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Abstract. Different paleoclimate proxy records evidence re-
peated abrupt climate transitions during previous glacial in-
tervals. These transitions are thought to comprise abrupt
warming and increase in local precipitation over Greenland,
sudden reorganization of the Northern Hemisphere atmo-
spheric circulation, and retreat of sea ice in the North At-
lantic. The physical mechanism underlying these so-called
Dansgaard—Oeschger (DO) events remains debated. A recent
analysis of Greenland ice core proxy records found that tran-
sitions in Na™ concentrations and §'30 values are delayed
by about 1 decade with respect to corresponding transitions
in Ca>* concentrations and in the annual layer thickness dur-
ing DO events. These delays are interpreted as a temporal lag
of sea-ice retreat and Greenland warming with respect to a
synoptic- and hemispheric-scale atmospheric reorganization
at the onset of DO events and may thereby help constrain
possible triggering mechanisms for the DO events. However,
the explanatory power of these results is limited by the uncer-
tainty of the transition onset detection in noisy proxy records.
Here, we extend previous work by testing the significance
of the reported lags with respect to the null hypothesis that
the proposed transition order is in fact not systematically
favored. If the detection uncertainties are averaged out, the
temporal delays in the 8'80 and Na™ transitions with respect
to their counterparts in Ca>* and the annual layer thickness
are indeed pairwise statistically significant. In contrast, un-
der rigorous propagation of uncertainty, three statistical tests
cannot provide evidence against the null hypothesis. We thus

confirm the previously reported tendency of delayed transi-
tions in the 8§80 and Na™' concentration records. Yet, given
the uncertainties in the determination of the transition on-
sets, it cannot be decided whether these tendencies are truly
the imprint of a prescribed transition order or whether they
are due to chance. The analyzed set of DO transitions can
therefore not serve as evidence for systematic lead-lag re-
lationships between the transitions in the different proxies,
which in turn limits the power of the observed tendencies to
constrain possible physical causes of the DO events.

1 Introduction

In view of anthropogenic global warming, concerns have
been raised that several subsystems of the earth’s climate sys-
tem may undergo abrupt and fundamental state transitions
if temperatures exceed corresponding critical thresholds
(Lenton and Schellnhuber, 2007; Lenton et al., 2008, 2019).
Under sustained warming, the Atlantic Meridional Over-
turning Circulation (AMOC), the Amazon rainforest, or the
Greenland ice sheet are, among others, possible candidates
to abruptly transition to new equilibrium states that may dif-
fer strongly from their current states (Lenton et al., 2008).
Understanding the physical mechanisms behind abrupt shifts
in climatic subsystems is crucial for assessing the associated
risks and for defining safe operating spaces in terms of cumu-
lative greenhouse gas emissions. To date, empirical evidence
for abrupt climate transitions only comes from paleoclimate
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proxy records encoding climate variability in the long-term
past. First discovered in the §'0 records from Greenland
ice cores, the so-called Dansgaard—Oeschger (DO) events
are considered the archetype of past abrupt climate changes
(see Fig. 1) (Johnsen et al., 1992; Dansgaard et al., 1993;
Bond et al., 1993; North Greenland Ice Core Project mem-
bers, 2004). These events constitute a series of abrupt re-
gional warming transitions that punctuated the last and pre-
vious glacial intervals at millennial recurrence periods. Am-
plitudes of these decadal-scale temperature increases reach
from 5 to 16.5 °C over Greenland (Kindler et al., 2014; Hu-
ber et al., 2006; Landais et al., 2005). The abrupt warming
is followed by gradual cooling over centuries to millennia
before the climate abruptly transitions back to cold condi-
tions. The relatively cold (warm) intervals within the glacial
episodes have been termed Greenland stadials (GSs) (Green-
land interstadials (GlIs)). GSs typically show millennial-scale
persistence before another abrupt warming starts a new cy-
cle (Rasmussen et al., 2014; Ditlevsen et al., 2007). Despite
being less pronounced, a global impact of DO events on cli-
mate and ecosystems is evident in many proxy records (e.g.
Moseley et al., 2020; Buizert et al., 2015; Lynch-Stieglitz,
2017; Kim et al., 2012; Fleitmann et al., 2009; Voelker, 2002;
Cheng et al., 2013).

Apart from §'30, other Greenland ice core proxy records,
such as Ca’* and Na™ concentrations as well as the annual
layer thickness A, also bear the signature of DO cycles, as
can be seen in Fig. 1 (e.g., Erhardt et al., 2019; Fuhrer et al.,
1999; Ruth et al., 2007). While §'30 is interpreted as a qual-
itative proxy for ice core site temperatures (e.g. Gkinis et al.,
2014; Jouzel et al., 1997; Johnsen et al., 2001), changes in
Ca”* concentrations — or equivalently dust — are believed to
reflect changes in the atmospheric circulation (Ruth et al.,
2007; Erhardt et al., 2019). Na™ concentration records indi-
cate past sea-salt aerosol concentrations and are thought to
negatively correlate with North Atlantic sea-ice cover (Er-
hardt et al., 2019; Schiipbach et al., 2018). The annual layer
thickness depends on past accumulation rates at the drilling
site and hence indicates local precipitation driven by synop-
tic circulation patterns (Erhardt et al., 2019). According to
this proxy record interpretation, DO events comprise not only
sudden warming but also a sudden increase in local precip-
itation amounts, retreat of the North Atlantic sea-ice cover,
and changes in hemispheric circulation patterns.

In the search for the mechanism(s) causing or triggering
DO events, several attempts have been made to deduce the
relative temporal order of these abrupt changes by analyz-
ing the phasing of corresponding abrupt shifts detected in
multi-proxy time series from Greenland ice cores (Erhardt
etal., 2019; Thomas et al., 2009; Steffensen et al., 2008; Ruth
et al., 2007). While Thomas et al. (2009) and Steffensen et al.
(2008) report delayed Greenland warming with respect to at-
mospheric changes for the onsets of GI-8 and GI-1 and the
Holocene, Ruth et al. (2007) find no systematic lead or lag
across the onsets of GI-1 to GI-24. However, the comprehen-
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sive study conducted by Erhardt et al. (2019) concludes that,
on average, initial changes in both terrestrial dust aerosol
concentrations (Ca”>*) and local precipitation (1) have pre-
ceded the changes in local temperatures (§'80) and sea-salt
aerosol concentrations (Na™) by roughly 1 decade at the on-
set of DO events during the last glacial cycle.

These observation-based studies are complemented by nu-
merous conceptual theories and modeling studies that ex-
plore a variety of mechanisms to explain the DO events.
Many studies emphasize the role of the AMOC in the emer-
gence of DO events (Broecker et al., 1985; Clark et al., 2002;
Ganopolski and Rahmstorf, 2001; Henry et al., 2016). In
this context, Vettoretti and Peltier (2018) identified a self-
sustained sea-salt oscillation mechanism to initiate transi-
tions between stadials and interstadials in a comprehensive
general circulation model (GCM) run, while Boers et al.
(2018) proposed a coupling between sea-ice growth, subsur-
face warming, and AMOC changes to explain the DO cycles.
Moreover, Li and Born (2019) draw attention to the subpolar
gyre, a sensitive region that features strong interactions be-
tween atmosphere, ocean, and sea ice. In line with the empir-
ical studies that suggest a delayed Greenland warming with
respect to atmospheric changes, Kleppin et al. (2015) and
Zhang et al. (2014) find DO-like transitions in GCM studies
triggered by an abrupt reorganization of atmospheric circula-
tion patterns.

Here, we refine the investigation of a potential pairwise
lead—lag relationship between the four climate proxies Ca>*,
Na', §!80, and the annual layer thickness X at DO transition
onsets, as previously presented by Erhardt et al. (2019), by
rigorously taking into account the uncertainties of the DO
onset detection in the different proxy records. We use the
same data and the same probabilistic transition onset detec-
tion method as provided by Erhardt et al. (2019). The data
comprise piecewise high-resolution (7 years or higher) multi-
proxy time series around 23 major DO events from the later
half of the last glacial cycle, from the NEEM and the NGRIP
ice cores (Erhardt et al., 2019). The fact that high-frequency
internal climate variability blurs abrupt transitions limits the
ability to precisely detect their onset in the proxy data and
thereby constitutes the main obstacle for the statistical anal-
ysis of the succession of events. The method designed by
Erhardt et al. (2019) very conveniently takes this into ac-
count and instead of returning scalar estimators it quantifies
the transition onsets in terms of Bayesian posterior probabil-
ity densities that indicate the plausibility of a transition onset
at a certain time in view of the data. This gives rise to a set
of uncertain DO transition onset lags for each pair of proxies
under study, whose statistical interpretation is the goal of this
study.

While Erhardt et al. (2019) report transition onsets, mid-
points, and endpoints, we restrict our investigation to the
transition onset points, since we consider the leads and lags
between the initial changes in the different proxy records to
be the relevant quantity for a potential identification of the
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Figure 1. Time series of s180 (blue), annual layer thickness A (cyan), Ca?t (orange), and Nat (green) from the NGRIP ice core, together
with time series of Ca2T (red) and Nat (light green) from the NEEM ice core on the GICCOS timescale in ky b2k, at 10-year resolution.
Light blue vertical lines mark the timings of major DO events. All time series are retrieved from Erhardt et al. (2019), and for the DO event
timings and Greenland interstadial (GI) notation we followed Rasmussen et al. (2014). Originally, the 8180 record was published by NGRIP
project members (2004) as 50-year mean values and later at higher resolution (5 cm) as a Supplement to Gkinis et al. (2014). The GICC05
age scale for the NGRIP ice core was compiled by Vinther et al. (2006), Rasmussen et al. (2006), Andersen et al. (2006), and Svensson et al.
(2008). For the NEEM ice core, the GICCOS presented by Rasmussen et al. (2013) is used here.

physical trigger of the DO events. We extend the previous
work by interpreting the sets of uncertain lags as samples
generated in random experiments from corresponding un-
known populations — each proxy pair is associated with its
own population of lags. This allows for the investigation of
whether the reported average lags (Erhardt et al., 2019) are
a systematic feature or whether they might have emerged by
chance. In order to review the statistical evidence for poten-
tial systematic lags, we formalize the notion of a “systematic
lag”: we call a lag systematic if it is enshrined in the random
experiment in form of a population mean different from 0.
Samples generated from such a population with a non-zero
mean would systematically (and not by chance) exhibit sam-
ple means different from 0. Accordingly, we formulate the
null hypothesis that the proposed transition sequence is in
fact not physically favored. In mathematical terms this corre-
sponds to an underlying population of lags with a mean equal
to 0 or with reversed sign with respect to the observed lags.
A rejection of this null hypothesis would statistically cor-
roborate the interpretation that transitions in 880 and Na*
systematically lag their counterparts in A and Ca’>*. On the
other hand, acceptance of the hypothesis would prevent us
from ruling out that the observed lag tendencies are a coinci-
dence and not a systematic feature. We have identified three
different statistical tests suitable for this task, which all rely
on slightly different assumptions. Therefore, in combination
they yield a robust assessment of the observations. Most im-
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portantly, we propagate the uncertainties that arise from the
transition onset detection to the level of p values of the dif-
ferent tests.

We will show that, if the uncertainties are averaged out at
the level of the individual transition onset lags — thus ignoring
the uncertainties in the onset detection — all tests indicate sta-
tistical significance (at 5 % confidence level) of the observed
tendencies toward delayed §'80 and Na* transition onsets
with respect to the corresponding onsets in A and Ca”>*. Rig-
orous uncertainty propagation, however, yields substantial
probabilities for the observed transition onset lags to be non-
significant with respect to the null hypothesis. We thus argue
that the uncertainties in the transition onset detection are too
large to infer a population mean different from O in the direc-
tion of the observed tendencies. In turn, this prevents the at-
tribution of the observed lead—lag relations to a fundamental
mechanism underlying the DO events. We discuss the differ-
ence between our approach and the one followed by Erhardt
et al. (2019) in detail below.

In addition to the quantitative uncertainty discussed here,
there is always qualitative uncertainty about the interpreta-
tion of climate proxies. Clearly, there is no one-to-one map-
ping between proxy variables and the climate variables they
are assumed to represent. To give an example, changes in the
atmospheric circulation will simultaneously impact the trans-
port efficiency of sea-salt aerosols to Greenland. Schiipbach
et al. (2018) discuss in detail the entanglement of transport
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efficiency changes and source emission changes for aerosol
proxies measured in Greenland ice cores. We restrict our
analysis to those proxy pairs that have been found to show
decadal-scale time lags by Erhardt et al. (2019) and leave
aside those pairs which show almost simultaneous transition
onsets according to Erhardt et al. (2019).

This article is structured as follows: first, the data used for
the study are described. Second, we introduce our methodol-
ogy in general terms, in order to facilitate potential adapta-
tion to structurally similar problems. Within this section, we
pay special attention to clarifying the differences between the
approaches chosen in this study and by Erhardt et al. (2019).
This is followed by the presentation of our results including a
comparison to previous results. In the subsequent discussion,
we give a statistical interpretation and explain how the two
lines of inference lead to different conclusions. The last sec-
tion summarizes the key conclusions that can be drawn from
our analysis.

2 Data

In conjunction with their study, Erhardt et al. (2019) pub-
lished 23 highly resolved time series for Ca’* and Na* con-
centrations from the NGRIP and NEEM ice cores for time
intervals of 250 to 500 years centered around DO events
from the later half of the last glacial. The data set covers
all major interstadial onsets from GI-17.2 to the Holocene,
as determined by Rasmussen et al. (2014). The time reso-
lution decreases from 2 to 4 years with increasing depth in
the ice cores due to the thinning of the core. In addition, Er-
hardt et al. (2019) derived the annual layer thickness from
the NGRIP aerosol data and published these records likewise
for the time intervals described above. Furthermore, contin-
uous 10-year resolution versions of the proxy records were
published, which cover the period 60—10kyr BP, shown in
Fig. 1 (Erhardt et al., 2019). Finally, the NGRIP § 180 record
at Scm resolution (corresponding to 4-7 years for the re-
spective time windows) (North Greenland Ice Core Project
members, 2004) completes the data set used in the study by
Erhardt et al. (2019) and correspondingly in our study.

While Ca?>* and Nat mass concentrations are interpreted
as indicators of the past state of the atmospheric large-scale
circulation and the past North Atlantic sea-ice extent, respec-
tively, the annual layer thickness and 8'30 records give qual-
itative measures of the local precipitation and temperature,
respectively (Erhardt et al., 2019, and references therein).
The high resolution and the shared origin of the time series
make them ideally suited to study the succession of events at
the beginning of DO transitions. On top of that, the aerosol
data have been co-registered in a continuous flow analysis al-
lowing for the highest possible comparability (Erhardt et al.,
2019).

For their analysis, Erhardt et al. (2019) only considered
time series around DO events that do not suffer from sub-
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stantial data gaps. For the sake of comparability, we adopt
their selection. From Fig. 2 it can be inferred which proxy
records around which DO events have been included in this
study. For details on the data and the proxy interpretations
we refer to Erhardt et al. (2019) and the manifold references
therein.

3 Methods

We first briefly review the probabilistic method that we
adopted from Erhardt et al. (2019) in order to estimate the
transition onset time #y of each proxy variable for each
DO event comprised in the data (see Fig. 3). The Bayesian
method accounts for the uncertainty inherent to the determi-
nation of # by returning probability densities o7 (fo) instead
of scalar estimators. From these distributions, corresponding
probability distributions for the pairwise time lags between
two proxies can be derived for all DO events. Second, a sta-
tistical perspective on the series of DO events is established.
For a given proxy pair, the set of transition onset lags from
the different DO events is treated as a sample of observations
from an unknown underlying population. In this very com-
mon setup, naturally one would use hypothesis tests to con-
strain the population. In particular, the question of whether
any lag tendencies observed in the data are a systematic fea-
ture or whether they have instead occurred by chance can
be assessed by testing a convenient null hypothesis. How-
ever, the particularity that the individual observations that
comprise the sample are themselves subject to uncertainty
requires a generalization of the hypothesis tests. We propa-
gate the uncertainty of the transition onset timings to the p
values of the tests and hence obtain uncertain p values in
terms of probability densities (see Figs. 4 and 7). While in
common hypothesis tests the scalar p value is compared to
a predefined significance level, here we propose two criteria
to project the p-value distribution onto the binary decision
between acceptance and rejection of the null hypothesis. Af-
ter this general characterization of the statistical problem, we
introduce the tests which we employ for the analysis. Finally,
we compare our approach to the one followed by Erhardt
et al. (2019).

3.1 Transition onset detection

Consider a fluctuating time series D = {x(#;)}i=1,.. » With n
data points, which includes one abrupt transition from one
level of values to another, as shown in Fig. 3b. For this set-
ting, Erhardt et al. (2019) have designed a method to estimate
the transition onset time #( in a probabilistic, Bayesian sense.
The application of the method to NGRIP Ca>* and Na™ con-
centration data around the onset of GI-12c¢ is illustrated in
Fig. 3. Instead of a point estimate, their method returns a so-
called posterior probability density that indicates the plausi-
bility of the respective onset time in view of the data (see
Fig. 3a). For technical reasons, this probability density can-

https://doi.org/10.5194/cp-17-1751-2021



K. Riechers and N. Boers: Uncertainties of DO event phasing 1755
20 = ' ‘
o J | - | | ) \ 4 — 180
& ‘ * 1 ‘ } - Ca2+
X _20 = 1 — Nat
g —40 = ‘ ‘ ' -2
> -60 =
2] —80 =
= 50
—100 =
—120 = ‘ ‘ ‘ - >
L ‘ | ‘ i i 0 m
=2
N
- —75 <]
= —100
r 1T 17T 11 17T 1711 1T 1 17T 171 17T 1T 17 1T 1T"1

(N »
AP
& o

RPN N IR SR
P 7 e o

Figure 2. DO events (Greenland interstadial onsets) for which Erhardt et al. (2019) provide high-resolution proxy data (Ca?t Na', and
1) for windows centered around the transitions. 8180 data for the corresponding windows were retrieved from continuous 8180 time series
measured in 5 cm steps in the NGRIP ice core (see Fig. 1). The posterior probability densities for the transition onsets with respect to the
timing of the DO events according to Rasmussen et al. (2014) are shown in arbitrary units for all proxies. They were recalculated using the
data and the method provided by Erhardt et al. (2019). The uncertain transition onsets are only shown for those transitions investigated in
this study — the selection is adopted from Erhardt et al. (2019) to guarantee comparability.
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Figure 3. (a) Posterior probability distribution p (#) for the onset
of NGRIP Ca2T and Na¥ transitions associated with the onset of
GI-12c, derived from Ca®*t (orange) and Na™ (green) values around
the GI-12c onset at 2-year resolution, using the probabilistic ramp-
fitting shown in (b). The black lines in (b) indicate the expected
ramp, i.e., the average over all ramps determined by the posterior
distributions of the ramp parameters. The grey shaded area indi-
cates the 5th—95th percentiles of these ramps. (¢) Histogram sam-
pled from the posterior distribution for the transition onset lag At
between the two proxies (violet), together with the corresponding
Gaussian kernel density estimate (KDE, blue).
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not be derived in form of a continuous function but only in
form of a representative set of values generated from it by
means of a Markov chain Monte Carlo (MCMC) algorithm
(Goodman and Weare, 2010).

The key idea is to model the transition as a linear ramp
L(t;) perturbed by red noise €(¢;), which is an autoregressive
process of first order:

Yo <1t
Yt = 1yo+ Ay R g <ti<to+T + €t) . (D)
——"
yo+ Ay t>ti+7 AR(1)g o

liner ramp L(#;)

This model is fully determined by the four ramp parameters
{t0, yo, T, Ay}, the amplitude o, and the autoregressive coef-
ficient « of the AR(1) process. For a given configuration 6 of
these six parameters, the probability of this stochastic model
to exactly reproduce the data D reads

7(D|0) :=x(y(t;) =x(t;)Vi €{l,...,n}|0)

__ _1Gi—asi)?
_(Vznoz)ngeXp( 2 o2 ) @

where §; = x(t;)—L(t;) denotes the residuals between the lin-
ear ramp and the observations and §g = 0. Bayes’ theorem
immediately yields the posterior probability density for the
model parameters 7(0|D) upon introduction of convenient
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one. (b) Distribution of the uncertain test statistic ® = ¢(¥) derived from the uncertain sample (purple) together with the corresponding
value derived from the true sample (green). In olive, the distribution of ® under the null hypothesis is shown. The dotted red line separates
the rejection region (left) from the acceptance region in a one-sided test setup. (¢) Distribution of the uncertain p value corresponding to the
uncertain sample. In green, the p value of the certain sample is marked. The red line indicates the significance level o.

priors 7 (6): which reads
7(D|0) = (8) _ 1 &
n(@D)= ———-: 3 prto)=—) &to—to,;) (6)
(D) 0 m ; !
where the normalization constant 7(D) = [(D|0)7(0)d0  in terms of the empirical density induced by the MCMC sam-
is the a priori probability of the observations. Since the pa- ple.
rameter space is si?(—dirr.lensional, Egq. (3) cannot .be evaluated Given the probability densities for the transition onsets of
explicitly on a grid with reasonably fine spacing. Instead, two proxy variables p and g at a chosen DO event i, the prob-
an MCMC algorithm is used to sample a representative set ability density for the lag Ar”? = té’sl — lg ‘' petween them
{01,...,0,,} of parameter configurations from the posterior reads l
distribution that approximates the continuous distribution in
the sense that for smooth functions P-q A g Pa\ Pl Do
! f parpa (A7) = //5 (fo —ly" — AL )pTo (to )
_ 1 qii (4.0 g P g4
[ r6we®) 0= [ r@pe@ a0 =3 re. @ x oy (97) arf arf. )
j=1

AT"? was chosen to denote the time lag which inher-
its the uncertainty from the transition onset detection and
must thus mathematically be treated as a random variable.
Atip 1 denotes a potential value that ATip ! may assume.
The set of probability densities {p ATt_p.q(Atip 1)), derived
from the different DO events conveniently describes the ran-
dom vector of uncertain DO onset lag observations AT 79 =
(AT, ..., AT,"?) for the (p, g) proxy pair in the sense that

where the notion of a so-called empirical distribution
Pe@) = %ZT:]S(O —0;) has been used. The use of the
MCMC algorithm further allows us to omit the normaliza-
tion constant 77 (D). The number m of individuals comprised
in the MCMC sample must be chosen large enough to ensure
a good approximation in Eq. (4). The marginal distribution
for the parameter 7 relevant for our study can be obtained by
integration over the remaining parameters 6*:

O / 7(81D) db*, 5)  parra(At”) =[] psres (ar). ®)

i=1
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Note that the entries AT”*? of the random vector AT+ are
independent from each other and follow their individual dis-
tributions p,yra (A7), such that the joint distribution is
given by the pfoduct of the individual distributions. A cross-
core comparison is not possible because the relative dating
uncertainties between the cores exceed the magnitude of the
potential time lags.

For the sake of simplicity, we omit the difference between
the posterior density distribution and the empirical poste-
rior density distribution induced by an MCMC sample. It
is shown in Appendix A that all methods can be equiva-
lently formulated in terms of the empirical posterior density
distribution. The numerical computations themselves have
of course been carried out with the empirical densities ob-
tained from the MCMC sampler. Appendix B discusses the
construction of numerically manageable empirical densities
parra(AtP9). Since a substantial reduction in the available
MCMC sampled data is required, a control group of alter-
native realizations of prr.a(AtP'?) is introduced. The high
agreement of the results obtained from the control group with
the results discussed in the main text confirms the validity of
the initial p o 7r.q (AtP-9) construction.

In the following, all probability densities that represent un-
certainties with origin in the transition onset observation will
be referred to as uncertainty distributions or uncertainty den-
sities. This helps to distinguish them from probability dis-
tributions that generically characterize random experiments.
The random variables described by uncertainty distributions
will be termed uncertain variables and will be marked with
a hat. Generally, we denote all random (uncertain) variables
by capital letters X (X ), while realizations will be denoted
with lower-case letters x (x). Furthermore, distributions will
always be subscripted with the random variables that they
characterize, e.g., px(x) (,05(()?)). For the sake of readabil-
ity, sometimes we omit the index p,q when it is clear that a
quantity refers to a pair of proxies (p, g).

3.2 Statistical setting

Despite their diversity in terms of temperature amplitude, du-
ration, and frequency across the last glacial, the reoccurring
patterns and their common manifestation in different prox-
ies suggest that the DO events follow a common physical
mechanism. If this assumption holds true, this mechanism
prescribes a fixed pattern of causes and effects for all DO
events — at least on the scale of interactions between climatic
subsystems represented by the proxies under study. However,
natural variability randomly delays or advances the individ-
ual parts of the event chain of the DO mechanism in each
single realization, without violating the mechanistic causal-
ity. The observed pairwise transition onset lags can thus be
regarded as realizations of independent and identically dis-
tributed (i.i.d.) random variables generated in a random ex-
periment (2, F, PZ’;I) on the sample space 2 = R. Here, F
is a o algebra defined on 2 and may be taken as the Borel
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algebra. PZ’Tq — the so-called population — denotes a proba-
bility measure with respect to F and fully characterizes the
random lag AT P-4 between the proxies p and g. Importantly,
if any of the proxy variables investigated here was to repre-
sent a climate variable associated with the DO event trigger,
we would expect an advanced initial change in the record of
this proxy with respect to other proxies at DO events. In turn,
a pronounced delay of a proxy record’s transition onset con-
tradicts the assumption that the proxy represents a climate
variable associated with the trigger. Therefore, the identifi-
cation of leads and lags between the transition onsets in the
individual proxy time series may help in the search for the
trigger of the DO events. Here, we formalize the investiga-
tion of systematic lead—lag relationships between the proxy
transitions. The random experiment framework allows us to
relate a suspected transition sequence to a mean of the gen-
erating population PZ’]? differing from O in the according
direction. Evidence for the suspected sequence can then be
obtained by testing the null hypothesis of a population mean
equal to O or with a sign opposed to the suspected lag di-
rection. If this null hypothesis can be rejected based on the
observations, this would constitute a strong indication of a
systematic, physical lag and would hence potentially yield
valuable information on the search for the mechanism(s) and
trigger(s) of the DO transitions.

According to the data selection by Erhardt et al. (2019)
as explained in Sect. 2, for all studied pairs of proxies
we compute either 16 or 20 transition lags from the dif-
ferent DO events, which we interpret as samples At?7 =
(A4, Aty?) from their respective populations PRy .
Studying these samples, Erhardt et al. (2019) deduced a
decadal-scale delay in the transition onsets in Na* and §'30
records with respect to their counterparts in Ca>t and A. In
order to test if the data support evidence for this lag to be sys-
tematic in a statistical sense, the notion of a “systematic lag”
first needs to be formalized mathematically. We argue that a
physical process that systematically delays one of the proxy
variable transitions with respect to another must in the ran-
dom experiment framework be associated with a population
that exhibits a mean different from 0: u?”9 = E(AT?4) £ 0.
The outcomes of such a random experiment will systemati-
cally exhibit sample means different from O in accordance
with the population mean. Samples generated from a pop-
ulation with a mean equal to 0 may as well yield sample
means that strongly differ from 0. However, their occur-
rence is not systematic but rather a coincidence. Given a lim-
ited number of observations, hypothesis tests provide a con-
sistent yet not unambiguous way to distinguish systematic
from random features. If the mean of the observed sample
uP4(AtP9) = 15" AtP? indicates an apparent lag between
the proxies p and g, testing whether the sample statistically
contradicts a population that favors no (u?-? = 0) or the op-
posite lag (or sign(u?-7) # sign(u?-7)) can provide evidence
at the significance level o for the observed mean lag to be
systematic in the sense that sign(u?9) = sign(u?-7). How-
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ever, as long as the null hypothesis cannot be rejected, the
observed average sample lag cannot be regarded as statistical
evidence for a systematic lag.

Before we introduce the tests deployed for this study, we
discuss the particularity that the individual observations of
the i.i.d. variables that comprise our samples are themselves
subject to uncertainty and hence are represented by probabil-
ity densities instead of scalar values. The common literature
on hypothesis tests assumes that an observation of a random
variable yields a scalar value. Given a sample of n scalar ob-
servations

x=(x15x25--'7-xn)7 (9)

the application of hypothesis tests to the sample is in gen-
eral straight forward and has been abundantly discussed (e.g.
Lehmann and Romano, 2006). In short, a test statistic ¢, =
¢(x) is computed from the observed sample, where

¢ R" > R, x —> ¢(x) (10)

denotes the mapping from the space of n-dimensional sam-
ples to the space of the test statistic and ¢, denotes the ex-
plicit value of the function when applied to the observed sam-
ple x. Subsequently, integration of the so-called null distribu-
tion over all values ¢’, which under the null hypothesis Hy
are more extreme than the observed ¢y, yields the test’s p
value. In this study, a hypothesis on the lower limit of a pa-
rameter will be tested. In this one-sided left-tailed application
of hypothesis testing, the p value explicitly reads

b
Px=/p2>(¢>’)d¢’, (11)

—00

which defines the mapping
p:R—10,1],px —> p(¢x) = px. 12)

Analogous expressions may be given for one-sided right-
tailed and two-sided tests. The null distribution pg(dﬂ ) is the
theoretical distribution of the random test statistic ® = ¢(X)
under the assumption that the null hypothesis on the popula-
tion Px holds true. If py is less than a predefined significance
level «, the observed sample x is said to contradict the null
hypothesis at the significance level «, and the null hypothesis
should be rejected.

In contrast to this setting, the DO transition onset lags
Atip "1 between the proxies p and ¢, which are thought to
have been generated from the population ’PZ’}], are observed
with uncertainty. In our case, the entries in the vector of
observations are uncertain variables themselves, which are
characterized by the previously introduced uncertainty dis-
tributions p Aiip,q(Afip 0y, Figure 4a illustrates this situation:

from an underlying population Py a sample x = (x1, ..., Xs)
is realized, with x; denoting the true values of the individual
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realizations. However, the exact value of x; cannot be mea-
sured precisely due to measurement uncertainties. Instead,
an estimator Y; is introduced together with the uncertainty
distribution Py, (y;) that expresses the observer’s belief about

how likely a specific value y; for the estimator Y; is to agree
with the true value x;. The ¥; correspond to the Af"ip 4, For
the x; there is no direct correspondence in the problem at
hand because this quantity cannot be accessed in practice and
is thus not denoted explicitly. We call the vector of estima-
tors ¥ = ()?1, e )}n) an uncertain sample in the following.
Omitting the (p, ¢) notation, we denote an uncertain sample
of time lags as

AT = (Aﬁ, N AT) (13a)
with

n
pai(AD =[] a7, (A0). (13b)

i=1
Note that the uncertainty represented by the uncertain sam-
ple originates from the observation process — the sample no
longer carries the generic randomness of the population Pat
it was generated from. The AT; are no longer identically but
yet independently distributed.

A simplistic approach to test hypotheses on an uncertain
sample would be to average over the uncertainty distribu-
tion and subsequently apply the test to the resulting expected
sample

EAT) = (E(Af‘l), . E(AT,,))
= (/ Af pAﬂ(AtA])dAf],...,

/Afn pAfn(Afn) dAfn>. (14)

Averaging out uncertainties, however, essentially implies that
the uncertainties are ignored and is thus always associated
with a loss of information. The need for a more thorough
treatment, with proper propagation of the uncertainties, may
be illustrated by a simple consideration. Assume that a ran-
dom variable X can be observed at a given precision oops,
where oo,ps may be interpreted as the typical width of the
corresponding uncertainty distribution. For any finite num-
ber of observations of X, the measurement uncertainty lim-
its the ability to infer properties of the population. For ex-
ample, one cannot distinguish between potential candidates
no and w1 for the population mean, whose difference A =
[po — 1] is a lot smaller than the observational precision,
unless the number of observations tends to infinity. If uncer-
tainties are averaged out, testing Hy : it = po against the al-
ternative Hp : u = 1 can eventually still yield significance,
even in the case where |wp — 1| < oobs. For relatively small
sample sizes, such an attested significance would be statisti-
cally meaningless. The uncertainties in the individual mea-
surements considered here are on the order of a few decades,
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while the proposed size of the investigated time lag is roughly
1 decade. In combination with the relatively small sample
sizes of either 16 or 20 events, the scales involved in the anal-
ysis require a suitable treatment of the measurement uncer-
tainties.

The uncertainty propagation relies on the fact that apply-
ing a function f:R — R to a real valued random (uncer-
tain) variable X yields a new random (uncertain) variable
G = f(X), which is distributed according to

,OG(g)=/5(f(x)—g) px(x) dx. s)

Analogously, the uncertain test statistic D =g¢(A T) follows
the distribution

04 (®) = / 3(p(AD) — §) p,7(AT) dAZ. (16)

Repeated application of Eq. (15) yields the uncertainty dis-
tribution of a given test’s p value P = p(¢(AT)):

o) = [ 5(p(®)-5) pold) dd

= [ [5(r@-5) 5 (scap-4)

x ppj(AF) dAE d

= / 3 (p(p(AD) — p) dAL. (17)

In the example shown in Fig. 4 the initial uncertainties in
the observatio