant indicate
that the order of their corresponding EOFs together with their
spatial representations in the CFRs are similar to those of the
targeted climate field. Values that are close to 1, significant,
and off the diagonal would indicate a potential reordering
of the reconstructed EOFs relative to the EOF structure of
the target field. Collectively, the inner products indicate that
in addition to reflecting similar eigenvalue spectra (Fig. 9),
CFRs targeting the CCSM and MPI models also produce
EOFs that are similarly ordered with patterns that represent
the true model EOF patterns well. This is represented by high
and significant inner product values along the diagonals; the
opposite is true of most experiments with the BCC model.
In summary, in order for the CFRs to depict the mean and
covariance structure of the true climate model well, the first
few leading EOFs should carry the majority of the total vari-
ation while also capturing the spatial features of the targeted
EOFs as shown in Table 1.

4.4.2 Temporal stability of the leading EOFs

An important underlying assumption of linear-regression-
based CFR methods is that the identified patterns in the cal-
ibration period remain temporally stable back in time over
the period of reconstruction. In particular, temporal stability
refers to how much the leading patterns of modeled data in
the reconstruction period and in the calibration period share
in common and to what extent the order of leading patterns
in the calibration period is preserved in the reconstruction
period. If these patterns are not temporally stable, a key as-
sumption of the reconstruction approach is violated and the
skill of the reconstruction will be affected. Differences in
the performance of CFR methods, such as the differences
in the mean structures assessed in Fig. 2, may therefore be
explained by differences in the temporal stability of leading

https://doi.org/10.5194/cp-17-2583-2021 Clim. Past, 17, 2583–2605, 2021



2596 S. Yun et al.: A pseudoproxy assessment of climate field reconstruction methods

Figure 9. Eigenvalue spectra for each last-millennium simulation and the CFRs for each pseudoproxy experiment: the spectra for each
last-millennium simulation and associated CFR are computed as the ratio between the first five eigenvalues and the cumulative sum of all
eigenvalues.

Table 1. EOF inner product of the true model fields and the associated CFRs.

EOF of CFRs

CCA RIDGE TTLS TTLH

1 2 3 1 2 3 1 2 3 1 2 3

BCC
1 0.814b 0.350 0.387 0.772b 0.006 0.594 0.263 0.312 0.752a 0.588 0.511 0.256
2 0.225 0.548 0.328 0.172 0.505 0.056 0.104 0.669b 0.199 0.230 0.400 0.569
3 0.108 0.665 0.153 0.078 0.735 0.209 0.599 0.051 0.410 0.476 0.347 0.412

CCSM
1 0.967a 0.163 0.006 0.966a 0.179 0.028 0.955a 0.191 0.039 0.961a 0.078 0.138
2 0.122 0.937a 0.115 0.141 0.908a 0.197 0.085 0.809b 0.302 0.001 0.857b 0.238
3 0.050 0.166 0.822 0.037 0.226 0.741 0.144 0.366 0.681 0.180 0.396 0.689

GISS
1 0.906a 0.046 0.007 0.914a 0.006 0.005 0.855b 0.082 0.164 0.809b 0.165 0.268
2 0.113 0.914a 0.010 0.059 0.917a 0.057 0.269 0.217 0.754a 0.272 0.290 0.733b

3 0.027 0.034 0.773b 0.014 0.106 0.767b 0.015 0.657 0.221 0.165 0.608 0.227

IPSL
1 0.932a 0.261 0.116 0.911a 0.344 0.087 0.949a 0.106 0.164 0.969a 0.080 0.052
2 0.188 0.822b 0.350 0.249 0.747 0.431 0.042 0.838b 0.176 0.070 0.857b 0.136
3 0.133 0.426 0.503 0.176 0.487 0.465 0.080 0.428 0.443 0.022 0.407 0.548

MPI
1 0.972a 0.116 0.111 0.959a 0.177 0.128 0.982a 0.061 0.065 0.982a 0.071 0.034
2 0.123 0.953a 0.057 0.193 0.929a 0.061 0.054 0.943a 0.002 0.079 0.944a 0.008
3 0.088 0.003 0.861b 0.096 0.017 0.852b 0.043 0.078 0.846b 0.040 0.054 0.917a

Note: significance of inner products is denoted by a and b for the 10 % and 20 % levels, respectively.

EOFs in the calibration and reconstruction intervals within
each of the model simulations that form the basis of the PPEs.
In other words, if the EOF character and structure within the
reconstruction interval is similar to that of the calibration in-
terval within a model simulation, all of the CFRs based on
this model simulation are expected to capture the mean struc-
ture better than the CFRs based on simulations for which this
is not the case. Despite the above significance for reconstruc-
tion methods, it is unknown whether teleconnections in the
real climate system remain stable over centennial to millen-
nial timescales or how widely they have varied if they are not
stable (e.g., Coats et al., 2013).

To test the stability of the teleconnections in the model
simulations, we again use the inner product as a measure of

the similarity between spatial patterns, in this case between
the EOFs in the calibration and reconstruction periods. These
inner products are listed in Table 2, and the p values of the
inner products are again computed through bootstrapping;
the pairs of EOFs that are significantly aligned are marked.
If the inner product matrix in Table 2 contains the highest
values along the diagonal and those values are significant in
the bootstrapping experiments, it suggests that the order and
character of the EOFs are similar in the calibration and re-
construction intervals. This is predominantly the case for the
CCSM and MPI simulations, implying that the reconstruc-
tion period is defined by the same dominant pattern of lead-
ing EOFs in the calibration period. Moreover, for those two
climate models, the order of the modes is preserved as well.
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In contrast, the BCC model reveals very weak associations
between the calibration and the reconstruction periods, and
IPSL only displays strong association for the first EOF.

The temporal stability assessment, when joined by the pre-
vious assessment of the eigenvalue spectra, allows a more
specific criterion for CFR methodological success: if a large
fraction of the variability in the climate field is represented
by a few leading EOFs and the EOFs are stable across the
calibration and reconstruction periods, the CFRs tend to re-
cover the true mean structure well. Because BCC and IPSL
simulations violate either or both of these two conditions,
CFRs based on BCC and IPSL have reduced skill in this
sense. Again the performance of TTLS and TTLH largely
depends on how well the first few EOFs of the reconstruction
period represent the dominant EOF patterns in the calibration
period. On the other hand, CCA and RIDGE usually outper-
form the other methods when the reconstruction and calibra-
tion periods share the total variation across a larger number
of the leading EOFs. As an example, CCA and RIDGE re-
cover the mean structure in the CCSM and MPI PPEs well
because strong and distinct patterns are shared in all five
leading EOFs of these model simulations. In contrast, CCA
and RIDGE do not perform well in the BCC PPE (Fig. 2)
because the BCC simulation carries less of the total variabil-
ity in its leading modes, which are also not temporally stable
between the calibration and reconstruction intervals.

4.4.3 Sampling locations

The sampling locations of proxies also play a key role in the
performance of CFRs because all CFR methods train their
statistical models based on how the entire climate field re-
lates to the climate variability reflected in proxy locations.
If the climate variability at sampling locations poorly repre-
sents the variability of the entire climate field, then it will
be very challenging for CFRs to reproduce the mean or co-
variance structure of the targeted climate. To investigate this
possible issue, we sample the climate from only the proxy
sampling locations and then study the capacity of the climate
at those locations to recover the climate globally. This is car-
ried out by directly using the EOFs at the sampling locations
to estimate the climate at other locations and examine the
mean squared error (MSE) of the estimates.

In order to account for spatial correlation in this context,
we first decorrelate the spatial climate simulation before fit-
ting a linear model and then add the correlation back after
we obtain the estimates. More specifically, let X∗m(s, t) de-
note the spatially decorrelated climate simulation obtained
by

X∗m(s, t)= 6̂
−

1
2

m Xm(s, t), (5)

where m is the index for a given model simulation (e.g.,
BCC, CCSM, and MPI) and 6̂m is an estimated spatial co-
variance matrix of Xm(s, t) with t = 850, . . .,1849 using an
exponential covariance function.

There are 283 sampling locations out of 1732 grid points.
Let fj be the j th PC of the sampling network from the year
850 to 1849. We construct a linear model of the climate at all
1732 locations and on fj with the decorrelated spatial fields
X∗m(s, t):

X∗m(s, t)=
K∑
j=1

βj (s)fj + ε(s, t), (6)

where ε(s, t) represents white noise because X∗m(s, t) has
been decorrelated. So for each fixed location s, we have 1000
observations (t = 850−1849), and 1732 different regressions
will be modeled on the whole domain D. We set the num-
ber of EOFs to be K = 10, which typically preserves about
85 % of variability in the sample climate field. After we ob-

tain X̂∗m(s, t) then we derive X̂m(s, t)= 6̂
1
2
mX̂
∗
m(s, t). To eval-

uate the model fitness, we calculate the mean squared error
(MSE) as follows:

MSEm =
1

1000
61849
t=850(X̂m(s, t)−Xm(s, t))2. (7)

The MSEm measures how well the sampling network rep-
resents the variability in the climate model simulation. The
basic idea is to measure how much climate variability can
be recovered based on the sampled climate alone. We by no
means argue that our method is optimal for this purpose, but
this MSE estimate provides a reasonable measure for the ca-
pacity of climate sampled at the pseudoproxy locations to
represent the simulated global climate in each model.

Figure 10 displays the MSE for all five climate models.
The red triangles mark proxy locations, and the black dots
in each plot indicate the locations with extremely high MSE
(MSE> 0.5 and well above the third quartile as indicated
by Table 3). Because the sampling locations of the pseu-
doproxy network are the same across all of the models, the
variation in MSE is the result of how well the network sam-
ples the underlying covariance structures of each model sim-
ulation. Two general groups of MSE patterns are evident in
the model simulations. BCC, GISS, and MPI have relatively
small MSE throughout much of the tropics and extratropics,
while parts of the northern extratropics and polar region dis-
play extremely high MSE. In these model simulations, the
implication is that the pseudoproxy network reasonably sam-
ples the variability in much of the global field, except for
parts of the northern extratropics and polar regions. The sec-
ond group comprises the CCSM and IPSL simulations. The
MSE in each of these simulations is relatively high through-
out the global field, with CCSM and IPSL displaying ex-
tremely high MSE in the northern extratropics and polar re-
gion and IPSL also yielding high MSE in parts of the south-
ern extratropics and polar regions.

The sampling network in BCC represents the temperature
variability around the Equator well; however, it yields very
high MSE in the NH extratropics. This makes the distribution
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Table 2. Inner product of EOFs derived in the calibration and reconstruction periods.

Inner product
EOFs of calibration period

1 2 3 4 5

EOFs of BCC (Recon) 1 0.55 0.761a 0.02 0.207 0.167
2 0.042 0.084 0.436 0.717a 0.389
3 0.16 0.334 0.605b 0.555 0.253
4 0.242 0.352 0.569 0.019 0.49
5 0.63 0.327 0.128 0.216 0.45

EOFs of CCSM (Recon) 1 0.966a 0.093 0.057 0.034 0.037
2 0.002 0.872a 0.28 0.091 0.084
3 0.098 0.32 0.82b 0.289 0.173
4 0.017 0.026 0.335 0.804b 0.273
5 0.078 0.192 0.139 0.255 0.815b

EOFs of GISS (Recon) 1 0.861a 0.164 0.027 0.22 0.08
2 0.194 0.895a 0.213 0.045 0.057
3 0.098 0.071 0.225 0.68b 0.155
4 0.247 0.053 0.57 0.272 0.196
5 0.04 0.253 0.661b 0.089 0.345

EOFs of IPSL (Recon) 1 0.886a 0.378 0.096 0.137 0.022
2 0.223 0.643b 0.627b 0.162 0.062
3 0.222 0.616 0.496 0.439 0.087
4 0.111 0.051 0.455 0.573 0.329
5 0.139 0.11 0.118 0.488 0.024

EOFs of MPI (Recon) 1 0.976a 0.084 0.092 0.069 0.066
2 0.077 0.943a 0.179 0.101 0.127
3 0.072 0.227 0.844a 0.352 0.06
4 0.067 0.041 0.323 0.759b 0.185
5 0.048 0.076 0.075 0.145 0.724b

Note: significance of inner products is denoted by a and b for the 10 % and 20 % levels, respectively.

Table 3. MSE distribution of five climate models.

Min 1st q. Median Mean 3rd q. Max Skewness

BCC 0.122 0.161 0.189 0.263 0.239 4.698 6.579
CCSM 0.290 0.339 0.370 0.425 0.430 2.303 4.162
GISS 0.101 0.141 0.171 0.216 0.229 2.499 4.965
IPSL 0.342 0.430 0.472 0.512 0.538 2.054 3.718
MPI 0.112 0.169 0.208 0.250 0.265 1.788 3.802

of MSE associated with BCC largely skewed to the right due
to the extremely large MSEs in the NH extratropics (Table 3
and Fig. 10). To further aid our interpretation, we provide
maps of the first and second EOFs in Fig. 11. A joint com-
parison between Figs. 10 and 11 shows that the variability
of the first and second EOFs of BCC mainly concentrates in
the Northern Hemisphere where the large MSE is observed.
The implication is that the pseudoproxy sampling network
in BCC does not sample variability in the NH extratropics
well, while the leading EOFs in BCC best represent vari-

ability over that region. This collectively further explains the
poor performance of CFRs with BCC in Fig. 2 (SNR= 0.5).

Figure 10 also indicates that the MSE is high in CCSM
and even higher for the IPSL model. Figure 11 nevertheless
indicates that the main difference between CCSM and IPSL
is that the CCSM simulation shows a strong signal through-
out the leading EOFs, whereas the IPSL model only shows
a distinct signal in its first EOF. This helps explain the skill
of CFRs associated with the IPSL PPE concentrating in its
first EOF (Fig. 2). On the other hand, the GISS and MPI
models exhibit the smallest mean MSE, thus supporting the
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Figure 10. Mean squared error (MSE) of sampling location regression: the MSE of the estimated temperatures using sampling location
regression is presented. The red triangles represent the proxy location, and the black dots indicate the extremely high MSE (MSE> 0.5)

Figure 11. The first and second EOF of climate models: the upper and bottom panels show the first and second EOF of climate models,
respectively.

outstanding skill of their CFRs in reconstructing the mean.
However, the performance of CFR methods, especially CCA
and RIDGE, also seems additionally vulnerable to the skew-
ness of the MSE, implied by Fig. 2 (SNR= 0.5). If we com-
pare the CFR performance associated with the GISS and MPI
PPEs, both TTLS and TTLH perform well but CCA and
RIDGE perform better in the MPI PPE due to the relatively
high skewness of MSE in the GISS model.

In summary, both the skewness of the MSE and the high
MSE distribution with a weak signal on the leading EOF
structure together affect the skill of CFRs in all climate mod-

els. This is because large differences between the global cli-
mate and what can be sampled from the proxy network likely
weaken the skill of CFRs in retaining the major mean struc-
ture of the targeted climate. In contrast, however, even if the
mean MSE is high due to high variability of the temperature
field, the mean structure may be well reconstructed by the
CFRs if the leading EOF shows a distinct signal. We also
note that this analysis breaks traditional arguments about the
number of degrees of freedom in the global temperature field
(Hansen and Lebedeff, 1987; Briffa and Jones, 1993; Mann
and Park, 1994; Jones et al., 1997; Pollack and Smerdon,
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2004). These arguments are based on correlation decay dis-
tance (often defined as the e-folding distance between one
grid cell and all other grid cells, e.g., Jones et al., 1997),
which is assumed to be isotropic. Given an estimate of the
decay distance, the associated degrees of freedom in a global
field can thus be estimated. These arguments have been used
to estimate the number of sampling locations that are nec-
essary in the global field to estimate the mean climate over
different timescales. Our MSE analysis nevertheless clearly
indicates that covariability in global temperature fields is not
isotropic and that heterogeneous sampling networks will dif-
ferently sample the field variance.

5 Discussion and conclusions

We have provided a comprehensive assessment of four
widely applied CFR methods in terms of their skill in re-
covering the mean surface and covariance patterns in the tar-
geted temperature field. Testing the mean and covariance sur-
face jointly based on multivariate Gaussian assumption is a
fundamental way to test the equity of the two spatiotempo-
ral random fields as in Li and Smerdon (2012). Our moti-
vation in this paper, however, was to separate the mean and
covariance surface comparison tests for two different objec-
tives. Comparing the mean structure evaluates how well the
CFR reconstructs the annual mean temperatures, and testing
the equity of the covariance in the ENSO dominant region
evaluates how well the CFR recovers the teleconnection pat-
terns in the fields. The assessment is conducted in the context
of PPEs based on five climate model simulations spanning
the 850–1995 CE interval. We have first applied the evalu-
ation metrics presented in Li et al. (2016) and Zhang and
Shao (2015) to assess the skill of each CFR with respect to
the differently modeled climates. We then focused on inter-
preting and understanding the variability in the skill. We find
that although part of the skill variability arises from the re-
construction method itself, a large part of the discrepancy
in the skill across different methods is attributable to differ-
ent characteristics of simulated temperature fields associated
with different climate models. Our discoveries provide useful
insights into the assessment and improvement of CFR meth-
ods, while the focus on the underlying characteristics of the
targeted climate field make our findings relevant beyond the
four methods that we have tested.

The underlying features of a targeted temperature field that
can affect the performance of CFRs, as represented across the
climate model simulations that we have investigated, include
the following: (i) the characteristics of the eigenvalue spec-
trum, namely the amount of variance captured in the leading
EOFs; (ii) the temporal stability of the leading EOFs; (iii)
the representation of the climate over the sampling network
with respect to the global climate; and (iv) the strength of
spatial covariance, i.e., the dominance of teleconnections, in
the targeted temperature field.

Our results show that the CFRs derived within the CCSM,
GISS, and MPI PPEs are skillful at recovering the mean
structure, whereas the CFRs associated with the BCC and
IPSL PPEs exhibit large biases that are consistent with those
presented in Smerdon et al. (2016). These results are likely
due in part to the fact that the EOFs of the CCSM and MPI
models are stable across the calibration and reconstruction
periods. Additionally, the sampling network represents the
global temperature of GISS and MPI well, whereas it is in-
adequate for the BCC model. This plays a key role in weak-
ening the ability of CCA and RIDGE to reconstruct the mean
of the BCC model. In terms of skill in recovering the spatial
covariance associated with teleconnections, the TTLS and
TTLH methods outperform CCA and RIDGE, and in gen-
eral CFRs derived in the CCSM PPEs outperform the CFRs
associated with PPEs based on the other climate model sim-
ulations. Moreover, the CFRs of BCC and MPI show no skill
in recovering the large-scale teleconnection patterns when
the SNR is low. For the BCC model, this low skill is also
corroborated by the observation that CFRs in the BCC PPE
fail to represent the variability of teleconnections in the lead-
ing EOFs of the target model in the ENSO dominant region.
Within the MPI PPEs, similar challenges reconstructing the
spatial covariance are likely because the teleconnection in the
model simulation is already weak, as indicted by the model’s
low correlation between the leading five EOFs of the Niño3
region and those of the ENSO dominant region.

An important finding is that the skill of CFRs is highly
associated with how well the leading EOFs in CFRs repre-
sent the targeted climate field concerning both the variability
and the subspace. We find that the spectra of eigenvalues in
the CCSM, GISS, and MPI models align well with their own
CFRs. Among the four CFRs, the TTLS and TTLH meth-
ods better recover the eigenvalue spectrum of the targeted
climate by having a large amount of variability carried by
leading EOFs. In particular, CCSM exhibits the highest vari-
ability in its first few leading EOFs, and this pattern is well
reproduced by the corresponding EOFs in the CFRs derived
from the TTLS and TTLH methods. Critically, these charac-
teristics could be assessed for real-world datasets or through
comparisons between CFRs and the observational data dur-
ing the calibration and validation intervals. Such assessments
are therefore strongly encouraged as an additional means
of both testing the likelihood of skillful reconstructions and
adding to a source of calibration and validation interval skill
metrics.

Overall, the skill assessment we have performed using
PPEs based on five climate models allows a deeper under-
standing of both the reconstruction methods and the charac-
teristics of the synthetic climate fields. As we have shown,
CFR assessments can vary based on the underlying spa-
tiotemporal characteristics of the modeled target field. The
ultimate goal is to evaluate and improve real-world CFRs.
Based on the results of this study, the reconstruction perfor-
mance can depend on the eigenvalue spectrum, the temporal
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stability of covariance patterns across the reconstruction and
calibration intervals, the ability of sampling locations to rep-
resent the global climate characteristics, and the strength of
the dominant teleconnections in the targeted climate field. A
careful investigation of the characteristics of the real-world
climate will help identify the likely impact of these features
on CFRs derived from real proxies, as well as choose optimal
reconstruction methods and proxy networks given the iden-
tified characteristics of targeted climate fields. Although the
characteristics of the real climate of course cannot be mod-
ified, our findings will also help to define absolute limits on
the skill of CFRs and thus improve their interpretations.

Appendix A: Self-normalization test

A sampling strategy known as self-normalization in the con-
text of functional time series was developed in Zhang and
Shao (2015). Self-normalization is an alternative to the well-
known bootstrap approach. Compared to the latter, self-
normalization can preserve temporal correlation without any
tuning parameters. Furthermore, when used to compare two
time series, including two functional time sequences, self-
normalization does not require independence of the two spa-
tiotemporal random fields. The details of the self- normaliza-
tion test are explained below.

Suppose {Xt (s)}
N1
t=1 and {Yt (s)}

N2
t=1 are two temporally de-

pendent functional time series. These functional time series
can also be considered to be spatiotemporal random fields.
Let H be the Hilbert space of square integrable functions
over D ⊆ R2. For any functions f,g ∈H, the inner product
between f and g is defined as< f,g >=

∫
D
f (s)g(s)ds, and

||f || =< f,f>1/2 denotes the inner product of the induced
norm. Define the operator f ⊗ g(·)=< f, ·> g for f,g ∈H
such that for a function h, the operator f ⊗g(h)=< f,h > g
maps h to < f,h > g. Let LpH be the space of H-valued ran-
dom variables X such that E||X||p <∞ for some p > 0.

Assuming that the spatiotemporal random fields are
second-order stationary in time, we defineµX(s)= E{Xt (s)}
and µY (s)= E{Yt (s)} as their mean functions over s ∈D.
We consider testing the following hypothesis,

H0 : µX = µY vs. Ha : µX 6= µY , (A1)

where µX 6= µY is equivalent to ||µX −µY ||> 0.
Below we will define the recursive sample mean function

which preserves the temporally dependent structure:

µX,m =
1
m

m∑
t=1

Xt and µY,n =
1
n

n∑
t=1

Yt ,

where 1≤m≤N1 and 1≤ n≤N2. The pooled sample co-
variance operator is defined as

ĈXY =
1
N

[ N1∑
t=1
{Xt − µ̂X,N1}⊗ {Xt − µ̂X,N1}

+

N2∑
t=1
{Yt − µ̂Y,N2}⊗ {Yt − µ̂Y,N2}

]
,

where N =N1+N2 is the total time length for two random
fields. The eigenvalues and eigenfunctions corresponding to
ĈXY are denoted by {λ̂jXY } and {φ̂jXY }. Then we define a
sequence of vectors consisting of the projected (recursive)
mean differences on the first K eigenfunctions,

ψ̂k =
(
< µ̂X,[kN1/N ]− µ̂Y,[kN2/N ], φ̂

1
XY >,. . .,

< µ̂X,[kN1/N ]− µ̂Y,[kN2/N ], φ̂
K
XY >

)T
,

for 2≤ k ≤N , where [W ] is the largest integer not greater
than W ∈ R. Then the test statistic for the hypothesis
(Eq. A1) is

TS(K)=Nψ̂T
NV
−1
ψ (K)ψ̂N ,

where Vψ (K)= 1
N2

∑N
k=1k

2(ψ̂k − ψ̂N )(ψ̂k − ψ̂N )T. The pa-
rameter K is a user-chosen number that determines the num-
ber of eigenfunctions to be used in the test and is associ-
ated with the percentage of total variation with respect to the
pooled sample covariance.

The K-length vector ψ̂k consists of projected differences,
with the j th element being projected onto the j th eigenfunc-
tion φ̂jXY . The index k for ψ̂k indicates the kth paired dif-
ference between the recursive estimates of mean functions.
Because of these recursive estimates that are the kernel of
the self-normalization technique, we allow individual data to
be temporally correlated and moreover the two datasets to be
correlated if additionally assuming N1/N2→ 1.

The pivotal limiting distribution of TS(K) is derived in
Zhang and Shao (2015). Here we summarize how to cal-
culate the p value. Define Bq (r) as a q-dimensional vec-
tor of independent standard Brownian motions. Let Wq =

Bq (1)TJ−1
q Bq (1), where Jq =

∫ 1
0 {Bq (r)− rBq (1)}{Bq (r)−

rBq (1)}Tdr , then TS(K) converges to WK . The empirical
distribution of Wq for any q can be obtained numerically
by approximating the standard Brownian motion with the
standardized partial sum of independent and identically dis-
tributed standard normal random variables.

Code and data availability. Codes and data to reproduce the skill
assessment comparison test are available at GitHub (https://github.
com/syun0925/CFR.git, last access: 16 December 2021) and Zen-
odo (https://doi.org/10.5281/zenodo.5781013, Yun, 2021).
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