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S1. Anomalies in 12C and F14C during LA-AMS 

An unexpected signal was observed during radiocarbon analysis by LA-AMS in the bottom piece of 
stalagmite SPA 127 (Fig. S1). The signal intensity (top panel of Fig. S2) is expressed as the 12C—current 
recorded by the AMS. A typical signal evolution during the course of a measurement is a fast rise in 
the 12C--current to about 5 µA after the laser is started, followed by a slower and steady increase to 
about 6 – 8 µA (compare also Welte et al. (2016)). After 10 – 15 minutes, the maximum lifetime of the 
sputter target in the ion source is reached as its CO2 outlet is blocked from deposits resulting in a 
decrease in 12C current. A new sub-scan has to be started using a fresh sputter target. In the bottom 
section of SPA 127, five peaks were observed in the 12C--current with corresponding F14C dips from 
approximately 0.2 down to 0.05. The repeated scan (B2, see main text), which was performed after 
removal of the top surface layer, showed a similar behavior (see Figure S3). We additionally 
investigated the regions showing these peaks using FTIR. These anomalies are less distinctly observed 
in the third LA-AMS scan (Figures S2 and S3).  

 
Fig. S1 Picture of stalagmite SPA 127 (top is left). Top and bottom piece (green box indicates bottom slab) with location of the 
stable isotope track marked in purple and LA-AMS test track in blue (the tracks corresponding to the data presented in this 
work were placed next to the test tracks). The total length of the slab is 14.6 cm. The green box shows the bottom piece after 
removal of approximately 0.5 mm from the sample surface with the repeated LA-AMS laser track and approximate locations 
of layers exhibiting anomalies during LA-AMS (green areas). 

 
Fig. S2 Anomalies observed in the signal intensity (12C) and F14C for the initial scan performed on the bottom piece. The scan 
consists of three sub-scans represented by the different shades of blue. At the beginning and towards the end of each sub-
scan the 12CHE current rises and drops respectively, i.e. at 130 mm, 137 mm and 145 mm, which is an expected behavior. The 
anomalies in both measurement parameters are indicated by the blue boxes. 



 

Figure S3 Left panels show the 12C-current of the four successive LA-AMS scans on the original and archive slab of SPA 127. 
Right panels show the δ13C measured by AMS for fractionation correction. Absolute values can differ substantially from true 
values. In the first three cases (scan 1, scan 2, archive half) numerous wiggles in 12C and corresponding dips in δ13C indicate 
areas where epoxy was ablated. In the last scan (data selected for this manuscript), no such pronounced wiggles and dips 
were identified. However, two regions possibly show a slight epoxy contamination and are marked with grey bars. Different 
colors within each panel indicate different sputtering targets: the use of a new target and reaching the end of its maximum 
lifetime may have additionally altered the current and the δ13C values. 

 

 

Interpretation of the anomlies 

The five 12C-current peaks correlating with strongly depleted F14C observed between 120 and 145 mm 
depth, i.e. from 8.4 to 8.0 ka BP, indicate that these layers are composed of a different material than 
the bulk. The higher 12C-currents are associated with a matrix that converts more readily to CO/CO2 
upon LA compared to CaCO3, a behavior that is known from organic substances with a higher 
oxygen/carbon stoichiometric ratio (Frick and Gunther, 2012). In order to ascertain whether the 
substance in these layers is inherent to the stalagmite or a contamination, its composition has been 
determined using FTIR. These measurements revealed that the anomalies were caused by epoxy resin 
(Fig. S4 and S5).  

Indeed, the stalagmite was glued in this section when it broke into two parts shortly after its removal 
from the cave in 2002 CE (Fig. S6). Although the speleothem was only glued on one location, we 
observed the glue at least at five positions coinciding with small cracks. This suggests that the glue was 
able to soak through these small cracks. Hence, attention should be paid when working with glued 
speleothems, especially, if the type of geochemical analyses is based on methods not easily able to 
differentiate the analyzed material such as e.g. laser ablation IRMS (Spötl and Mattey, 2006), while e.g. 
IRMS based on drilled material, which is acidified by H3PO4, should be unaffected. 



These findings underline that unlike conventional analytical methods applied to stalagmite samples for 
14C analysis, which provide exclusively the isotope composition of the CaCO3, LA-AMS additionally 
yields the 14C content of OM captured in stalagmites. Despite the fact that this offers novel possibilities 
it also requires particular caution to distinguish between inherent OM and contaminants of organic 
origin.  
14C data used for the interpretation in this study stem from scan B3, which was largely unaffected by 
the epoxy because the scan was placed off the glued joint as confirmed by conventional 14C analysis 
(see Fig. A4). 

  



 

S2. Fourier Transform Infrared spectroscopy (FTIR) analysis 

Fourier Transform Infrared spectroscopy (FTIR) was used to determine the specific composition of 
selected areas in our sample to clarify the causes of anomalies. FTIR is a standard non-invasive 
technique for material analysis (Derrick et al., 2000). The coupling of the IR spectrometer with a 
microscope enables micro-analysis, while the development of focal plane array (FPA) detectors allows 
to perform imaging instead of single point measurements. Attenuated total reflection (ATR) is a 
technique that requires no sample preparation other than a flat surface and is independent of the 
thickness of the sample as it is performed upon contact of the sample with the ATR crystal, which is a 
medium of high refractive index. 
The analysis of the speleothem was performed on a Spotlight 400 FT-IR Imaging System (Perkin 
Elmer, Massachusetts, USA), equipped with a MCT array (mercury cadmium telluride) detector. The 
stalagmite was placed under the microscope on a motorized stage and focused to measure the 
spectrum between 4000 and 520 cm-1 using a micro-ATR objective germanium crystal at 4 cm−1 
spectral resolution and 32 scans. The detection area of a measurement was 300 x 200 μm2 in 
diameter (spot size). An area of 1.9 x 3.4 mm in the vicinity of the abnormal 14C/12C behavior 
observed by LA-AMS was selected for rastering by FTIR. 

In the regions where LA-AMS anomalies were observed, two different types of matrices were revealed 
by the FTIR spectra (Fig. S5), representing calcite and epoxy resin. The epoxy resin spectra were found 
for measurement points along a crack present in this area. The calcite matrix was found in all other 
measurement points outside of the crack. 

 

 

Figure S4 A) Overview of FTIR raster. Laser tracks served for orientation. The blue dots represent the measurement points. 
The green circle represents a measurement point within the crack, while the pink circle represents one point well away from 
it. B) The crack found in the area of interest (selected based on LA-AMS anomalies) is marked in green. 

 



 

 

Figure S6: Images of the outside and inside of stalagmite SPA 127 with indication of the glued fracture (yellow arrows). The 
final scan was placed within the two blue lines (right panel), a location that is as close as possible to the central stalagmite 
axis but outside of the glued area. 
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Figure S5 Top: FTIR spectrum representative of measurements outside the crack (such as the pink circle in Figure 1 of SI) 
showing a calcite matrix. Bottom: FTIR spectrum representative of measurements within the crack (such as green circle in 
Figure 1 of SI) revealing epoxy in the matrix. 



S3. Savitzky-Golay Filter 

 

 

Figure S7: Left: Savitzky-Golay filter with 21 points interval length for the two individual scans (blue and red) and for the 
combined data (black). Grey shaded areas indicate regions of high agreement between the individual filters and hence 
regions where the smoothing is considered to be robust. The blue shaded area is regarded as trustworthy as well, because 
the pattern of the combined data is confirmed for longer interval lengths, i.e. 41 points (see right panel).  

 

  



S4 LA-AMS results (raw data) 

14C results are shown in Fig. S8A, where error bars are not displayed for reasons of clarity. The 
measured F14C ranges of both pieces of SPA 127 (T1, T2 and B3) range from about 0.55 at the top to 
approximately 0.15 towards the oldest part of the stalagmite. Between 0 and ca. 40 mm, the F14C varies 
around a comparably constant value of 0.45, followed by a pronounced dip between 40 mm and 
70 mm. From 70 mm to 140 mm, F14C decreases from 0.4 to 0.2. The measurement precision is 
approximately 8% for the younger slab and 10% for the older piece with a spatial resolution of 280 µm 
per data point. In Fig. S8B, F14C data is depicted in grey with uncertainties corresponding to the 
analytical error. In order to reduce noise a SG filter has been applied with an interval length of 21 
points and the polynomial order of 2. Stable C and O data are shown in Fig. S8 C. 

 
Figure S8: (A) F14C profile of SPA 127 plotted without error bars for reasons of clarity. Grey dashed lines indicate two locations 
potentially contaminated by epoxy resin. (B) F14C profile including error bars corresponding to measurement precision (grey) 
with an overlain SG filter of 21 points interval width with a maximum polynomial degree of 2. The grey shaded areas represent 
depths where the quality check for the SG filter was not satisfactory (compare Fig. A1). Details can be found in the text. (C) 
δ13C and δ18O data of SPA 127. 



S5. Conventional 14C analysis by gas ion source AMS 

 

Figure S9: Comparison of LA-AMS data with conventional AMS data using a gas ion source. In short, 1 – 2 mg CaCO3 samples 
were analyzed following the procedure described in Wacker et al. (2013). The red lines indicate two locations that were 
identified as potentially contaminated by epoxy resin (see caption of Fig. 3 in SI). However, results of both methods are in 
good agreement, especially at a dft of 133 mm (first red line). At 148 mm, epoxy contamination cannot be ruled out as no 
conventional data point was sampled there. However, the generally high agreement, also in the oldest part of SPA 127, 
suggests that the LA-AMS data are robust. 



S6. Correlation test dcf, δ13C and δ18O

 

Figure S10: 11-point running correlation coefficients calculated for the dcf versus δ13C (top) and for δ18O versus δ13C 
(bottom). 
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