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Abstract. We present a new global reconstruction of
seasonal climates at the Last Glacial Maximum (LGM,
21 000 years BP) made using 3-D variational data assimi-
lation with pollen-based site reconstructions of six climate
variables and the ensemble average of the PMIP3—CMIP5
simulations as a prior (initial estimate of LGM climate).
We assume that the correlation matrix of the uncertainties
in the prior is both spatially and temporally Gaussian, in
order to produce a climate reconstruction that is smoothed
both from month to month and from grid cell to grid cell.
The pollen-based reconstructions include mean annual tem-
perature (MAT), mean temperature of the coldest month
(MTCO), mean temperature of the warmest month (MTWA),
growing season warmth as measured by growing degree days
above a baseline of 5 ◦C (GDD5), mean annual precipita-
tion (MAP), and a moisture index (MI), which is the ratio
of MAP to mean annual potential evapotranspiration. Dif-
ferent variables are reconstructed at different sites, but our
approach both preserves seasonal relationships and allows a
more complete set of seasonal climate variables to be de-
rived at each location. We further account for the ecophys-
iological effects of low atmospheric carbon dioxide concen-
tration on vegetation in making reconstructions of MAP and
MI. This adjustment results in the reconstruction of wetter
climates than might otherwise be inferred from the vegeta-
tion composition. Finally, by comparing the uncertainty con-
tribution to the final reconstruction, we provide confidence
intervals on these reconstructions and delimit geographical

regions for which the palaeodata provide no information to
constrain the climate reconstructions. The new reconstruc-
tions will provide a benchmark created using clear and de-
fined mathematical procedures that can be used for evalua-
tion of the PMIP4–CMIP6 entry-card LGM simulations and
are available at https://doi.org/10.17864/1947.244 (Cleator et
al., 2020b).

1 Introduction

Models that perform equally well for present-day climate
nevertheless produce very different responses to anthro-
pogenic forcing scenarios through the 21st century. Al-
though internal variability contributes to these differences,
the largest source of uncertainty in model projections in the
first 3 to 4 decades of the 21st century stems from differ-
ences in the response of individual models to the same forc-
ing (Kirtman et al., 2013). Thus, the evaluation of models
based on modern observations is not a good guide to their fu-
ture performance, largely because the observations used to
assess model performance for present-day climate encom-
pass too limited a range of climate variability to provide a
robust test of a model’s ability to simulate climate changes.
Although past climate states do not provide analogues for the
future, past climate changes provide a unique opportunity
for out-of-sample evaluation of climate model performance
(Harrison et al., 2015).
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At the Last Glacial Maximum (LGM, conventionally de-
fined for modelling purposes as 21 000 years ago), insolation
was quite similar to the present, but global ice volume was
at a maximum, eustatic sea level was close to a minimum,
long-lived greenhouse gas concentrations were lower, and at-
mospheric aerosol loadings were higher than today; land sur-
face characteristics (including vegetation distribution) were
also substantially different from today. These changes gave
rise to a climate radically different from that of today; in-
deed the magnitude of the change in radiative forcing be-
tween LGM and pre-industrial climate is comparable to high-
emissions projections of climate change between now and
the end of the 21st century (Braconnot et al., 2012). The
LGM has been a focus for model evaluation in the Paleocli-
mate Modelling Intercomparison Project (PMIP) since its in-
ception (Joussaume and Taylor, 1995; Braconnot et al., 2007,
2012). The LGM is one of the two “entry card” palaeocli-
mate simulations included in the current phase of the Cou-
pled Model Intercomparison Project (CMIP6) (Kageyama et
al., 2018). The evaluation of previous generations of palaeo-
climate simulations has shown that the large-scale thermo-
dynamic responses seen in 21st century and LGM climates,
including enhanced land–sea temperature contrast, latitudi-
nal amplification, and scaling of precipitation with temper-
ature, are likely to be realistic (Izumi et al., 2013, 2014; Li
et al., 2013; Lunt et al., 2013; Hill et al., 2014; and Harrison
et al., 2014, 2015). However, evaluation against palaeodata
shows that even when the sign of large-scale climate changes
is correctly predicted, the patterns of change at a regional
scale are often inaccurate and the magnitudes of change of-
ten underestimated (Brewer et al., 2007; Mauri et al., 2014;
Perez Sanz et al., 2014; and Bartlein et al., 2017). The current
focus on understanding what causes mismatches between re-
constructed and simulated climates is a primary motivation
for developing benchmark data sets that represent regional
climate changes comprehensively enough to allow a critical
evaluation of model deficiencies.

Many sources of information can be used to reconstruct
past climates. Pollen-based reconstructions are the most
widespread, and pollen-based data were the basis for the
current standard LGM benchmark data set from Bartlein et
al. (2011). In common with other data sources, the pollen-
based reconstructions were generated for individual sites.
Geological preservation issues mean that the number of sites
available inevitably decreases through time (Bradley, 2014).
Since pollen is only preserved for a long time in anoxic sedi-
ments, the geographic distribution of potential sites is biased
towards climates that are relatively wet today. Furthermore,
the actual sampling of potential sites is highly non-uniform,
so there are large geographic gaps in data coverage (Harri-
son et al., 2016). The lack of continuous climate fields is not
ideal for model evaluation, and so attempts have been made
to generalize the site-based data through gridding, interpola-
tion, or some form of multiple regression (see e.g. Bartlein et
al., 2011; Annan and Hargreaves, 2013). However, there has

so far been no attempt to produce a physically consistent,
multivariable reconstruction which provides the associated
uncertainties explicitly.

A further characteristic of the LGM that creates prob-
lems for quantitative reconstructions based on pollen data is
the much lower atmospheric carbon dioxide concentration,
[CO2], compared to the pre-industrial Holocene. [CO2] has
a direct effect on plant physiological processes. Low [CO2]
as experienced by plants at the LGM is expected to have led
to reduced water-use efficiency – the ratio of carbon assim-
ilation to the water lost through transpiration (Bramley et
al., 2013). Most reconstructions of moisture variables from
pollen data, including most of the reconstructions used by
Bartlein et al. (2011), do not take [CO2] effects into account.
Yet several modelling studies have shown that the impact of
low [CO2] around the LGM on plant growth and distribu-
tion was large (e.g. Jolly and Haxeltine, 1997; Cowling and
Sykes, 1999; Harrison and Prentice, 2003; Bragg et al., 2013;
Martin Calvo et al., 2014; and Martin Calvo and Prentice,
2015). A few reconstructions of LGM climate based on the
inversion of process-based biogeography models have also
shown large effects of low [CO2] on reconstructed LGM
palaeoclimates (e.g. Guiot et al., 2000; Wu et al., 2007).
The reconstructions of moisture variables in the Bartlein et
al. (2011) data set are thus probably not reliable and likely to
be biased low.

Prentice et al. (2017) demonstrated an approach to cor-
rect reconstructions of moisture variables for the effect of
[CO2], but this correction has not been applied globally. A
key side effect of applying this [CO2] correction is the recon-
ciliation of semi-quantitative hydrological evidence for wet
conditions at the LGM with the apparent dryness suggested
by the vegetation assemblages (Prentice et al., 2017). Similar
considerations apply to the interpretation of future climate
changes in terms of vegetational effects. Projections of fu-
ture aridity (based on declining indices of moisture availabil-
ity) linked to warming are unrealistic, in a global perspective,
because of the counteracting effect of increased water-use ef-
ficiency due to rising [CO2] – which is generally taken into
account by process-based ecosystem models, but not by sta-
tistical models, using projected changes in vapour pressure
deficit or some measure of plant-available water (Keenan et
al., 2011; Roderick et al., 2015; and Greve et al., 2017).

In this paper, we use variational data assimilation based on
both pollen-based climate reconstructions and climate model
outputs to arrive at a best-estimate analytical reconstruction
of LGM climate, explicitly taking account of the impact of
[CO2]. Variational techniques provide a way of combining
observations and model outputs to produce climate recon-
structions that are not exclusively constrained to one source
of information or the other (Nichols, 2010). We use the un-
certainty contributions to the analytical reconstruction to pro-
vide confidence intervals for these reconstructions and also to
delimit geographical regions for which the palaeodata pro-
vide no constraint on the reconstructions. The resulting data
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set is expected to provide a well-founded multivariable LGM
climate data set for palaeoclimate model benchmarking in
CMIP6.

2 Methods

2.1 Pollen-based climate reconstructions

Bartlein et al. (2011) provided a global synthesis of pollen-
based quantitative climate reconstructions for the LGM. The
Bartlein et al. (2011) data set includes reconstructions of cli-
mate anomalies (differences between LGM and recent cli-
mates) for six variables (and their uncertainties), specifically
mean annual temperature (MAT), mean temperature of the
coldest month (MTCO), mean temperature of the warmest
month (MTWA), growing degree days above a baseline of
above 5 ◦C (GDD5), mean annual precipitation (MAP), and
an index of plant-available moisture (the ratio of actual to
equilibrium evapotranspiration, α). There are a small number
of LGM sites (94) in the Bartlein et al. (2011) data set where
model inversion was used to make the reconstructions of α,
and MAP; no [CO2] correction is applied to these recon-
structions. There are no data from Australia in the Bartlein
et al. (2011) data set, and we therefore use quantitative re-
constructions of MAT and another moisture index (MI), the
ratio of MAP to potential evapotranspiration, from Prentice
et al. (2017). Prentice et al. (2017) provide values of MI both
before and after correction for [CO2]; we use the uncorrected
values in order to apply the correction for [CO2] within our
assimilation framework. For consistency between the two
data sets, we re-expressed reconstructions of α in terms of
MI via the Fu–Zhang formulation of the Budyko relationship
between actual evapotranspiration, potential evapotranspira-
tion, and precipitation (Zhang et al., 2004; Gallego-Sala et
al., 2016).

The spatial coverage of the final data set is uneven (Fig. 1).
There are many more data points in Europe and North Amer-
ica than elsewhere. South America has the fewest (14 sites).
The number of variables available at each site varies; al-
though most sites (279) have reconstructions of at least three
variables, some sites have reconstructions of only one vari-
able (60). Nevertheless, in regions where there is adequate
coverage, the reconstructed anomaly patterns are coherent,
plausible, and consistent among variables.

For this application, we derived absolute LGM climate re-
constructions by adding the reconstructed climate anomalies
at each site to the modern climate values from the Climate
Research Unit (CRU) historical climatology data set (CRU
CL v2.0 data set, New et al., 2002), which provides climato-
logical averages of monthly temperature, precipitation, and
cloud cover fraction for the period 1961–1990 CE. Most of
the climate variables (MTCO, MTWA, MAT, and MAP) can
be calculated directly from the CRU CL v2.0 data set. GDD5
was calculated from pseudo-daily data derived from a linear
interpolation of the monthly temperatures. MI was calculated

from the CRU climate variables using the radiation calcula-
tions in the SPLASH model (Davis et al., 2017). For numer-
ical efficiency, we non-dimensionalized all of the absolute
climate reconstructions (and their standard errors) before ap-
plying the variational techniques (for details, see Cleator et
al., 2020a).

2.2 Climate model simulations

Eight LGM climate simulations (Table 1) from the third
phase of the Palaeoclimate Modelling Intercomparison
Project (PMIP3; Braconnot et al., 2012) were used to create
a prior. The PMIP LGM simulations were forced by known
changes in incoming solar radiation, changes in land–sea ge-
ography and the extent and location of ice sheets, and a re-
duction in [CO2] to 185 ppm (see Braconnot et al., 2012, for
details of the modelling protocol). We used the last 100 years
of each LGM simulation. We interpolated monthly precipita-
tion, monthly temperature, and monthly fraction of sunshine
hours from each LGM simulation and its pre-industrial (PI)
control to a common 2◦×2◦ grid. Simulated climate anoma-
lies (LGM minus PI) for each grid cell were then added to
modern climate values calculated from the CRU CL v2.0 data
set (New et al., 2002), as described for the pollen-based re-
constructions, to derive absolute climate values. We calcu-
lated the multi-model mean and variance (Fig. 2) across the
models for each of the climate variables to produce the grid-
ded map used as the prior.

2.3 Water-use efficiency calculations

We applied the general approach developed by Prentice et
al. (2017) to correct pollen-based statistical reconstructions
to account for [CO2] effects. The approach as implemented
here is based on equations (Appendix A) that link moisture
index (MI) to transpiration and the ratio of internal leaf to
ambient [CO2]. The correction is based on the principle that
the rate of water loss per unit carbon gain is inversely re-
lated to effective moisture availability as sensed by plants.
The method involves solving a nonlinear equation that re-
lates rate of water loss per unit carbon gain to MI, tempera-
ture, and CO2 concentration. The equation is derived from a
theory that predicts the response of the ratio of internal leaf
to ambient [CO2] to vapour pressure deficit and temperature
(Prentice et al., 2014; Wang et al., 2014).

2.4 Application of variational techniques

Variational data assimilation techniques provide a way of
combining observations and model outputs to produce cli-
mate reconstructions that are not exclusively constrained
to one source of information or the other (Nichols, 2010).
We use the 3-D variational method, described in Cleator
et al. (2020a), to find the maximum a posteriori estimate
(or analytical reconstruction) of the palaeoclimate given the
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Figure 1. The distribution of the site-based reconstructions of climatic variables at the Last Glacial Maximum. The individual plots show
sites providing reconstructions of (a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean annual temperature (MAT),
(d) mean temperature of the coldest month (MTCO), (e) mean temperature of the warmest month (MTWA), and (f) growing degree days
above a baseline of 5 ◦C (GDD5). The original reconstructions are from Bartlein et al. (2011) and Prentice et al. (2017).

Table 1. Details of the models from the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3) that were used for
the Last Glacial Maximum (LGM) simulations used to create the prior. Coupled ocean–atmosphere models are indicated as OA; the OAC
models have a fully interactive carbon cycle. The resolution in the atmospheric, oceanic, and sea ice components of the models is given in
terms of numbers of grid cells in latitude and longitude.

Model name Type Resolution Year length Reference

Atmosphere Ocean Sea ice

CCSM4 OA 192, 288 320, 384 320, 384 365 Gent et al. (2011)
CNRM-CM5 OA 128, 256 292, 362 292, 362 365–366 Voldoire et al. (2012)
MPI-ESM-P OA 96, 192 220, 256 220, 256 365–366 Jungclaus et al. (2006)
MRI-CGCM3 OA 160, 320 360, 368 360, 368 365 Yukimoto et al. (2011)
FGOALS-g2 OA 64, 128 64, 128 64, 128 365 Li et al. (2013)
COSMOS-ASO OAC 96, 48 120, 101 120, 101 360 Budich et al. (2010)
IPSL-CM5A-LR OAC 96, 96 149, 182 149, 182 365 Dufresne et al. (2013)
MIROC-ESM OAC 64, 128 192, 256 192, 256 365 Watanabe et al. (2011)

site-based reconstructions and the model-based prior. The
method constructs a cost function, which describes how well
a particular climate matches both the site-based reconstruc-
tions and the prior, by assuming the reconstructions and prior
have a Gaussian distribution. To avoid sharp changes in time
and/or space in the analytical reconstructions, the method as-
sumes that the prior temporal and spatial covariance corre-
lations are derived from a modified Bessel function, in or-

der to create a climate anomaly field that is smooth both
from month to month and from grid cell to grid cell. The
degree of correlation is controlled through two length scales:
a spatial length scale that determines how correlated the co-
variance in the prior is between different geographical areas
and a temporal length scale that determines how correlated it
is through the seasonal cycle. The site-based reconstructions
are assumed to have negligible correlations at these scales of
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Figure 2. Uncertainties associated with the climate prior. The climate is derived from a multi-model mean of the ensemble of models from
the Palaeoclimate Modelling Intercomparison Project (PMIP) and is shown in Fig. S1 in the Supplement. The uncertainties shown here are
the standard deviation of the multi-model ensemble values. The individual plots show the variance for the simulated (a) moisture index (MI),
(b) mean annual precipitation (MAP), (c) mean annual temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean
temperature of the warmest month (MTWA), and (f) growing degree days above a baseline of 5 ◦C (GDD5).

space and time. The maximum a posteriori estimate is found
by using the limited memory Broyden–Fletcher–Goldfarb–
Shanno method (Liu and Nocedal, 1989) to determine the cli-
mate that minimizes the cost function. A 1st-order estimate
of the analysis uncertainty covariance is also computed.

An observation operator based on calculations of the di-
rect impact of [CO2] on water-use efficiency (Sect. 2.3) is
used in making the analytical reconstructions. The prior is
constructed as the average of eight LGM climate simulations
(Sect. 2.2). We use an ensemble of different model responses
to the same forcing to provide a series of physically con-
sistent possible states, which can be viewed as perturbed re-
sponses and provide the variance around the climatology pro-
vided by the ensemble average. The prior uncertainty correla-
tions are based on a temporal length scale (Lt) of 1 month and
a spatial length scale (Ls) of 400 km. Cleator et al. (2020a)
have shown that a temporal length scale of 1 month provides
an adequately smooth solution for the seasonal cycle, both

using single sites and over multiple grid cells, as shown by
the sensitivity of the resolution matrix (Menke, 2012; Dela-
haies et al., 2017) to changes in the temporal length scale.
Consideration of the spatial spread of variance in the analyti-
cal reconstruction shows that a spatial length scale of 400 km
also provides a reasonable reflection of the large-scale coher-
ence of regional climate change.

We generated composite variances on the analytical recon-
structions (Fig. 3) by combining the covariances from the
site-based reconstructions and the prior. There are regions
where all of the models systematically differ from the site-
based reconstructions (Harrison et al., 2015), but, neverthe-
less, the inter-model variability is low, which would lead to a
very small contribution to the composite uncertainties from
the prior. We therefore calculated the uncertainty of the prior
from an equal combination of the global uncertainty, the av-
erage variance between each grid cell, and local uncertainty
(the variance between the different models). The reliability
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Figure 3. Uncertainties in the analytical reconstructions. These uncertainties represent a combination of the uncertainty in the site-based
reconstructions and the grid-based variance in the prior and the global variance from the prior.

of the analytical reconstructions was assessed by compar-
ing these composite covariances with the uncertainties in the
prior. We masked out cells where the inclusion of site-based
reconstructions does not produce an improvement of > 5 %
from the prior. Since this assessment is based on a change
in the variance, rather than absolute values, this masking re-
moves regions where there are no pollen-based reconstruc-
tions or the pollen-based reconstructions have very large un-
certainties.

3 Results

The analytical reconstructions (Fig. 4) show an average
year-round cooling of −7.9 ◦C in the northern extratropics.
The cooling is larger in winter (−10.2 ◦C) than in summer
(−4.7 ◦C). A limited number of grid cells in central Eurasia
show higher MAT. Temperature changes are more muted in
the tropics, with an average change in MAT of −4.7 ◦C. The
cooling is somewhat lower in summer than winter (−3.7 ◦C
compared to −4.1 ◦C). Reconstructed temperature changes
were slightly smaller in the southern extratropics, with aver-

age changes in MAT of−3.0 ◦C, largely driven by cooling in
winter.

Changes in moisture-related variables (MAP, MI) across
the Northern Hemisphere are geographically more hetero-
geneous than temperature changes. Reconstructed MAP is
greater than present in western North America (204 mm) but
less than present in eastern North America (−276 mm). Most
of Europe is reconstructed as drier than present (−386 mm),
the same for eastern Eurasia (−118 mm) and the Far East
(−88 mm). The patterns in MI are not identical to those in
MAP, because of the influence of temperature on MI, but re-
gional changes are generally similar to those shown by MAP.
Most of the tropics are shown as drier than present while the
Southern Hemisphere extratropics are wetter than present, in
terms of both MAP and MI.

The reconstructed temperature patterns are not fundamen-
tally different from those shown by Bartlein et al. (2011), but
the analytical data set provides information for a much larger
area (755 % increase), thanks to the imposition of consis-
tency among different climate variables, and of smooth vari-
ations both in space and through the seasonal cycle, by the
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Figure 4. Analytically reconstructed climate, where areas for which the site-based data provide no constraint on the prior have been masked
out. The individual plots show reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean annual temperature
(MAT), (d) mean temperature of the coldest month (MTCO), (e) mean temperature of the warmest month (MTWA), and (f) growing degree
days above a baseline of 5 ◦C (GDD5). The anomalies are expressed relative to the long-term average (1960–1990) values from the Climate
Research Unit (CRU) historical climatology data set (CRU CL v2.0 data set, New et al., 2002).

method. There are systematic differences, however, between
the analytical reconstructions and the pollen-based recon-
structions in terms of moisture-related variables (MAP, MI)
because the analytical reconstructions take account of the di-
rect influence of [CO2] on plant growth. The physiological
impact of [CO2] leads to analytical reconstructions indicat-
ing wetter-than-present conditions in many regions (Fig. 5a,
b); for example in southern Africa, several of the original
pollen-based reconstructions show no change in MAP or MI
compared to present, but the analytical reconstruction shows
wetter conditions than present. In some regions, incorporat-
ing the impact of [CO2] reverses the sign of the reconstructed
changes. Part of northern Eurasia is reconstructed as being
wetter than present, despite pollen-based reconstructions in-
dicating conditions drier than present (in terms of both MAP
and MI), as shown by Fig. S3. The relative changes in MAP

and MI are similar across all sites (Fig. 5c), implying that the
analytically reconstructed changes are driven by changes in
precipitation rather than temperature.

4 Discussion

Variational data assimilation techniques provide a way of
combining observations and model outputs, taking account
of the uncertainties in both, to produce a best-estimate ana-
lytical reconstruction of LGM climate. These reconstructions
extend the information available from site-based reconstruc-
tions both spatially and through the seasonal cycle. Our new
analytical data set characterizes the seasonal cycle across a
much larger region of the globe than the data set that is cur-
rently being used for benchmarking of palaeoclimate model
simulations. We therefore suggest that this data set (Cleator
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Figure 5. Impact of [CO2] on reconstructions of moisture-related variables. The individual plots show (a) the change in moisture index (MI)
and (b) the change in mean annual precipitation (MAP) compared to the original pollen-based reconstructions for the LGM before (circles)
and after (crosses) the physiological impacts of [CO2] on water-use efficiency are taken into account. The third plot (c) shows the relative
difference between MI and MAP as a result of [CO2], shown as the percentage difference between the no-[CO2] and [CO2] calculations.

et al., 2020b) should be used for evaluating the CMIP6–
PMIP4 LGM simulations.

Some areas are still poorly covered by quantitative pollen-
based reconstructions of LGM climate, most notably South
America. More pollen-based climate reconstructions would
provide one solution to this problem – and there are many
pollen records that could be used for this purpose (Flantua
et al., 2015; Herbert and Harrison, 2016; and Harrison et al.,
2016). There are also quantitative reconstructions of climate
available from individual sites (e.g. Lebamba et al., 2012;
Wang et al., 2014; Loomis et al., 2017; and Camuera et al.,
2019) that should be incorporated into future data synthe-
ses. It would also be possible to incorporate other sources
of quantitative information, such as chironomid-based recon-
structions (e.g. Chang et al., 2015), within the variational
data assimilation framework.

One of the benefits of the analytical framework applied
here is that it allows the influence of changes in [CO2] on
the moisture reconstructions to be taken into account. Low
[CO2] must have reduced plant water-use efficiency, because
at low [CO2] plants need to keep stomata open for longer
in order to capture sufficient CO2. Statistical reconstruction
methods that use modern relationships between pollen as-
semblages and climate under modern conditions (i.e. mod-
ern analogues, transfer functions, and response surfaces; see
Bartlein et al., 2011) cannot account for such effects. Climate
reconstruction methods based on the inversion of process-
based ecosystem models can do so (see e.g. Guiot et al.,
2000; Wu et al., 2007, 2009; and Izumi and Bartlein, 2016)
but are critically dependent on the reliability of the vegeta-
tion model used. Most of the palaeoclimate reconstructions
have been made by inverting some version of the BIOME
model (Kaplan et al., 2003), which makes use of bioclimatic
thresholds to separate different plant functional types (PFTs).
As a result, reconstructions made by inversion show “jumps”
linked to shifts between vegetation types dominated by dif-

ferent PFTs, whereas, as has been shown recently (Wang
et al., 2017), differences in water-use efficiency of differ-
ent PFTs can be almost entirely accounted for by a single
equation, as proposed here. Sensitivity analyses show that
the numerical value of the corrected moisture variables (MI,
MAP) is dependent on the reconstructed values of these vari-
ables but is insensitive to uncertainties in the temperature
and moisture inputs (Prentice et al., 2017). The strength of
the correction is primarily sensitive to [CO2], but the LGM
[CO2] value is well constrained from ice-core records. The
response of plants to changes in [CO2] is nonlinear (Harri-
son and Bartlein, 2012), and the effect of the change between
recent and pre-industrial or mid-Holocene conditions is less
than that between pre-industrial and glacial conditions. Nev-
ertheless, it would be worth taking the [CO2] effect on water-
use efficiency into account in making reconstructions of in-
terglacial time periods as well.

The influence of individual pollen-based reconstructions
on the analytical reconstruction of seasonal variability, or
the geographic area influenced by an individual site, is cru-
cially dependent on the choice of length scales. We have
adopted conservative length scales of 1 month and 400 km,
based on sensitivity experiments made for southern Europe
(Cleator et al., 2020a). These length scales produce numeri-
cally stable results for the LGM, and the paucity of data for
many regions at the LGM means that using fixed, conserva-
tive length scales is likely to be the only practical approach.
However, in so far as the spatial length scale is related to
atmospheric circulation patterns, there is no reason to sup-
pose that the optimal spatial length scale will be the same
from region to region. The density and clustering of pollen-
based reconstructions could also have a substantial effect on
the optimal spatial length scale. A fixed 1-month temporal
length scale is appropriate for climates that have a reason-
ably smooth and well-defined seasonal cycle, in either tem-
perature or precipitation. However, in climates where the sea-
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sonal cycle is less well defined, for example in the wet trop-
ics, or in situations where there is considerable variability
on sub-monthly timescales, other choices might be more ap-
propriate. For time periods such as the mid-Holocene, which
have an order of magnitude more site-based data, it could be
useful to explore the possibilities of variable length scales.

We have used a 5 % reduction in the analytical uncertainty
compared to prior uncertainty to identify regions where the
incorporation of site-based data has a negligible effect on the
prior as a way of masking out regions for which the observa-
tions have effectively no impact on the analytical reconstruc-
tions. The choice of a 5 % cut-off is arbitrary, but little would
be gained by imposing a more stringent cut-off at the LGM
given that many regions are represented by few observations.
A more stringent cut-off could be applied for other time inter-
vals with more data. We avoid the use of a criterion based on
the analytical reconstruction showing any improvement on
the prior because this could be affected by numerical noise
in the computation. Alternative criteria for the choice of cut-
off could be based on whether the analytical reconstruction
had a reduced uncertainty compared to the pollen-based re-
constructions or could be derived by a consideration of the
condition number used to select appropriate length scales.

There have been a few previous attempts to use data assim-
ilation techniques to generate spatially continuous palaeocli-
mate reconstructions. Annan and Hargreaves (2013) used a
similar multi-model ensemble as the prior and the pollen-
based reconstructions from Bartlein et al. (2011) to recon-
struct MAT at the LGM. However, they made no attempt to
reconstruct other seasonal variables, either independently or
through exploiting features of the simulations (as we have
done here) to generate seasonal reconstructions. Particle filter
approaches (e.g. Goosse et al., 2006; Dubinkina et al., 2011)
produce dynamic estimates of palaeoclimate, but particle fil-
ters cannot produce estimates of climate outside the realm of
the model simulations. Our 3-D variational data assimilation
approach has the great merit of being able to produce season-
ally coherent reconstructions generalized over space, while
at the same time being capable of producing reconstructions
that are outside those captured by the climate model, because
they are not constrained by a specific source (Nichols, 2010).
This property is of particular importance if the resulting data
set is to be used for climate model evaluation, as we propose.
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Appendix A

We define e as the water lost by transpiration (E) per unit
carbon gained by photosynthesis (A). This term, the inverse
of the water-use efficiency, is given by

e = E/A= 1.6D/((1−χ )ca), (A1)

where D is the leaf-to-air vapour pressure deficit (Pa), ca is
the ambient CO2 partial pressure (Pa), and χ is the ratio of
internal leaf CO2 partial pressure (ci) to ca. An optimality-
based model (Prentice et al., 2014), which accurately re-
produces global patterns of χ and its environmental depen-
dencies inferred from leaf δ13C measurements (Wang et al.,
2017), predicts that

χ = (0∗/ca)+ (1−0∗/ca)ξ/(ξ +
√
D), (A2a)

and

ξ =
√

(β(K +0∗)/1.6η∗), (A2b)

where 0∗ is the photorespiratory compensation point of C3
photosynthesis (Pa), β is a constant (estimated as 240 by
Wang et al., 2017), K is the effective Michaelis–Menten co-
efficient of Rubisco (Pa), and η∗ is the ratio of the viscosity of
water (Pa s) at ambient temperature to its value at 25 ◦C. Here
K depends on the Michaelis–Menten coefficients of Rubisco
for carboxylation (KC) and oxygenation (KO), and on the
partial pressure of oxygen O (Farquhar et al., 1980); it is cal-
culated by the following:

K =KC(1+O/KO). (A3)

Standard values and temperature dependencies of KC, KO,
0∗, and η∗ are assigned as in Wang et al. (2017).

The moisture index MI is expressed as

MI= P/Eq ,Eq =
∑

n
(Rn/λ)s/(s+ γ ), (A4)

where P is annual precipitation,Rn is net radiation for month
n, λ is the latent heat of vaporization of water, s is the deriva-
tive of the saturated vapour pressure of water with respect
to temperature (obtained from a standard empirical formula
also used by Wang et al., 2017), and γ is the psychrometer
constant. We assume that values of MI reconstructed from
fossil pollen assemblages, using contemporary pollen and
climate data either in a statistical calibration method or in a
modern-analogue search, need to be corrected in such a way
as to preserve the contemporary relationship between MI and
e, while taking into account the change in e that is caused by
varying ca and temperature away from contemporary values.
The sequence of calculations is as follows. (1) Estimate e
and its derivative with respect to temperature (∂e/∂T ) for the
contemporary ca and climate, using Eqs. (A1)–(A3) above.
(2) Use e and ∂e/∂ T to calculate ∂D/∂T given the palaeo-ca
(measured in ice-core data) and temperature (reconstructed
from pollen data), via a series of analytical equations that re-
late ∂e/∂T to ∂D/∂T and hence to s. (3) Use the new ∂D/∂

T and relative humidity (from the PMIP3 average) to derive
a new value of s. (4) Recalculate MI using a palaeo-estimate
of Rn (modelled as in Davis et al., 2017) and the new value
of s.
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